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CHEST RADIOLOGY
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Abstract
Purpose The assessment of Programmed death-ligand 1 (PD-L1) expression has become a game changer in the treatment 
of patients with advanced non-small cell lung cancer (NSCLC). We aimed to investigate the ability of Radiomics applied to 
computed tomography (CT) in predicting PD-L1 expression in patients with advanced NSCLC.
Methods By applying texture analysis, we retrospectively analyzed 72 patients with advanced NSCLC. The datasets were 
randomly split into a training cohort (2/3) and a validation cohort (1/3). Forty radiomic features were extracted by manually 
drawing tumor volumes of interest (VOIs) on baseline contrast-enhanced CT. After selecting features on the training cohort, 
two predictive models were created using binary logistic regression, one for PD-L1 values ≥ 50% and the other for values 
between 1 and 49%. The two models were analyzed with ROC curves and tested in the validation cohort.
Results The Radiomic Score (Rad-Score) for PD-L1 values ≥ 50%, which consisted of Skewness and Low Gray-Level Zone 
Emphasis (GLZLM_LGZE), presented a cut-off value of − 0.745 with an area under the curve (AUC) of 0.811 and 0.789 in 
the training and validation cohort, respectively. The Rad-Score for PD-L1 values between 1 and 49% consisted of Spheric-
ity, Skewness, Conv_Q3 and Gray Level Non-Uniformity (GLZLM_GLNU), showing a cut-off value of 0.111 with AUC of 
0.763 and 0.806 in the two population, respectively.
Conclusion Rad-Scores obtained from CT texture analysis could be useful for predicting PD-L1 expression and guiding the 
therapeutic choice in patients with advanced NSCLC.
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Introduction

Lung cancer is the leading cause for cancer death worldwide 
in both male and female patients with 2,093,876 estimated 
new cases in 2018 [1]. Eighty-five percent of lung cancer is 
represented by non-small cell lung cancer (NSCLC) with 
the majority of patients presenting with advanced disease 
at diagnosis [2]. Nowadays, the overall survival (OS) of 
patients with locally advanced or metastatic NSCLC eligible 
for targeted therapies has significantly increased [3].

Solid cancers, as lung tumor, are able to escape from 
cytotoxic response through the expression of Programmed 

death-ligand 1 (PD-L1) on tumor cell surface that link Pro-
grammed cell death protein (PD-1) on lymphocyte surface. 
As a consequence, tumor-infiltrating lymphocytes (TILs) 
are inhibited [4]. Immune checkpoint inhibitors are human 
antibodies that blocks PD-L1/PD-1 linking improving the 
immune response.

Several clinical studies have shown that Pembrolizumab, 
a monoclonal antibody that prevents the PD-1/PD-L1 link-
ing, is associated with better disease control and improved 
OS, with a reduced toxicity profile compared to chemother-
apy in patients affected by advanced NSCLC [5–9].

However, the use of Pembrolizumab depends on PD-L1 
expression in tumoral cells. According to the National 
Comprehensive Cancer Network (NCCN) guideline ver-
sion 4.2021, Pembrolizumab is considered the therapy of 
choice for patients without mutations of Epidermal Growth 
Factor Receptor (EGFR) and Anaplastic Lymphoma Kinase 
(ALK), if PD-L1 is expressed by ≥ 50% of neoplastic cells 
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[3, 5]. Furthermore, patients with PD-L1 expression values 
between 1 and 49% may still benefit from PD-L1 inhibi-
tor therapy and are addressed to be treated with first-line 
combined therapy with Pembrolizumab and chemotherapy 
(carboplatin or cisplatin and pemetrexed) [3, 6, 7].

However, the assessment of PD-L1 expression on a 
biopsy sample may not reflect the actual biomarker level in 
the whole tumor. In fact, different studies have shown high 
variability in the concordance of PD-L1 expression value 
between biopsy and resection, which according to some 
authors is around 92%, while for others it is much lower, 
around 52% [10, 11]. Although this latter study was not clear 
in reporting the pre-analytic variation, it is clear that this 
aspect needs further investigation. Consistent with the fact 
that immunotherapy is currently only indicated for patients 
with advanced NSCLC, far more biopsies are stained for 
PD-L1 in daily practice than resection specimens. Thus, 
PD-L1 testing could be affected by the limited sample size. 
The fact that approximately 10% of NSCLC tumors respond 
to PDL1/PD-1 inhibitor despite absent PD-L1 expression 
may be partly explained by false-negative results on biopsy 
specimens of tumors heterogeneous for PD-L1 expression. 
Therefore, a new reliable diagnostic method is currently 
required in this setting.

