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Abstract 

Background:  Activation of Adenosine 5′-monophosphate-activated protein kinase/Sirtuin1 (AMPK/SIRT1) exerts 
an effect in alleviating obesity and gut damage. Sodium nitroprusside (SNP), a nitric oxide (NO) donor, has been 
reported to activate AMPK. This study was to investigate the effect of SNP on HFD induced gut dysfunction and the 
mechanism.

Methods:  SNP was applied on lipopolysaccharide (LPS) stimulated Caco-2 cell monolayers which mimicked intesti-
nal epithelial barrier dysfunction and HFD-fed mice which were complicated by gut dysfunction. Then AMPKα/SIRT1 
pathway and gut barrier indicators were investigated.

Results:  SNP rescued the loss of tight junction proteins ZO-1 and occludin, the inhibition of AMPKα/SIRT1 in LPS 
stimulated Caco-2 cell monolayers, and the effects were not shown when AMPKa1 was knocked-down by siRNA. SNP 
also alleviated HFD induced obesity and gut dysfunction in mice, as indicated by the decreasing of intestinal perme-
ability, the increasing expression of ZO-1 and occludin, the decreasing levels of pro-inflammatory cytokine IL-6, and 
the repairing of gut microbiota dysbiosis. These effects were complicated by the increased colonic NO content and 
the activated AMPKα/SIRT1 signaling.

Conclusions:  The results may imply that SNP, as a NO donor, alleviates HFD induced gut dysfunction probably by 
activating the AMPKα/SIRT1 signaling pathway.
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Background
The gut dysfunction, which is characterized by gut 
microbiota dysbiosis and intestine epithelium barrier 
impairment, has a strong link to the development of 
metabolic disorders such as obesity and type 2 diabetes 
mellitus [1, 2]. The gut microbiota, which has more than 

1200 different bacterial species and 1.5–2.0  kg biomass 
in the gastrointestinal tract, encodes 500 times more 
genes than its human host [3]. The gut microbiota plays 
important roles in ingesta digestion, immunity regula-
tion, and energy equilibrium. The intestine epithelium 
barrier, which comprises epithelial cells and intercellu-
lar tight junction proteins including ZOs, occludins, and 
claudins, is a multilayered barrier that defends against 
harmful compounds and pathogens. The tight junction 
proteins play a vital role in retaining the intestine epi-
thelium barrier. Loss of epithelial tight junction proteins 
impairs paracellular barrier, resulting in the increasing 
of the intestine permeability and subsequent intestinal 
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penetration of luminal bacteria and harmful metabolites 
[4]. Increasing shreds of evidence have shown that gut 
dysfunction contributes to obesity, and modulation of 
gut dysfunction is able to improve lipid metabolism and 
alleviate systemic inflammation in severe obesity [5, 6]. 
Therefore, amelioration of gut dysfunction is a potential 
therapeutic measure for obesity and its complicated met-
abolic syndrome.

Obesity, which is resulted from the high energy intake 
and low energy expenditure also causes gut dysfunction 
[5, 7]. AMPK is a crucial kinase that is involved in the 
regulation of energy metabolism. It has been reported 
that the activation/phosphorylation of AMPK alleviates 
obesity and its related metabolic syndrome via activating 
the downstream effector SIRT1 [8–12]. SIRT1 is a nico-
tinamide adenine dinucleotide (NAD)-dependent histone 
deacetylase and its activation by NAD displays an ability 
to rejuvenate the gut adult stem cells and attenuate the 
gut damage in aged mice [13]. In addition, AMPK has 
SIRT1-dependent anti-apoptosis and anti-inflammatory 
effects [14, 15], and the anti-inflammatory effect of acti-
vated/phosphorylated AMPKα is involved in the protec-
tion of intestinal barrier [7, 16].

