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Abstract: Cathepsin G (CAT) is a protease released by neutrophils when forming neutrophil extracel-
lular traps that was already associated with inducing type I collagen (COL1) in equine endometrium
in vitro. Endometrosis is a fibrotic condition mainly characterized by COL1 deposition in the equine
endometrium. The objective was to evaluate if noscapine (an alkaloid for cough treatment with
anti-neoplastic and anti-fibrotic properties) would reduce COL1A2 transcription (evaluated by qPCR)
and COL1 protein relative abundance (evaluated by western blot) induced by CAT in equine endome-
trial explants from follicular and mid-luteal phases treated for 24 or 48 h. The explants treated with
CAT increased COL1 expression. Noscapine decreased COL1A2 transcription at both estrous cycle
phases, but COL1 relative protein only at the follicular phase, both induced by CAT. Additionally,
the noscapine anti-fibrotic action was found to be more effective in the follicular phase. The CAT
treatment caused more fibrosis at the longest period of treatment, while noscapine acted better at the
shortest time of treatment. Our results showed that noscapine could act as an anti-fibrotic drug in
equine endometrosis by inhibiting CAT in vitro. Noscapine offers a new promising therapeutic tool
for treating fibrosis as a single non-selective agent to be considered in the future.

Keywords: equine; endometrosis; fibrosis; collagen; cathepsin G; noscapine; inhibition

1. Introduction

Cathepsin G (CAT) is a protease released from neutrophils when they form neutrophil
extracellular traps (NETs) in order to fight pathogens [1]. Neutrophil extracellular traps are
composed of DNA filaments and enzymes such as elastase, myeloperoxidase, or CAT [1].
Although CAT’s main action is cleaving pathogen virulence factors [1,2], it is also associated
with deleterious effects on the development of some diseases.

Recently, CAT was associated with the promotion of psoriasis in a mouse model [3].
Interestingly, a genetic variation that might increase CAT activity is related to cardiovas-
cular, neuromuscular, and osteomyelitis diseases [4–6]. In other mouse models, CAT was
linked to fibrotic conditions, such as chronic obstructive pulmonary disease (COPD) [7]
and kidney fibrosis [8]. In humans, some reports have also associated CAT to the course of
lung cystic fibrosis [9,10], COPD [10,11], and Dupuytren’s hand contracture [12].

Recently, our team investigated the effect of some enzymes released from NETs on
collagen type I production (COL1) by equine endometrial explants [13–17]. The treatment of
mare’s endometrial explants with NETs’ components revealed an increased COL1 content.
The COL1 increase is the hallmark of a chronic degenerative fibrotic disease in the mare
endometrium called endometrosis. Thus, these findings suggested that elastase, CAT, and
myeloperoxidase might be involved in the development of endometrosis [13–17].
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After semen arrival at the equine uterine lumen, a physiological breeding-induced
endometritis with increased pro-inflammatory cytokines is mounted to remove the ex-
cess of spermatozoa, microorganisms, or debris [18–21]. This fast neutrophil influx to the
uterus must be solved until 24 h post-breeding. Otherwise, mares will be predisposed
to develop a chronic endometritis responsible for continuous neutrophil influx to the
uterine lumen [22,23]. In turn, the chronic exposure of endometrium to NET components
might contribute to endometrosis development [13–17,24]. Endometrosis is one of the
main causes of mare infertility since the normal endometrial parenchyma is replaced,
and increased deposition of collagen in the lamina propria occurs [25]. Therefore, the
endometrial glands gather in nests surrounded by COL fibers, compromising glandular
function and histotrophic secretion, and ultimately impairing early embryonic mainte-
nance [25–27]. Despite some endometrosis treatments advocated for over the last decades
(mechanical curettage, dimethyl sulfoxide, kerosene, or stem cells), they were revealed to
be unsuccessful [28–32]. We have demonstrated, in equine endometrial explants, that it is
possible to inhibit in vitro the pro-fibrotic effect of elastase [14,15], CAT [16], and myeloper-
oxidase [17], using selective inhibitors of these enzymes. In fact, cathepsin G Inhibitor I
(β-keto-phosphonic acid) is a selective CAT inhibitor that reduced CAT-induced COL1
in explants of mares’ endometria [16]. These findings are a newly promising approach
to treating equine endometrosis. However, inhibiting the enzymes found in NETs in a
selective way may reveal itself to be not highly effective because of the multifactorial
etiology of equine endometrial fibrosis.

Noscapine (NOSC) is an alkaloid extracted from poppy that is used to treat cough [33,34]
and cancer [34,35]. In fact, NOSC has shown low toxicity [36] and adequate pharmacokinet-
ics in mice as an anti-cancer drug [37] and drives distinct apoptotic pathways in different
cell lines of cancer models [38–41]. Ke et al. [36] reported that mice treated orally with
NOSC presented little to no toxicity in the heart, kidney, liver, spleen, or bone marrow at
tumor-suppressive doses. Although the small intestine has shown mild nonspecific toxicity,
no apoptosis or disease were found in this organ, suggesting that the healthy tissues are
more resistant to apoptotic effects of NOSC than neoplasic tissues [36]. However, some
reports described the occurrence of toxicity in experimental animals and humans after
NOSC administration but at higher doses [42,43]. After 24 h of IV injection of NOSC in
mice, 85% of it was excreted, but the remaining 25% could lead to toxicity effects if NOSC
was administered daily [42]. Moreover, 20% of terminal human cancer patients showed
side effects, as mild sedation, and abdominal discomfort, after higher doses of NOSC
(3000 mg daily) [43]. Interestingly, NOSC delivered in nanoparticles in vitro allowed the
administration of a higher NOSC concentration, while the toxicity effects were kept to a
minimum [44].