Texture analysis (TA) is a technique that provides a quan-
titative assessment of tumor heterogeneity by analyzing 
the distribution and correlation of the gray level of single 
or multiple pixel or voxel in the image analyzed [12, 13]. 
Several studies have demonstrated the potential role of TA 
performed on diagnostic images such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI) and Positron 
Emission Tomography (PET) in predicting tumors charac-
teristics or response to therapy [14–17].

The aim of our study was therefore to build two predictive 
models of PD-L1 expression values ≥ 1 and ≥ 50%, respec-
tively, both based on a score formed by radiomic character-
istics from baseline contrast-enhanced CT images of patients 
with advanced NSCLC, in order to noninvasively identify 
patients who may benefit from immunotherapy as first-line 
treatment in a pre-operative or pre-biopsy phase.

Methods

Patient selection

In this retrospective study, 72 patients with locally advanced 
or metastatic NSCLC (IIIA–IV stage according to the defi-
nition of the American Joint Committee on Cancer TNM 
staging Manual, 8th Edition) were analyzed at our Institu-
tion from April 2018 to September 2019 [18]. The initial 
cohort included 177 patients, of which 51 were excluded as 
PD-L1 expression was not available at the time of the study, 

35 had neoplastic lesions other than NSCLC and 14 lacked 
a contrast-enhanced CT scan prior to histological examina-
tion. In five patients, it was not possible to analyze DICOM 
(Digital Imaging and COmmunications in Medicine) images 
for technical reasons. Institutional review board approval 
was obtained for this study.

Evaluation of the PD‑L1 expression

PD-L1 expression by neoplastic cells was assessed on 
paraffin sections by immunohistochemistry. Staining was 
performed with the Ventana PD-L1 SP263 clone (Ventana 
Medical Systems, Tucson, AZ, USA) using an automatic 
immunostainer (Benchmark XT, Ventana Medical System, 
Tucson, AZ, USA).

The PD-L1 expression was evaluated by the tumor pro-
portion score (TPS), which is defined as the percentage of 
viable tumor cells with at least partial membrane staining 
relative to all viable tumor cells in the examined section. 
Positive staining was defined as the presence of membrane 
staining, strong or weak, complete or incomplete, in a per-
centage ≥ 1% of neoplastic cells [19]. A minimum of 100 
viable tumor cells were evaluated to determine the percent-
age of stained tumor cells per slide for PD-L1 assessment.

CT protocol and extraction of radiomic features

CT examinations were performed using 64-row CT 
(Somatom Sensation Cardiac or Somatom Definition, Sie-
mens, Forchheim, Germany). All tests were performed 
before and after intravenous administration of a bolus of 
1.5 mL/kg of Iomeprol 350 mg/mL (Iomeron 350; Bracco, 
Milan Italy) at a flow rate of 2.5–4.0 mL/s, followed by an 
injection of 40 mL saline.

Post-contrast imaging was acquired in the portal phase 
using an automated bolus-tracking technique with 60-s delay 
from threshold value (100 HU; with ROI positioned in the 
descending aorta). The acquisition parameters were set at 
120 kV, 200 mAs, pitch 1.5, collimation 0.6 mm, rotation 
time 0.5 s. All data were reconstructed with a slice thick-
ness of 1.0 mm. The extraction of radiomic features from 
DICOM files of the portal phase was performed using the 
LIFEx software (www. lifex soft. org) [20]. Two radiologists 
(MD; SB) with 3 and 10 years of experience in chest imag-
ing, respectively, manually and independently contoured 
the entire volume of the primary lesion on each slice. Each 
radiologist was blind to the contour selected by other opera-
tor. Two contours for each lesion were obtained. Figure 1 
shows an example of two different contoured lesions. Then, 
the software automatically extracted the radiomic features. 
A total of 48 features were extracted for each contour: 16 
first-order features obtained from volumetric and histo-
gram analysis; 7  s-order features using the Gray-Level 

http://www.lifexsoft.org
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Co-Occurrence Matrix (GLCM); 25 higher order features, in 
particular 11 from Gray-Level Length Matrix (GLRLM), 3 
from Neighboring Gray-level dependence matrix (NGLDM) 
and 11 from Gray-Level Zone Length Matrix (GLZLM). We 
therefore obtained from each lesion a total of 96 features (48 
for each contour). The most experienced radiologist (S.B.), 
several months after the first segmentation session, repeated 
the segmentation on 20 randomly selected patients, blinded 
to his previous session.