SNP, as a NO donor, is a rapid-acting intravenous vaso-
dilator that has been widely used clinically in hyperten-
sive crises for decades [17–21]. However, recent studies 
have shown that SNP may also have roles in regulating 
energy metabolism. SNP increases the phosphorylation 
of AMPK, specifically AMPKα, then the phosphorylated 
AMPKα translocates to the nucleus, and then activates 
gene expression that leads to increasing glucose uptake 
in the skeletal muscle [22, 23]. NO that is derived from 
enterocytes has been reported to restore colitis via alle-
viating tissue damage and macrophage infiltration [24]. 
However, the role of SNP and NO on obesity-induced gut 
dysfunction has not been explored.

Due to the crosstalk between gut dysfunction, obesity, 
AMPK/SIRT1 signaling, and the role of SNP on AMPKα 
phosphorylation, we hypothesized that SNP protected 
against HFD induced gut dysfunction via activating 
AMPKα/SIRT1 signaling. Our experiments on LPS stim-
ulated Caco-2 cell monolayers that mimicked intestine 
epithelium barrier dysfunction and HFD-fed mice that 
were complicated by gut dysfunction found that SNP 
alleviated obesity and gut dysfunction by recovering HFD 
inhibited AMPKα/SIRT1 signaling.

Method
Animals
The male C57BL/6 mice (6w, 20 ± 2  g), normal diet, 
and high-fat diet feed were provided by the Guangdong 
Medical Laboratory Animal Center (Foshan, China). 
Mice were kept under controlled temperature and light 

conditions (25 °C,12 h light–dark cycle), with free access 
to food and water. Mice were randomly distributed into 
three groups containing six animals each: normal diet 
(ND), high-fat diet (HFD), HFD with sodium nitroprus-
side (HFD + SNP). Mice were fed with ND or HFD for 
16 weeks. SNP (71778, Sigma, USA) was supplemented 
in drinking water (1 mg/mL) from the fifth week of feed-
ing to the end of the experiment. The study was carried 
out in compliance with the ARRIVE guidelines 2.0. All 
methods were performed in accordance with the rele-
vant guidelines and regulations (Directive 2010/63/EU in 
Europe), and the animal study protocols were approved 
by committee review of animal experiments in Guang-
zhou Medical University (Document no. 2018-084).

Gut microbiota analysis
Gut microbiota analysis was performed as previously 
described [25]. After 16 weeks of feeding and SNP treat-
ment, feces samples were collected for the 16  S rRNA 
gene sequencing. Firstly, fecal DNA was extracted using a 
PowerSoil DNA Isolation kit (12888, Mobio, USA). Then, 
V3-V4 regions of the 16  S rRNA gene were amplified 
by PCR with specific primer sets. Next, PCR products 
were purified and normalized to equal DNA concentra-
tion and sequenced using the Illumina Miseq sequencer 
PE250 (Illumina, USA). The effective reads from all sam-
ples were clustered into OTUs based on 99% sequence 
similarity according to Qiime Uclust. The OTUs were 
annotated through RDP Classifier (Version 2.2), accord-
ing to the GreenGene database, then the composition 
and abundance information of each sample at different 
classification levels were statistically summarized.

Intestinal permeability assay
The intestinal permeability assay was performed as pre-
viously described [26]. Fluorescein isothiocyanate con-
jugated dextran (FITC-dextran) (68,059, Sigma, USA) 
was dissolved in sterile saline (100  mg/mL). Mice were 
fasted for 12 h and deprived of water for 4 h, then mice 
were orally gavaged with FITC-dextran (500 mg/kg body 
weight). 4  h after the gavage, mice were anesthetized 
with sodium pentobarbital (50 mg/kg body weight), and 
blood samples were collected from the abdominal aorta. 
The serum was prepared for fluorescence measurements 
(excitation, 485 nm; emission, 520 nm) using Thermo 
Scientific ™ Varioskan ™ LUX (Thermo Scientific, USA). 
Serum FITC-dextran concentration was quantified 
against a calibration curve.

Histology analysis
Mice colon tissues were collected and fixed in 4% for-
maldehyde, paraffin-embed, sectioned and stained by 
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hematoxylin and eosin (H&E). Histology analysis was 
performed as previously described [27].