Noscapine was also tested as an anti-fibrotic drug in vivo in mice and in vitro in pul-
monary fibroblasts, showing a new anti-fibrotic action [45]. In addition, in triple negative
breast cancer in mice, NOSC reduced the fibrosis associated with the tumor [46]. We have
recently investigated the anti-fibrotic in vitro effect of NOSC on equine endometrial ex-
plants challenged with elastase by reducing COL1 production [47]. This new finding
showed that it is possible to inhibit elastase in a non-selective way using NOSC in vitro,
opening new therapeutic strategies to fight equine endometrosis.

Therefore, we aimed to investigate if NOSC acted as an anti-fibrotic drug in equine
endometrial explants when exposed to CAT pro-fibrotic action. Specifically, in this study,
the putative in vitro inhibitory action of NOSC on CAT-induced collagen type I alpha 2
chain (COL1A2) mRNA and COL1 protein relative abundance on equine endometrial
explants from different estrous cycle phases and times of treatment was investigated.

2. Materials and Methods
2.1. Mares

Uteri and jugular venous blood were collected from healthy mares euthanized at an
abattoir in Poland according to European legislation (European Food Safety Authority,
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AHAW/04-027). As described previously [13,48], the estrous cycle phase determination
was based on the observation of uterine and ovarian structures and later confirmed by
plasma progesterone (P4) concentration evaluation. Briefly, the mares were considered
in the follicular phase (FP) if presented a follicle >35 mm diameter and P4 concentration
<1 ng/mL. If mares presented a well-developed corpus luteum and P4 plasma concen-
tration, >6 ng/mL were considered in mid-luteal phase (MLP). Only uteri that presented
no signs of endometritis (increased abnormal mucus production, altered coloration of
endometrium surface, and presence of bacteria or neutrophils) [13,24,49] and classified as
category IIA and IIB [50], corresponding to mild to moderate histopathological alterations
of endometrosis [50], were considered for this study. Immediately after retrieval, the uteri
from FP (n = 8) and MLP (n = 7) were transported on ice immersed in cold Dulbecco’s
modified Eagle’s medium (DMEM) F-12 Ham medium (D/F medium; 1:1 (v/v); D-2960;
Sigma-Aldrich, St Louis, MO, USA), supplemented with 100 IU/mL penicillin (P3032;
Sigma-Aldrich, St Louis, MO, USA), 100 µg/mL streptomycin (S9137; Sigma-Aldrich, St
Louis, MO, USA), and 2 µg/mL amphotericin (A2942; Sigma-Aldrich, Burlington, MA,
USA) to the laboratory.

2.2. In Vitro Culture of Mare Endometrial Explants

Collection and preparation of endometrial explants were performed as described
previously [15]. The explants were pre-incubated for 1 h, at 38 ◦C and 5% CO2, in a hu-
midified atmosphere chamber (Biosafe Eco-Integra Biosciences, Chur, Switzerland) in a
DMEM culture medium supplemented with 2 µg/mL amphotericin (A2942; Sigma-Aldrich,
St Louis, MO, USA), 100 IU/mL penicillin (P3032; Sigma-Aldrich), 100 µg/mL strepto-
mycin (S9137; Sigma-Aldrich, St Louis, MO, USA), and 0.1% (w/v) bovine serum albumin
(BSA; 735078; Roche Diagnostics, Mannheim, Germany). Afterwards, the culture medium
was replaced, and the explants further treated for 24 or 48 h, as follows: (i) vehicle (negative
control)—culture medium; (ii) CAT (0.1 µg/mL or 1 µg/mL; A6942, Applichem GmbH,
Germany); (iii) noscapine hydrochloride hydrate (NOSC; 45 µg/mL; N9007; Merck, Darm-
stadt, Germany); (iv) CAT (0.1 µg/mL or 1 µg/mL) + NOSC (45 µg/mL). The individual
treatments were carried out in quadruplicate. The NOSC treatment was performed just
after culture medium replacement and CAT added 1 h after NOSC treatment. The CAT
0.1 and 1 µg/mL concentrations were chosen because they had already proven to induce
COL1 expression in equine endometrial explants [13,16]. The concentration of NOSC was
previously validated by a pre-trial assay (data not shown) evaluating the concentrations
of 0.45, 4.5, 45, 450, and 4500 µg/mL used on previous studies [40,45]. Furthermore, the
concentration of NOSC that was able to inhibit COL1 elastase-induced in equine endome-
trial explants was 45 µg/mL [47]. After the treatment period, the explants and culture
media were collected in RNAlater®(R901, Sigma-Aldrich, St Louis, MO, USA) or in 0.3 M
ethylenediaminetetraacetic acid (E5134, Sigma-Aldrich, St Louis, MO, USA) + 1% aspirin
(A2093, Sigma-Aldrich, St Louis, MO, USA) solution, respectively, and stored at −80 ◦C.

2.3. Viability of Equine Endometrial Explants

The viability of equine endometrial explants was assessed by lactate dehydrogenase
(LHD) activity [15].