Features selection

Before selecting radiomic features for the construction 
of the two Rad-Score-based predictive models, features 
obtained from each contour were compared for inter- and 
intra-observer variability using the Interclass Correlation 
Coefficient (ICC). To assess intra-observer variability, fea-
tures obtained at two different times by the same operator 
(S.B.) on a randomly selected sample of 20 patients were 
compared by ICC, and all 48 features showed ICC ≥ 0.75. 
Inter-observer variability was assessed by comparing fea-
tures extracted from the two contours obtained by the two 

different operators (S.B. and M.D.) for each lesion in all 
patients. Features with ICC ≥ 0.75 (40/48 features) were then 
selected.

The 40 remaining features obtained from the contours 
performed by the most experienced radiologist (S.B.) were 
further analyzed to build the Rad-Score. Subsequently, the 
population was divided into two groups, respectively, con-
sisting of 2/3 (training cohort, formed by 48 patients) and 
1/3 (validation cohort, formed by 24 patients) of the patients. 
Variable selection and the construction of the two predic-
tive models (for PDL1 values < or ≥ 1% and < or ≥ 50%) 
was carried out on the training cohort and was subsequently 
tested on the validation cohort. Due to the high collinear-
ity of features, the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression method was performed on 
the 40 features from the training cohort to select variables. 
This method introduces a penalty called tuning parameter 
(λ) capable of penalizing the estimated coefficient (β) of the 
variables in the model so that the lower the value of λ, the 
more variables will be selected [21, 22]. The “glmnet” pack-
age from the R software was used to perform the LASSO 
regression.

Fig. 1  CT axial images showing 
two primary tumor of the lung, 
an ADK (a) and a SCC (c); (b) 
and (d) shows the same lesions 
contoured, respectively
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Statistical analysis

Mann–Whitney’s U test was used to compare continu-
ous variables, while categorical variables were compared 
with Fisher’s F test or Chi-squared test (χ2). Binary logis-
tic regression was used after LASSO regression to further 
select variables with p value < 0.10 which therefore formed 
the Radiomics Score (Rad-Score) that was computed for 
each patient through a linear combination of selected fea-
tures weighted by their respective coefficients [22–24]. A 
further binary logistic regression was used to test the Rad-
Score with patient and tumor variables such as age, gender, 
smoking status and type of histology. The model created was 
analyzed using the receiver operating characteristic (ROC) 
curve, and the best cut-off was calculated with the Youden 
index. The Area under the ROC Curve (AUC), sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV) were then calculated for the best 
cut-off. The model was then tested on the validation cohort. 
All the steps described were performed two times, i.e., for 
PD-L1 values < or ≥ 1% and for values < or ≥ 50%. Statistical 
analyses were performed using the SPSS v.25 software for 
Macintosh (IBM, Armonk, NY, USA).

Results

Patient and tumor characteristics

Immunohistochemistry (IHC) was performed on biopsy sam-
ples in 28 patients (38.9%), on endobronchial ultrasound 
(EBUS)-guided needle aspirates in 19 patients (26.4%) and 
on surgical specimens (35 cases) from lobectomy in 11 
patients (15.3%), wedge resection in 12 patients (16.6%) and 
pneumonectomy in 2 patients (2.8%), respectively. Overall, 
patients mean age was 66.8 years, of whom 35 (48.6%) were 
male and only 12 (16.7%) had never smoked. Primary tumor 
lesions had a mean maximum diameter of 45.6 ± 22.3 mm. 
They were located in the upper lobes in 61.1% of cases, 
and in the right lung in 70.8% of patients. The most fre-
quent histotype was adenocarcinoma (ADK) (47 patients, 
65.3%), while squamous-cell carcinoma (SCC) had been 
diagnosed in 25 patients (34.7%). At diagnosis, 22 patients 
(30.6%) were in stage IIIA, 20 patients (27.8%) in stage IIIB, 
6 patients (8.3%) in IIIC and 24 patients (33.3%) in stage IV.

Twenty-three patients had a PD-L1 expression < 1% and 
48 patients ≥ 50%. Patient and tumor characteristics were 
overall well balanced among the groups (Table 1).