Cell culture
The human epithelial cell line Caco2 was purchased 
from American Type Culture Collection (ATCC). Cells 
were cultured with Dulbecco’s modified eagle medium 
(DMEM) containing 10% fetal bovine serum in a humidi-
fied incubator with 5% CO2 at 37  °C. Caco2 cells were 
differentiated into polarized epithelial monolayers by 
culturing on polypropylene membrane on 100 mm cul-
ture plates. The Caco2 cells were cultured and pas-
saged successfully before the tests. After passaging for 
five generations, Caco-2 cells were passaged into 60 
mm culture plates at a density of 1 × 106 cells /mL and 
were subjected to four treatments as follows: Control, 
lipopolysaccharide(LPS, 50 ng/mL) treatment for 46  h, 
LPS plus SNP (LPS,50 ng/mL; SNP, 10, 30 ng/mL) for 
48 h. After the treatments, cells were harvested for subse-
quent experiments.

Western blot analysis
Western blot was performed as previously described [28]. 
Colon tissues were ground and Caco2 cells were lysed in 
RIPA buffer, and 50 µg total protein was separated by 12% 
SDS-PAGE, and then transferred to polyvinylidene fluo-
ride membrane (cas# FFP22, Beyotime Biotechnology, 
China). The membrane was blocked using 5% skimmed 
milk powder in PBST (PBS with 0.1% Tween-20) and 
then was incubated overnight at 4℃ with the following 
primary antibodies: anti-phospho-AMPKα, anti-AMPK, 
anti-SIRT1 (cas# 2531s, 8469s·2532s, 1:1000, Cell Sign-
aling, USA), anti-ZO-1, anti-β-actin (cas# ab216880, 
ab227387, 1:1000, Abcam, USA), and anti-occludin (cas# 
66378-1, 1:1000, Proteintech Group, USA). After washed 
with PBST for 3 times, the membrane was incubated 
with secondary antibodies (cas# E030120-02, E030110-
02, EarthOx, USA) in PBST for 2 h. BeyoECL Moon (cas# 
P0018FM, Beyotime Biotechnology, China) was used for 
chemiluminescence and ChemiDicTM XRS + Imaging 
System was used to take pictures (BioRad Laboratories).

Transfection of small interfering RNA
The specific and control siRNA sequences were as fol-
lows: AMPKα1, sense 5′-CGG​GAU​CAG​UUA​GCA​

ACU​ATT-3′ and antisense 5′-UAG​UUG​CUA​ACU​GAU​
CCC​GTT-3′; negative control, sense 5′-UUC​UCC​GAA​
CGU​GUC​ACG​UTT-3′ and antisense 5′-ACG​UGA​CAC​
GUU​CGG​AGA​ATT-3′ (GenePharma, China). Caco-2 
cells were cultured and passaged in the same way as 
the above procedures, then cells were seed into 60 mm 
culture plates at a density of 1 × 106 cells/mL. The cells 
were incubated in Opti-MEM and transfected with each 
siRNA (100 nM) using Lipofectamine 3000 Transfection 
Reagent (L3000015, Invitrogen, Carlsbad, CA, USA), 
according to the manufacturer’s protocol. Transfection 
of small interfering RNA was performed as previously 
described [7]. Following the transfection, LPS and SNP 
were added and co-incubatied in the same way as the 
above procedures. After the treatments, cells were har-
vested for subsequent experiments.

Statistics analysis
Data were subjected to statistical analysis by one-way 
ANOVA or Student’s T-test using SPSS 16.0. The least 
significant difference test was selected when the vari-
ance was homogeneous, and Dunnett’s T3 test was used 
when the variance was not homogeneous. Statistical sig-
nificance was considered when *p < 0.05, **p < 0.01 and 
***p < 0.001. All data were expressed as Mean ± S.E.M.