Lactate dehydrogenase is released to the extracellular space if the cell membrane is
damaged. Hence, the LDH activity was measured in conditioned culture media and in
explants incubated for 1, 24, and 48 h, using a colorimetric assay kit (ab 102526, Abcam,
Cambridge, UK) according to the manufacturer’s protocol and as optimized by Amaral
et al. [15]. Afterwards, the quotient of the intracellular LDH activity and the total activity
(extracellular plus intracellular LDH) indicated the explant viability [51].

2.4. Determination of COL1A2 mRNA Transcription by Real-Time Polymerase Chain Reaction (qPCR)

The mRNA was extracted from explants using TRI Reagent® (T9424; Sigma-Aldrich,
St Louis, MO, USA.) according to the manufacturer’s instructions. The mRNA quantifi-
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cation was assessed using a Nanodrop system (ND 200C; Fisher Scientific, Hamton, PA,
USA), and mRNA quality was evaluated by visualization of 28S and 18S rRNA bands after
electrophoresis of a 1.5% red staining agarose gel (41,003; Biotium, Hayward, CA, USA).
The synthesis of cDNA was performed using M-MLV reverse transcriptase enzyme (M5313;
Promega, Madison, WI, USA) from 1 µg of total RNA in a 20 µL reaction volume using
oligo (dT) primer (C1101; Promega, Madison, WI, USA).

The validation of reference ribosomal protein L32 (RPL32) and target COL1A2 genes
was performed as described by Amaral et al. [15]. The equine-specific primer sequences
are listed in Table 1. The qPCR reactions of both genes were run in duplicate in the
StepOnePlus™ Real-Time PCR System (Applied Biosystems, Warrington, UK) in a 96-well
plate (4306737; Applied Biosystems, Warrington, UK) and product specificity was analyzed,
as previously described [15,52].

Table 1. Description of primer sequences for quantitative real-time polymerase chain reaction (qPCR).

Gene
(Accession Number) Sequence 5′-3′ Amplicon References

COL1A2
(XM_001492939.3)

Forward: CAAGGGCATTAGGGGACACA
196 [13,15,53]Reverse: ACCCACACTTCCATCGCTTC

RPL32
(XM_001492042.6)

Forward: AGCCATCTACTCGGCGTCA
144 [13,15,54]Reverse: GTCAATGCCTCTGGGTTTCC

RPL32—ribosomal protein L32, COL1A2—collagen type I alpha 2 chain.

2.5. Quantification of COL1 Protein Relative Abundance by Western Blot

The preparation of samples for protein extraction (RIPA buffer supplemented with
protease inhibitor), as well as protein quantification (Bradford reagent), was described
previously [15]. The protein extract (30 µg) in 2x Laemmli Loading Buffer and DTT was
loaded on 8% acrylamide gel (MB04501; Nzytech, Lisbon, Portugal) incorporated with 0.5%
(v/v) 2,2,2-trichloroethanol (808610; Merck, Darmstadt, Germany). After, the samples were
run and transferred to a nitrocellulose membrane (GE10600001, GE Healthcare, Chicago, IL,
USA) as described before [15]. To accomplish band normalization and comparison between
gels, a standard endometrial sample (30 µg) was loaded in a single lane. To perform the
non-staining total protein loading control, the membranes were exposed for 1 min to UV
light (ChemiDoc XRS + System, Bio-Rad, Hercules, CA, USA) to obtain the normalization
image. The COL1 primary antibody (1:1000 diluted; RRID: AB_2891017, 20121, Novotec,
Lyon, France) was incubated overnight at 4 ◦C and previously validated to equine en-
dometrium by Rebordão et al. [13]. Then, the membranes were incubated for 1.5 h at room
temperature with the secondary antibody horseradish peroxidase (HRP)-conjugated anti-
rabbit (1:20,000; RRID: AB_2617138; P0448, DakoCytomation, Carpinteria, CA, USA). The
bands of COL1 were detected using luminol-enhanced chemiluminescence (Super Signal
West Pico, 34077; Thermo Scientific, Waltham, MA, USA) and then analyzed by Image Lab
6.0 (Bio-Rad, Hercules, CA, USA) software using a multichannel protocol, detecting the
total protein lanes in the stain-free total protein membrane image and COL1 bands on the
chemiluminescence image [55]. The amount of COL1 protein was calculated by a factor of
normalization to adjust the variability of the loaded protein [55].

2.6. Statistical Analysis

The LDH results were evaluated by one-way analysis of variance (ANOVA) followed
by a Tukey’s multiple comparisons test (GraphPAD PRISM, Version 6.00, 253 GraphPad
Software, San Diego, CA, USA). The viability data are displayed as mean ± SEM and
considered significant at p < 0.05. The test of Kolmogorov–Smirnov of Proc Univariate of
SAS v. 9.4 (SAS Institute Inc., Cary, NC, USA) and visual evaluation were used to assess
data normality. Since the COL1A2 transcription and COL1 protein relative abundance
variables did not show a normal distribution, data were converted using the square root.
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In order to assess the response of COL1A2 mRNA and COL1 protein relative abun-
dance to the different treatments performed (24 combinations of concentration of CAT,
effect of NOSC, estrous cycle phase, and time of treatment), data were analyzed using
PROC GLM (SAS v. 9.4; SAS Institute Inc., Cary, NC, USA) in two steps. First, we used a
model where the response variables were affected by the various treatments considered, in
a total of 24 treatment combinations.