Table 1  Baseline population characteristics

Characteristics Total (n = 72) PDL-1 < 1% (n = 23) PDL-1 ≥ 1% (n = 49) p value PDL-1 < 50% (n = 48) PDL-1 ≥ 50 % (n = 24) p value

Age 68.8 ± 9.7 64.4 ± 11.1 67.9 ± 8.9 0.174 66.1 ± 10.2 68.2 ± 8.7 0.318
Sex 0.927 0.095
M 35 (48.6%) 11(47.8%) 24 (49.0%) 20 (41.7%) 15 (62.5%)
F 37 (51.4%) 12 (52.2%) 25 (51.0%) 28 (58.3%) 9 (37.5%)
Smoking status 0.429 0.180
Yes 60 (83.3%) 18 (78.3%) 42 (85.7%) 38 (79.2%) 22 (91.7%)
No 12 (16.7%) 5 (21.7%) 7 (14.3%) 10 (20.8%) 1 (8.3%)
T Diameter (mm) 45.6 ± 22.3 46.3 ± 27.4 45.4 ± 19.8 0.937 42.8 ± 22.6 51.4 ± 20.9 0.150
Location 0.113 0.494
Superior 44 (61.1%) 11 (47.8%) 33 (67.3%) 28 (58.3%) 16 (66.7%)
Inferior 28 (38.9%) 12 (52.2%) 16 (32.7%) 20 (41.7%) 8 (33.3%)
T side 0.473 0.582
Right 51 (70.8%) 15 (65.2%) 36 (73.5%) 33 (68.8%) 18 (75.0%)
Left 21 (29.2%) 8 (34.8%) 13 (26.5%) 15 (31.3%) 6 (25.0%)
Histology 0.601 0.381
ADK 47 (65.3%) 16 (69.6%) 31 (63.3%) 33 (68.8%) 14 (58.3%)
SCC 25 (34.7%) 7 (30.4%) 18 (36.7%) 15 (31.3%) 10 (41.7%)
Clinical stage 0.769 0.706
IIIA 22 (30.6%) 7 (30.4%) 15 (30.6%) 15 (31.3%) 7 (29.2%)
IIIB 20 (27.8%) 8 (34.8%) 12 (25.5%) 15 (31.3%) 5 (20.8%)
IIIC 6 (8.3%) 2 (8.7%) 4 (8.2%) 4 (8.3%) 2 (8.3%)
IV 24 (33.3%) 6 (26.1%) 18 (36.7%) 14 (29.2%) 10 (41.7%)
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Rad‑Score for PD‑L1 expression level ≥ 50% 
and validation of the model

LASSO regression method was able to shrink variables 
from 40 to 4, namely Skewness, Sphericity, GLZLM_LGZE 
and GLZLM_GLNU. In the training cohort, patients with 
PD-L1 ≥ 50% had significantly lower Skewness (1.98 vs. 
− 2.97, < 50% vs. ≥ 50%, p value: < 0.01), while the other 
variables had no statistically significant differences (Sphe-
ricity: 0.935 vs. 0.922, < 50% vs. ≥ 50%, p value: 0.27; 
GLZLM_LGZE: 0.200 vs. 0.134, < 50% vs. ≥ 50%, p value: 
0.119; GLZLM_GLNU 595.41 vs. 367.42, < 50% vs. ≥ 50%, 
p value: 0.503). Binary logistic regression further selected 
Skewness and GLZLM_LGZE, as shown in Table 2. The 
Rad-Score was then obtained by applying the following 
formula (extrapolated from the binary logistic regression 
analysis) to each patient of the training cohort:

Subsequently, the Rad-Score was included in a model along 
with patient and tumor variables, in which we observed that 
the Rad-Score was the only significant variable between the 
two populations (PD-L1 < 50% vs. ≥ 50%) (Table 3). Then, 
the ROC curve was obtained for the model that was formed 
by the Rad-Score alone presenting an AUC of 0.811 (95% 
CI 0.676–0.945). The optimal cut-off value calculated was 
− 0.745 with a sensitivity of 83%, specificity of 75%, PPV of 
61.9% and NPV of 88.9%. The Rad-Score was then applied 
to the validation cohort obtaining an AUC of 0.789 (95% CI 
0.579–0.999) (Fig. 2). Overall, the Rad-Score was signifi-
cantly lower in patients with PD-L1 < 50% vs. ≥ 50% in the 
training cohort (− 1.591 vs. 0.0846; p value < 0.001), while 
in the validation cohort showed tendency to significance 
(− 2.75 vs. 0.26; p value: 0.06).