Result
SNP alleviated LPS‑induced intestinal barrier dysfunction 
via AMPKα/SIRT1 signaling in human Caco2 cells
Phosphorylation of AMPKα has been reported to be 
involved in intestinal barrier function [7], and stud-
ies have shown that NO plays a role in the activation 
of AMPK pathway [29–31]. Therefore, we investigated 
whether SNP, a NO donor, could ameliorate intestinal 
barrier dysfunction via AMPKα phosphorylation in the 
human colonic epithelial cell line Caco2. LPS was used 
to induce intestinal barrier dysfunction in Caco-2 cell 
monolayers, and as expected, it reduced the expression 
of tight junction proteins ZO-1 and occludin. 10 µM and 
30 µM SNP treatment markedly restored their expression 
(Fig.  1A–C). LPS also inhibited the phosphorylation of 
AMPKα in Caco-2 cells, and the inhibition was restored 
by SNP treatment (Fig.  1D, E). Coincidently, SIRT1, 
the key player in AMPK mediated anti-inflammatory 
effects, was also inhibited by LPS and again restored by 

(See figure on next page.)
Fig. 1  SNP alleviated LPS-induced intestinal barrier dysfunction via AMPKα-SIRT1 signaling. Intestinal barrier dysfunction of Caco-2 cell monolayers 
was stimulated by 50 ng/mL LPS treatment for 46 h and LPS plus 10 µM/30 µM SNP treatment for 48 h. A–C Protein levels of intestinal barrier 
indicators ZO-1 and occludin. (D-F) Protein levels of phosphorylated AMPKα and SIRT1. G–I Protein levels of SIRT1 and  phosphorylated AMPKα 
when AMPKα was knocked down. J–K Protein levels of occludin when AMPKα was knocked down; Data were presented as the mean ± S.E.M. 
(*p < 0.05, **p < 0.01, ***p < 0.001)
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Fig. 1  (See legend on previous page.)
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SNP (Fig.  1D, F). However, when AMPKα was knocked 
down by siRNA, LPS decreased SIRT1 and occludin 
could no longer be restored by SNP (Fig. 1G–K). Taken 
together, these data indicated that SNP alleviated LPS-
induced intestinal barrier dysfunction via AMPKα/SIRT1 
signaling.

SNP alleviated obesity of HFD‑fed mice
The impaired intestinal epithelial barrier has been 
reported to be associated with the development of meta-
bolic disorders, especially obesity [2, 32–35]. Since SNP 
alleviated intestinal barrier dysfunction in human Caco2 
cells, we then investigated whether SNP could allevi-
ate obesity of HFD-fed mice. As shown in Fig.  2, SNP 
significantly reduced body weight, mesenteric fat mass 

and fasting blood glucose in HFD-fed mice (Fig. 2A–C). 
These results suggested that SNP alleviated obesity and 
improved metabolic parameters resulted from HFD.

SNP ameliorated HFD induced gut barrier dysfunction
Following the results that SNP alleviated obesity of HFD-
fed mice, we investigated whether SNP could protect gut 
barrier function of HFD-fed mice. The results showed 
that colon length was decreased, intestinal permeabil-
ity was increased, and content of colonic inflammatory 
factor IL-6 was increased in HFD-fed mice compared 
with ND-fed mice, while all the damage was amelio-
rated by SNP (Fig.  3A-D). Moreover, SNP restored the 
decreased colonic expression of epithelial tight junction 
protein ZO-1 and occludin of HFD-fed mice (Fig. 3E-G). 

Fig. 2  SNP alleviated obesity of HFD-fed mice. Mice (n = 6) were fed with ND or HFD for 16 weeks. SNP was supplemented in drinking water (1 mg/
mL) from the fifth week of feeding to the end of the experiment. A Body weight changes; B Mesenteric fat mass; C Fasting blood glucose levels. 
Data were presented as the mean ± S.E.M. (*p < 0.05, **p < 0.01, ***p < 0.001)
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Consistent with these results, less intestinal mucosal 
morphological damage and lamina propria leukocyte 
infiltration were found in SNP-treated HFD-fed mice 

than those of HFD-fed mice (Fig.  3  H). These results 
showed that SNP protected against HFD induced intesti-
nal barrier dysfunction and intestinal inflammation.