In a second analysis, the factorial nature of the factors included in our study was
considered. The main effects included were pro-fibrotic factor (CAT: 0, 0.1 and 1.0 µg/mL),
anti-fibrotic factor (NOSC: 0 and 0.45 µg/mL), estrous cycle phase (FP and MLP), and time
of treatment (24 and 48 h). In addition to the main effects, all possible two-way, three-way,
and four-way interactions were considered in the statistical analyses.

Subsequently, the least square means for various treatment combinations were com-
pared with the PDIFF of PROC GLM, and the results were considered significant at p < 0.05.
The least squares means ± SEM were then back-transformed and presented graphically
with GraphPAD PRISM (Version 6.00, 253 GraphPad Software, San Diego, CA, USA).

3. Results
3.1. Evaluation of Equine Endometrial Explant Viability

The results of LDH activity for 1, 24, and 48 h of incubated endometrial explants are
presented in Table 2. There was a statistical difference between 1 h of incubation and the
other two times of incubation (24 or 48 h) (p < 0.05). The results were independent of
estrous cycle phase.

Table 2. Lactate dehydrogenase (LDH) activity of equine endometrial explants after 1, 24, or 48 h
incubation. Results are presented as mean ± SEM. Different superscript letters indicate statistical
differences within time of incubation (a, b: p < 0.05).

Time of Incubation LDH Activity (%)

1 h 94.33 ± 0.91 a

24 h 89.96 ± 0.73 b

48 h 87.88 ± 0.85 b

3.2. The Isolated Effect of CAT, NOSC, Time of Treatment, and Estrous Cycle Phase and Their
Interaction Combinations

In Table 3 are listed the isolated effects of CAT, NOSC, time of treatment, and estrous
cycle phase for both COL1A2 mRNA transcription and COL1 protein abundance. Table 3
also shows the significance for all the interactions between factors for both COL1A2 mRNA
transcription and COL1 protein abundance.

3.3. The Noscapine Inhibition of COL1 Induced by CAT Is Independent of Estrous Cycle Phase and
Time of Treatment

Both concentrations of CAT were capable of increasing COL1A2 mRNA transcription
and COL1 protein relative abundance (CAT 0.1 µg/mL: p < 0.01; CAT 1 µg/mL: p < 0.001;
Figure 1). However, CAT 1 µg/mL increased COL1A2 mRNA transcription the most
(p < 0.05; Figure 1). The NOSC inhibitory effect was only detected in COL1A2 mRNA
transcription induced by both concentrations of CAT (p < 0.001; Figure 1). The combination
of CAT 0.1 µg/mL + NOSC also reduced COL1A2 mRNA transcription when compared
to control group (p < 0.01; Figure 1). Nevertheless, CAT 0.1 µg/mL + NOSC treatment
reduced the most COL1A2 mRNA transcripts when compared to CAT 1 µg/mL + NOSC
treatment (p < 0.05; Figure 1). Western blot analysis revealed that NOSC did not reduce
COL1 induced by either CAT concentrations, and that CAT 1 µg/mL + NOSC treatment
remained increased when compared to the non-treated explants (p < 0.001; Figure 1).
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Table 3. Levels of significance (p values) for two- and three-way interactions between estrous cycle
phases, treatment time, and cathepsin G (CAT) or noscapine (NOSC) treatments in the analyses of
relative transcript COL1A2 gene and COL1 protein relative abundance. The results were considered
significant at p < 0.05.

Evaluated Variable
Isolated Factor/Interaction between Factors COL1A2 Gene COL1 Protein

CAT 0.0003 0.0094

NOSC <0.0001 0.4065

Time of treatment 0.4375 0.6498

Estrous cycle phase 0.8009 0.0013

CAT × NOSC 0.0028 0.0794

CAT × time of treatment 0.0707 0.0011

CAT × estrous cycle phase 0.8579 0.001

NOSC × time of treatment 0.8591 0.9252

NOSC × estrous cycle phase 0.1535 0.2856

Time of treatment × estrous cycle phase 0.0281 0.0359

CAT × NOSC × time of treatment 0.3104 0.7706

CAT × NOSC × estrous cycle phase 0.0089 0.3501

CAT × time of treatment × estrous cycle phase 0.0817 0.0126

NOSC × time of treatment × estrous cycle phase 0.9812 0.297
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Figure 1. Inhibition of cathepsin G (0.1 or 1 µg/mL) by noscapine (NOSC; 45 µg/mL) on
relative collagen type I alpha 2 chain (COL1A2) mRNA transcription and collagen type I
(COL1) protein relative abundance in mare endometrial explants, regardless of estrous cy-
cle phase and time of treatment. Results were considered significant at p < 0.05 and
are displayed as least square means ± SEM. Different superscript letters indicate signifi-
cant differences between CAT concentrations (a, b: CAT 0.1 µg/mL 6= CAT 1 µg/mL, p < 0.05;
c, d: CAT 0.1 µg/mL + NOSC 6= CAT 1 µg/mL + NOSC, p < 0.05). Asterisks alone represent signifi-
cant differences relative to the respective control and asterisks above the connecting lines indicate
significant differences between treatments (** p < 0.01; *** p < 0.001).