Rad‑Score for PD‑L1 expression level ≥ 1% 
and validation of the model

LASSO regression reduced the number of variables from 40 
to 6; in particular, Skewness, Sphericity, Conv_Q3, GLZLM_
GLNU, NGLDM_Coarsness and GLRLM_LRLGE were 

Rad - Score(≥ 50%) ∶ −1.192 + (−0.937 × Skewness)

+ (−11, 259, 862 × GLZLMLGZE)

selected. In the training cohort, there were no significant dif-
ferences in the value of the selected variables between the 
two groups (Skewness − 1.95 vs. -− .51, < 1% vs. ≥ 1%, p 
value: 0.886; Sphericity: 0.944 vs. 0.923, < 1% vs. ≥ 1%, p 
value: 0.08; Conv_Q3 82.1 vs. 80.2, < 1% vs. ≥ 1%, p value: 
0.843; GLZLM_GLNU 850.24 vs. 337.99 < 1% vs. ≥ 1%, p 
value: 0.123; NGLDM_Coarsness 0.0014 vs. 0.0006 < 1% 
vs. ≥ 1%, p value: 0.120; GLRLM_LRLGE 0.00037 vs. 
0.00018 < 1% vs. ≥ 1%, p value: 0.210). Binary logistic regres-
sion selected Sphericity, Conv_Q3, GLZLM_GLNU and 
Skewness (Table 4). The Rad-Score was then built by apply-
ing the following formula extrapolated from the binary logistic 
regression:

Rad - Score (≥ 1%) ∶ 17,063 + (−0.72 × Skewness)

+ (−16, 777 × Sphericity)

+ (−0.022 × Conv_Q3)

+ (−0.001 × GLZLM_GLNU).

Table 2  Features selected after LASSO regression for PD-L1 expres-
sion values ≥ 50%

Variable OR 95% CI p value

Skewness 0.248 0.090–0.683 < 0.010
Sphericity 0.001 0.001–0.813 0.162
GLZLM_LGZE 0.012 0.090–0.906 0.049
GLZLM_GLNU 0.998 0.994–1.001 0.164

Table 3  Predictive model for PD-L1 expression values ≥ 50%

Variable � OR 95% CI p value

Rad-Score 1.313 3.718 1.29–10.65 0.014
Age − 0.019 0.981 0.90–1.07 0.658
Sex (M vs. F) 0.331 1.392 0.20–9.51 0.736
Smoking status (Yes vs. No) − 1.382 0.251 0.02–3.80 0.319
Histology ADC versus SCC − 0.093 0.911 0.16–5.02 0.915
T diameter − 0.021 0.980 0.93–1.03 0.420

Fig. 2  Classifiers’ performance on predicting PD-L1 expression 
level ≥ 50% in training set and validation set
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Even in this situation, the Rad-Score was the only significant 
variable of the model (Table 5). The ROC curve obtained 
from the model had an AUC of 0.763 (95% CI 0.597–0.928). 
The optimal cut-off value was 0.111 and had a sensitivity 
of 100%, specificity of 58.8%, PPV of 81.6% and NPV of 
100%. The Rad-Score was then applied to the validation 
cohort that had an AUC of 0.806 (0.548–1.000) (Fig. 3). 
Overall, the Rad-Score was significantly lower in patients 
with PD-L1 < 1% vs. ≥ 1% both in the training cohort 
(− 0.026 vs. 1.263; p value: 0.002) and in the validation 
cohort (− 0.41 vs. 1.50; p value 0.03).

Discussion

Evaluation of PD-L1 expression has become of crucial 
importance in patients with locally advanced or meta-
static lung cancer because of the development of inhibi-
tors of the PD-1/PD-L1 system [2–7]. The KEYNOTE-024 
study showed that Pembrolizumab is associated with 
longer Progression-free survival (PFS) (median 10.3 vs. 
6.0 months; HR 0.50, 95% CI 0.37–0.68, p value < 0.001) 
and OS (6 months OS of 80.2% vs. 72.4%, HR 0.60, 95% CI 
0.41–0.89, p value = 0.005) with a better tolerability profile 
compared to CHT in patients affected by advanced NSCLC 
and expression levels of PD-L1 ≥ 50% [5]. In fact, accord-
ing to NCCN guidelines, Pembrolizumab should be used as 
first-line monotherapy in these patients. [3] Furthermore, 
on the basis of the KEYNOTE-042 and KEYNOTE-021 
studies, the NCCN guidelines have recently been modified 

allowing PD-L1 inhibitor to be prescribed even in patients 
with PD-L1 expression between 1 and 49%, indicating first-
line combination therapy with Pembrolizumab and chemo-
therapy [3, 6, 7].