Regarding COL1A2 mRNA transcription, the NOSC treatment differed from CAT 0.1
and 1 µg/mL treatments, and the differences are shown in Supplementary Table S1.
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3.4. Noscapine Inhibition of CAT-Induced COL1 Expression Is Different Depending on the Estrous
Cycle Phase and Treatment Time

In FP, the treatment with CAT 0.1 µg/mL increased COL1A2 mRNA transcription at
24 h (p < 0.05; Figure 2A) and COL1 relative protein abundance at 48 h (p < 0.05; Figure 2C),
with respect to the respective control groups. However, the addition of NOSC reduced
both COL1A2 mRNA transcription (24 h, p < 0.001; Figure 2A) and COL1 protein relative
abundance (48 h, p < 0.05; Figure 2C), regarding CAT 0.1 µg/mL treated groups. Also in FP,
at 48 h, the combined treatment of CAT 0.1 µg/mL + NOSC decreased COL1A2 mRNA tran-
scription when compared to CAT 0.1 µg/mL treated group (p < 0.05; Figure 2A), which was
not increased compared to control. Cathepsin G 1 µg/mL treatment upregulated COL1A2
mRNA transcripts at 24 h (p < 0.01; Figure 2A) and COL1 relative protein abundance at 48 h
(p < 0.05; Figure 2C), respective to the control groups, both in FP. Noscapine did not inhibit
these effects of CAT 1 µg/mL. Furthermore, in the CAT 1 µg/mL + NOSC treated group,
the COL1A2 transcription remained augmented compared to control (p < 0.01; Figure 2A).
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 Figure 2. Effect of cathepsin G (CAT; 0.1 or 1 µg/mL), noscapine (NOSC; 45 µg/mL), or CAT (0.1 or 1 µg/mL) + NOSC
(45 µg/mL) treatments in explants of mare endometrium from follicular phase (FP) or mid-luteal phase (MLP) for 24 or 48 h
on relative collagen type I alpha 2 chain (COL1A2) mRNA transcription (A,B) and collagen type I (COL1) protein relative
abundance (C,D). Results were considered significant at p < 0.05 and shown as least square means ± SEM. Asterisks alone
represent significant differences relative to the respective control and asterisks above connecting lines indicate significant
differences of CAT + NOSC treatment relative to the respective CAT-treated group (* p < 0.05; ** p < 0.01; *** p < 0.001).

In MLP, CAT 0.1 µg/mL increased COL1A2 mRNA transcription at 48 h compared to
the control group (p < 0.05; Figure 2B), but the addition of NOSC reduced this effect (p < 0.01;
Figure 2B). In addition, in MLP, CAT 1 µg/mL treatment was capable of increasing COL1A2



Life 2021, 11, 1107 8 of 16

mRNA transcripts when compared to the control at both 24 h (p < 0.05; Figure 2B) and
48 h (p < 0.001; Figure 2B). Nevertheless, explant treatment with CAT 1 µg/mL + NOSC
diminished COL1A2 mRNA transcription in MLP at both 24 h (p < 0.01; Figure 2B) and
48 h (p < 0.001; Figure 2B) when compared to the respective CAT 1 µg/mL treated groups.
The COL1 protein abundance augmented with CAT 1 µg/mL and CAT 1 µg/mL + NOSC
treatments, relative to the respective control groups, in MLP at 48 h (p < 0.001; Figure 2D).

The differences between NOSC treatment and the other performed treatments are
shown in supplementary Table S2. The differences found for the same treatments between
24 and 48 h of incubation time, within each estrous cycle phase, are listed in Supplementary
Table S3. In Supplementary Table S4 are presented the differences found for the same
treatments, between FP and MLP, within each treatment time. In Supplementary Table S5
are listed the means and SEM of COL1A2 transcription and COL1 protein abundance for
all the treatments performed in equine endometrial explants from FP or MLP treated for
24 or 48 h. In Supplementary Tables S6 and S7 are shown the significance levels (p values)
between all the performed treatments in equine endometrial explants from FP or MLP
treated for 24 or 48 h in the analyses of relative transcript COL1A2 gene and COL1 protein
abundance, respectively.

3.5. Noscapine Inhibition on CAT-Induced COL1 Expression Is Dependent of Treatment Time

Cathepsin G 1 µg/mL increased COL1A2 mRNA transcription at 24 h and COL1
protein relative abundance at 48 h to a higher extent than CAT 0.1 µg/mL did (p < 0.05;
Figure 3A,B). In contrast, CAT 0.1 µg/mL + NOSC downregulated COL1A2 mRNA tran-
scripts at 24 h and COL1 protein relative abundance at 48 h more than CAT 1 µg/mL + NOSC,
(p < 0.01; Figure 3A,B). At 48 h, the treatment with CAT 1 µg/mL + NOSC decreased the
most COL1A2 mRNA transcription in comparison with 24 h incubation time (p < 0.05;
Figure 3A). The treatment with CAT 1 µg/mL increased the most COL1 protein relative abun-
dance at 48 h relative to 24 h. Although, the combined treatment of CAT 1 µg/mL + NOSC
provoked a steeper decrease of COL1 protein relative abundance at 24 h than at 48 h
(p < 0.05; Figure 3B).
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Figure 3. Effect of cathepsin G (CAT; 0.1 or 1 µg/mL), noscapine (NOSC; 45 µg/mL), or CAT (0.1 or 1 µg/mL) + NOSC
(45 µg/mL) treatments on relative collagen type I alpha 2 chain (COL1A2) mRNA transcription (A) and collagen type I
(COL1) protein relative abundance (B) in equine endometrial explants treated for 24 or 48 h, regardless of estrous cycle
phase. Results are shown as least square means ± SEM and considered significant at p < 0.05. Asterisks above connecting
lines indicate significant differences of the same treatment between time of treatment or differences between different
concentrations of CAT at the same time of treatment (* p < 0.05; ** p < 0.01).

In Supplementary Table S8 are listed the means and SEM of COL1A2 transcription and
COL1 protein abundance for all the treatment performed in equine endometrial explants
treated for 24 or 48 h, independent of estrous cycle phase. In Supplementary Tables S9
and S10 are shown the significance levels (p values) between all the performed treatments



Life 2021, 11, 1107 9 of 16

in equine endometrial explants treated for 24 or 48 h in the analyses of relative transcript
COL1A2 gene and COL1 protein abundance, respectively.

3.6. The Noscapine Inhibition on CAT-Induced COL1 Expression Is Dependent on Estrous Cycle Phase

In MLP, CAT 1 µg/mL increased the most COL1A2 mRNA transcription compared
to CAT 0.1 µg/mL (p < 0.01; Figure 4A). The combination of CAT 0.1 µg/mL + NOSC
diminished COL1A2 mRNA transcripts in FP (p < 0.01; Figure 4A) and COL1 relative
protein abundance in MLP (p < 0.05; Figure 4B) more than CAT 1 µg/mL + NOSC. In MLP,
CAT 1 µg/mL elevated both COL1A2 mRNA transcription and protein relative abundance
of COL1 more than in FP (p < 0.05; Figure 4A,B), whereas CAT 1 µg/mL + NOSC decreased
COL1 protein relative abundance in FP more than MLP (p < 0.001; Figure 4B).
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In Supplementary Table S11 are listed the means and SEM of COL1A2 transcription
and COL1 protein abundance for all the treatments performed in equine endometrial
explants from FP or MLP, independent of treatment time. In Supplementary Tables S12 and
S13 are shown the significance levels (p values) between all the performed treatments in
equine endometrial explants from FP or MLP in the analyses of relative transcript COL1A2
gene and COL1 protein abundance, respectively.

4. Discussion

Such as in other organs, equine endometrial fibrosis has many triggering factors
that may contribute to endometrosis by distinct pathways. Not only TGFβ1 and other
cytokines (IL-1α, IL-1β, IL-6) [56,57], but also prostaglandins [14,24,49,58] were linked to
equine endometrosis. The release to the extracellular environment of some enzymes when
neutrophils form NETs, such as elastase, myeloperoxidase, and CAT, has also proven to
be capable of increasing COL1 expression in vitro in equine endometrium, despite their
beneficial antimicrobial action [13].

Due to the challenging of finding an effective equine endometrosis treatment, we
have been focusing our latest in vitro studies in new possible ways to decrease collagen
deposition in equine endometrium. We have already demonstrated that elastase, myeloper-
oxidase, or CAT were inhibited by their selective inhibitors and thus capable of decreasing
COL1 expression in equine endometrial explants [14–17] (Figure 5). These recent findings
may contribute to the advance of a new prophylactic or therapeutic method for endometro-
sis, based on this evidence of in vitro reduction of COL1 in mare endometrium, induced
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by enzymes found in NETs. Cathepsin G Inhibitor I (β-keto-phosphonic acid) is the selec-
tive CAT inhibitor successfully tested in vitro in equine endometrium that reduced COL1
induced by CAT [16] (Figure 5).
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Figure 5. Schematic representation of neutrophil extracellular traps (NETs) putative involvement in
equine endometrosis establishment. Endometrosis is characterized by fibroblast differentiation into
myofibroblasts and collagen deposition around the endometrial glands [25–27]. A continuous influx
of neutrophils to the endometrium leads to excessive formation of NETs and long standing of NETs
components, such as DNA, histones, proteinase 3, elastase, cathepsin G, and myeloperoxidase [1].
Elastase, cathepsin G, and myeloperoxidase are capable of inducing collagen deposition in the
equine endometrium [13]. Sivelestat sodium salt, β-keto-phosphonic acid, and 4-aminobenzoic acid
hydrazide are selective inhibitors of elastase, cathepsin G, and myeloperoxidase that reduced collagen
deposition in equine endometrium explants [15–17]. Noscapine, an alkaloid used to treat cough,
cancer, and fibrosis, also reduced collagen in vitro deposition in equine endometrium, induced by
elastase [47] and cathepsin G.

Not underestimating these results, we have decided to investigate the effect of a
non-selective inhibitor of some enzymes present in NETs. In equine endometrial explants
treated with elastase, NOSC reduced the elastase pro-fibrotic effect by reducing COL1
expression [47] (Figure 5). The next step was to evaluate if NOSC was also able to inhibit
COL1 induced by CAT in mare endometrial explants. In the present study, both concentra-
tions of CAT (0.1 and 1 µg/mL) induced COL1 expression. However, NOSC only inhibited
COL1A2 mRNA transcription, regardless of estrous cycle phase and time of treatment.

Comparing the response of endometrial explants from FP and MLP, both increased
COL1 expression when treated with the two CAT concentrations tested, but the inhibition
by NOSC only decreased COL1 relative protein abundance in FP. In MLP, the NOSC treat-
ment did not reduce the pro-fibrotic action of CAT 1 µg/mL, which persisted. Moreover,
CAT 1 µg/mL had a higher pro-fibrotic effect in MLP than FP. The lowest concentra-
tion of CAT seems to be better controlled by NOSC than the highest concentration used.
Additionally, the NOSC anti-fibrotic action was found to be more effective in FP.
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In the FP, estrogens increase uterine blood flow in the mare, thus stimulating the local
immune response as well [59]. This fact may contribute to the reduction of endometri-
tis/endometrosis chronicity, explaining how the COL1 protein relative abundance was
inhibited by NOSC only in FP endometrial explants, physiologically primed by estrogens.
Conversely, in MLP, under progesterone influence, the immune response subsides [59],
causing a predisposition to the persistence of chronic stimuli in the uterus. This might
explain why MLP explants were more reactive to CAT 1 µg/mL pro-fibrotic effects than
FP explants and why NOSC did not inhibit COL1 protein abundance induced by CAT in
MLP explants.