Several studies investigated the use of radiomic models 
in predicting EGFR status in patients with lung cancer [14, 
16, 25, 26]. Ozkan et al., demonstrated that radiomic features 
could be useful in differentiating EGFR mutation type in 
pulmonary ADK patients [25]. Another study by Liu et al. 
[26] showed that texture features could differentiate patients 
with EGFR mutations from wild-type patients and that radi-
omic model performance can be increased by adding clinical 
variables.

In the present study, in order to identify patients with 
different level of PD-L1 expression requiring different first-
line therapies, we constructed two radiomic-based predic-
tive model of PD-L1 expression for values ≥ 1% and ≥ 50%, 
respectively. In particular, Skewness was selected for both 
models, while GLZLM_LGZE became part of PD-L1 ≥ 50% 
model and Sphericity, Conv_Q3 and GLZLM_GLNU 
were included in PD-L1 ≥ 1% model. Jiang et al. recently 
published a paper in which they obtained CT- and PET-
derived radiomic model for PD-L1 expression of both ≥ 1% 
and ≥ 50% [27]. Their CT model was formed by several radi-
omic features including GLZLM_GLNU and interquartile 
range, while Skewness entered only in the PET-based model.

In the present paper, we found that tumors with expres-
sion of PD-L1 ≥ 1% and ≥ 50% have lower Skewness than 
those with expression of PD-L1 < 1% or < 50%; a negative 
Skewness is characterized by the peak of pixel distribution 

Table 4  Features selected after LASSO regression for PD-L1 expres-
sion values ≥ 1%

Variable OR 95%CI p value

Skewness 0.400 0.143–1.123 0.032
Sphericity 0.003 0.001–0.641 0.047
Conv_Q3 0.966 0.935–0.998 0.037
GLZLM_GLNU 0.997 0.995–1.000 0.037
NGLDM_Coarsness 0.002 0.001–1.821 0.111
GLRLM_LRLGE 0.003 0.001–56,483 0.413

Table 5  Predictive model for PD-L1 expression values ≥ 1%

Variable � OR 95% CI p value

Rad-Score 1.171 3.226 1.24–8.43 0.017
Age 0.050 1.051 0.98–1.13 0.182
Sex (M vs. F) 0.483 1.621 0.29–8.79 0.576
Smoking status (Yes vs. No) − 0.065 0.937 0.13–7.01 0.949
Histology ADC versus SCC − 0.824 2.279 0.40–12.94 0.353
T diameter 0.001 0.962 0.96–1.04 0.962 Fig. 3  Classifiers’ performance on predicting PD-L1 expression 

level ≥ 1% in training set and validation set
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shifted on the right with the tail on the left side in the histo-
gram, meaning that the majority of pixels have high value. 
Moreover, patients with PD-L1 ≥ 50% have also lower 
GLZLM_LGZE that represents the distribution of low 
gray-level zones in three-dimensional (3D) space. Differ-
ently, tumors with PD-L1 ≥ 1% showed less Skewness, less 
Sphericity and less GLZLM_GLNU, which represents non-
uniformity of the gray-level zones. This could mean that 
these lesions are less spherical and have a more uniform 
microstructure than tumors with PD-L1 < 1%.

There are only few papers that have applied radiomics 
to predict PD-L1 expression. Jiang et al. conducted a study 
on 399 NSCLC patients and built a radiomic model based 
on CT, PET and PET-CT images capable of predicting the 
expression of PD-L1 [27]. The author concluded that the 
model obtained with CT features had a better diagnostic per-
formance than the one obtained with PET features. In order 
to compare the radiomic data with the true expression of 
PD-L1, the authors decided to include only patients under-
going surgery in that study, so that 75% of patients were in 
stage I–II and only 25% of patients had locally advanced 
(86 patients) or metastatic (12 patients) disease. However, 
it should be considered that inhibitors of the PD-1/PD-L1 
system are used only in advanced NSCLC and therefore, 
the expression of PD-L1 analyzed may not reflect the actual 
condition of the target population.