Additionally, CAT 1 µg/mL, when compared to CAT 0.1 µg/mL, showed a higher
increase of COL1 protein relative abundance at 48 h. However, the combined treatment of
CAT 1 µg/mL + NOSC was more effective in reducing it at 24 h than after a 48 h incubation.
The highest concentration of CAT was more prone to induce COL deposition at the longest
period of treatment, while NOSC treatment as an anti-fibrotic agent was more efficient at
the shortest time of treatment. Thus, the highest concentration of CAT was responsible for
the greatest pro-fibrotic effect.

Despite the NOSC concentration (45 µg/mL) being the same as that one successfully
used in elastase treatment of mare endometrial explants [47], it may be suggested that this
concentration is not enough to inhibit the CAT pro-fibrotic effect. Few inhibitory effects
were detected in COL1 protein relative abundance, especially in explants challenged by
the highest concentration of CAT. However, NOSC successfully inhibited COL1A2 mRNA
transcripts in CAT-treated endometrial tissue at both estrous cycle phases. Further studies
must be considered using a higher concentration of NOSC to evaluate the inhibition of
COL1 protein induced by CAT. Furthermore, the dose trial assay for β-keto-phosphonic
acid determined that this CAT selective inhibitor had to be administered to the explant
culture not only at the beginning of the treatment time but also at 24 h for those explants
treated for 48 h [16]. The second administration of NOSC after the 24 h treatment could
have been sufficient to overcome the lack of inhibition observed at 48 h of treatment. It
might be suggested that an increase in NOSC concentration, both at 24 and at 48 h, would
be needed to reach the desirable inhibitory effect of fibrosis.

However, these new findings contribute to a better understanding of the use of NOSC
in equine endometrosis treatment or prophylaxis. Since noscapine has been administered to
in vivo cancer models [39] and to treat cough in humans since 1930 [33,34], it facilitates its
in vivo use compared to other inhibitors not tested in vivo. Noscapine has been revealing
many applications in the last years. It was recently studied to be used in COVID-19
treatment, given that it acts as a protease inhibitor of the virus [60]. It was also reported to
act as an anti-inflammatory drug by acting on cytokine regulation [61] and by impairing
mediators of inflammation [62]. Additionally, in many cell lines or mice models, NOSC
was effective as an anti-neoplasic agent [34,35,63]. By binding to tubulin, NOSC modifies
its conformation and attenuates microtubules. This way, microtubules stay longer in a
paused mode, leading to a block in mitosis at prometaphase, thus inducing apoptosis of
neoplasic cells [38,64,65]. However, NOSC does not cause apoptosis of benign cells because
neoplasic cells lack normal mitotic spindle assembly checkpoint [38,66]. Endometrosis
is characterized by the differentiation of myofibroblasts, which are the main source of
collagen and other extracellular matrix components [26,58]. Once NOSC could inhibit
myofibroblast differentiation by binding to microtubules [67], this might be a possible
anti-fibrotic mechanism of action of this drug in mare endometrium.

One of the pathways that seems to be involved in anti-neoplasic action of NOSC is
the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB)
pathway [68–70]. Besides the role of this pathway in immune response, a dysregulation
of NF-kB pathway also leads to inflammatory and neoplasic disorders. Moreover, Dong
and Ma [71] demonstrated that the NF-kB signaling pathway mediates the activation of
pro-fibrotic genes in fibroblastic pulmonary cells, triggering fibrosis progression of the
lungs. Interestingly, NOSC inhibited the NF-kB pathway in human leukemia and myeloma
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cells [68], mice models of breast cancer [69], and ovarian cancer cells [72]. Also in the
mare, the NF-κB pathway may be involved in the progression of endometrosis, specifically
in the FP, suggesting a hormone-dependent manner for activation of fibrogenesis by
these signaling proteins [73]. Similarly, in our present work, since COL1 protein relative
abundance in endometrial explants was inhibited by NOSC only in the FP, its anti-fibrotic
action might be mediated by the NF-kB pathway. However, further studies must be
pursued to evaluate this hypothesis.

Regarding the effect of NOSC as an anti-fibrotic agent, fewer studies are found. Kach
et al. [45] reported that NOSC impaired the TGFβ-induced stress fiber, without influencing
the content of the microtubule, in cultured human lung fibroblasts. The same authors also
concluded that NOSC exerted its anti-fibrotic effects through prostaglandin E2 receptor
(EP2), which, in turn, activates protein kinase A (PKA) [45]. We have already demonstrated
that EP2 mediates the anti-fibrotic effect of prostaglandin (PG)E2 in equine endometrial
explants that were treated with elastase, CAT, or myeloperoxidase [49]. While CAT in-
creased COL1 expression in equine endometrial explants, it also decreased PGE2 or EP2
transcripts [49]. Likewise, the use of sivelestat sodium salt as a selective elastase inhibitor
augmented PGE2 secretion in vitro by equine endometrium, suggesting that PGE2 may
have an anti-fibrotic effect in equine endometrium [14]. Once tumor collagen content
decreased the penetration of anti-neoplasic drugs, the effect of oral low dose administra-
tion of NOSC, as a solid tumor anti-fibrotic agent, was investigated in mice [46]. These
authors observed that NOSC reduced COL1 content in triple-negative breast cancer solid
tumors, showing a NOSC anti-fibrotic effect [46]. Recently, Cabezas et al. [32] suggested
the use of PGE2 as an anti-fibrotic agent, since the in vitro use of PGE2 (mediated by EP2)
preconditioning equine adipose mesenchymal stem cells improved their immunomodula-
tory competence. Notwithstanding the described putative mechanisms of action, further
studies must be carried out to understand how NOSC works as an anti-fibrotic drug in
equine endometrium.

5. Conclusions

By inhibiting more than one triggering factor of endometrosis, the use of NOSC simpli-
fies the therapeutic approach by administering a single agent and offers a new promising
therapeutic tool to be considered in the future. In addition, since NOSC is considered an
anti-tumoral safe drug, both in vitro and in vivo studies on neoplasic cells that are resistant
to conventional anti-neoplasic drugs, shows the safety of this drug without severe side
effects [39,74] and with a favorable pharmacokinetic profile [37]. This can be an advantage
to adapt the use of NOSC to treat fibrotic conditions in mare endometrosis. Nevertheless,
further studies must be performed to determine the adequate NOSC concentration, and
the action of NOSC on the inhibition of pro-fibrotic effects of neutrophil myeloperoxidase.
Once in vitro studies must not be directly extrapolated to in vivo organisms, in vivo studies
in the mare must confirm our in vitro data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11101107/s1, Table S1: List of differences found between noscapine (NOSC; 45 µg/mL)
treatment, and cathepsin G (CAT; 0.1 and 1 µg/mL) for COL1A2 transcription in equine endometrial
explants, regardless of estrous cycle phase and treatment time. Table S2: List of differences found
between noscapine (NOSC; 45 µg/mL) treatment, and the other performed treatments: (i) cathepsin G
(CAT; 0.1 and 1 µg/mL) or (ii) CAT (0.1 and 1 µg/mL) + NOSC (45 µg/mL) for COL1A2 transcription
and COL1 protein relative abundance in equine endometrial explants from follicular (FP) or mid-
luteal (MLP) phases, treated for 24 h or 48 h. Table S3: List of differences found in the same treatments
between 24 h or 48 h of treatment, within each estrous cycle phase. Table S4: List of differences
found in the same treatments between the follicular phase (FP) and mid-luteal phase (MLP) of the
estrous cycle, within each treatment time. Table S5: Means and SEM for the performed treatments:
(i) cathepsin G (CAT; 0.1 and 1 µg/mL); noscapine (NOSC; 45 µg/mL) or (ii) CAT (0.1 and 1 µg/mL)
+ NOSC (45 µg/mL) for COL1A2 transcription and COL1 protein relative abundance in equine
endometrial explants from follicular (FP) or mid-luteal (MLP) phases treated for 24 h or 48 h. Table S6:
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Levels of significance (p values) between cathepsin G (CAT) or noscapine (NOSC) treatments of
equine endometrial explants from follicular phase (FP) or mid-luteal phase (MLP) treated for 24 h or
48 h in the analyses of relative transcript COL1A2 gene. Table S7: Levels of significance (p values)
between cathepsin G (CAT) or noscapine (NOSC) treatments of equine endometrial explants from
follicular phase (FP) or mid-luteal phase (MLP) treated for 24 h or 48 h in the analyses of COL1
protein relative abundance. Table S8: Means and SEM for the performed treatments: (i) cathepsin
G (CAT; 0.1 and 1 µg/mL); noscapine (NOSC; 45 µg/mL) or (ii) CAT (0.1 and 1 µg/mL) + NOSC
(45 µg/mL) for COL1A2 transcription and COL1 protein relative abundance in equine endometrial
explants treated for 24 h or 48 h, independently of estrous cycle phase. Table S9: Levels of significance
(p values) between cathepsin G (CAT) or noscapine (NOSC) treatments of equine endometrial
explants treated for 24 h or 48 h in the analyses of relative transcript COL1A2 gene. Table S10:
Levels of significance (p values) between cathepsin G (CAT) or noscapine (NOSC) treatments of
equine endometrial explants treated for 24 h or 48 h in the analyses of COL1 protein relative
abundance. Table S11: Means and SEM for the performed treatments: (i) cathepsin G (CAT; 0.1
and 1 µg/mL); noscapine (NOSC; 45 µg/mL) or (ii) CAT (0.1 and 1 µg/mL) + NOSC (45 µg/mL) for
COL1A2 transcription and COL1 protein relative abundance in equine endometrial explants from
follicular phase (FP) o mid-luteal phase (MLP), independently of time of treatment. Table S12: Levels
of significance (p values) between cathepsin G (CAT) or noscapine (NOSC) treatments of equine
endometrial explants from follicular phase (FP) or mid-luteal phase (MLP) in the analyses of relative
transcript COL1A2 gene. Table S13: Levels of significance (p values) between cathepsin G (CAT) or
noscapine (NOSC) treatments of equine endometrial explants treated from follicular phase (FP) or
mid-luteal phase (MLP) in the analyses of COL1 protein relative abundance.
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