Several studies with multiple PD-L1 clones have reported 
intratumoral and intertumoral heterogeneity of PD-L1 
expression that could result in discrepant results between 
different specimen types (i.e., resection vs. biopsy and the 
primary tumor vs. metastasis) [11, 19, 28]. In addition, 
PD-L1 expression can be affected by chemotherapy and/or 
radiation therapy [29].

Conversely, in our study we analyzed only patients with 
locally advanced or metastatic NSCLC, a choice that reflects 
the real population to which immunotherapy is addressed, 
even if in the most cases these patients were not submitted to 
surgery and therefore, PD-L1 expression obtained on biopsy 
sample could not reflect its real expression.

A study by Yoon et al. performed on 153 patients affected 
by advanced lung ADK demonstrated that quantitative CT 
radiomic features could be useful in predicting PD-L1 
expression compared to qualitative CT characteristics alone; 
in particular, a prediction model composed of both clini-
cal and radiomic features could facilitate the assessment of 
PD-L1 expression [24]. In that study, the authors analyzed 
only one PD-L1 cut-off value as patients were considered 
as PD-L1 positive for value of expression ≥ 50%. Differ-
ently, we constructed two different models for the two dif-
ferent cut-off values of PD-L1 currently used in the clinical 
application of the PD-1/PD-L1 inhibitors, namely 50% and 
1%. Moreover, as the authors stated, in that study the model 

found was not validated on an independent cohort making 
the results less generalizable. Finally, none of the radiomic 
features presents in the Rad-Score matched with the radi-
omic features we included in our models. These differences 
are probably due to several reasons, such as having ana-
lyzed different groups of radiomic variables (e.g., GLZLM 
characteristics not analyzed in the study by Yoon et al.) and 
different histotypes of lung cancer (we also included patients 
with SCC and not only patients with ADK).

A recent study by Sun et al., conducted on 390 patients, 
showed that PD-L1 positivity (TPS ≥ 50%) could be pre-
dicted using a model consisting of both the Rad-Score 
and clinicopathological characteristics [30]. Otherwise, in 
our study we decided to analyze the models formed by the 
Rad-Score alone since this was the only statistically signifi-
cant variable among the patient groups. Moreover, also in 
this study both patients with localized and advanced dis-
ease were analyzed (in the training cohort, almost 40% of 
patients were in stage I and II). Finally, feature extraction 
was performed only on unenhanced CT images, leading to 
potential omission of significant tumor features. In fact, even 
if analysis on non-contrast CT allows a better assessment 
of the raw structure, contrast medium administration in our 
opinion may better highlight differences in tumor hetero-
geneity. Intratumoral inhomogeneity after contrast medium 
depends on neoangiogenesis and necrosis, markers of tumor 
biological behavior, which in turn affect heterogeneity in 
pixel density and consequently radiomic features.

The present study has, however, some limitations. First 
of all, the small number of patients included has probably 
affected the results; in fact, for the cut-off value of 50% we 
found that the Rad-Score showed only a tendency to sig-
nificance in the validation cohort (< 50%: − 2.75 vs. ≥ 50%: 
0.26; p value 0.06).

Additionally, most patients underwent biopsy rather 
than surgery. In this way, the PD-L1 value obtained prob-
ably did not fully reflect the true PD-L1 expression of the 
entire lesion, although it must be considered that patients 
with locally advanced or metastatic disease are rarely treated 
with surgery. Furthermore, we have not yet analyzed the 
clinical data of response to therapy and the possible role of 
the radiomic model to predict this outcome, while several 
studies have recently shown that texture analysis is able to 
predict the response to immunotherapy [17].

Conclusions

The use of a Rad-Score is helpful for accurately predicting 
the expression status of PD-L1 for both the cut-off value 
of 50% and 1%, allowing identification of two categories 
of patients requiring different therapeutic strategies. This 
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could become an indispensable tool in guiding therapeu-
tic choice when the real expression of PD-L1 is not known 
either because patients are not suitable for the invasive pro-
cedure or because the tissue sample obtained is not adequate 
for IHC or because PD-L1 expression may change over time 
and not be biologically relevant at the time of sampling. In 
this setting, CT examination with texture analysis has the 
advantage both of being a noninvasive examination that ana-
lyzes the entire tumor volume and that it can be repeated at 
different times to assess possible changes in gene expression.
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