Fig. 3  SNP ameliorated HFD-induced intestinal barrier dysfunction. Mice (n = 6) were fed with ND or HFD for 16 weeks. SNP was supplemented 
in drinking water (1 mg/mL) from the fifth week of feeding to the end of the experiment. A Representative pictures of colons of each group; B 
Colon length; C Serum FITC-dextran levels; D IL-6 levels of colon; E-G Protein levels of intestinal barrier indicators ZO-1 and occludin (n = 4); (H) 
Representative histological pictures of hematoxylin and eosin staining. Data were presented as the mean ± S.E.M. (*p < 0.05, **p < 0.01, ***p < 0.001)
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SNP resisted HFD inhibited AMPKα/SIRT1 signaling in mice 
colon
To verify whether the anti-obesity and intestinal barrier 
protection effects of SNP on HFD-fed mice were also 
mediated by AMPKα/SIRT1 signaling, we tested the 
colonic expression of these signals. Colonic NO level 
was reduced in HFD-fed mice compared with ND-fed 
mice, and SNP treatment increased the colonic NO 
level of HFD-fed mice (Fig. 4A). Protein levels of SIRT1 
and phosphorylated AMPKα were lower in the colon 
of HFD-fed mice, but these alterations were restored 
by SNP (Fig. 4B-D). Linear regression analyses showed 
a significant positive correlation of the NO content 
and the protein levels of SIRT1 and phosphorylated 
AMPKα (Fig.  4E-F). These results indicated that SNP 
rescued colonic AMPKα-SIRT1 signaling suppressed by 
HFD.

SNP ameliorated HFD induced gut dysbiosis
Previous studies have shown that obesity and gut bar-
rier dysfunction is associated with gut microbiota dys-
biosis [36, 37]. We next investigated whether SNP had 
effects on gut microbiota dysbiosis of HFD-fed mice. 
As shown in Fig. 5A, HFD caused significant changes of 

gut miacrobiota profiles compared with ND while SNP 
treatment modulated the profiles of gut microbiota. 
HFD significantly decreased microbiota richness and 
diversity, SNP reversed the changes of the diversity but 
not richness (Fig.  5B). At the genus level, HFD signifi-
cantly reduced the relative abundance of Lactobacillus 
and increased the relative abundance of Paraprevotella, 
Prevotella, and Helicobacter, whereas SNP reversed the 
changes of these microbes (Fig. 5 C-F). So, SNP rescued 
part of HFD induced gut microbiota dysbiosis.

Discussion
NO is not only a key regulator of vascular endothelial 
homeostasis, but may also play roles in intestinal epithe-
lial function. Previous studies have demonstrated that 
enhancing the bioavailability of NO in enterocytes atten-
uates colitis by meliorating colorectal inflammation and 
gut microbiota dysbiosis [38]. A recent study reported 
that endogenous NO derived from enterocytes amelio-
rated colitis by alleviating inflammation, macrophage 
infiltration, and tissue damage. Moreover, induction of 
NO production in enterocytes with NO precursors inhib-
ited colon cancer by alleviating epithelial barrier dam-
age and inflammation [39]. Our results showed that NO 

Fig. 4  SNP resisted HFD inhibited colonic AMPKα/SIRT1 signaling. Mice (n = 6) were fed with ND or HFD for 16 weeks. SNP was supplemented in 
drinking water (1 mg/mL) from the fifth week of feeding to the end of the experiment. A NO levels of colon; B–D Protein levels of phosphorylated 
AMPKα and SIRT1 (n = 4); E Correlation between colonic NO content and phosphorylated AMPKα; F Correlation between colonic NO content and 
SIRT1. Data were presented as the mean ± S.E.M. (* p < 0.05, **p < 0.01, ***p < 0.001)



Page 8 of 11Li et al. BMC Gastroenterol          (2021) 21:359 

content was significantly decreased by HFD compared 
with ND, whereas SNP supplementation increased NO 
content in colon tissue of HFD-fed mice, and then con-
fered protective effects on HFD induced gut dysfunction. 
The role of SNP in alleviating intestinal barrier damage 
was also reported in ischemia/reperfusion injury mice 
models [40–42].

Tight junction proteins are key components of the epi-
thelial barrier and loss of them leads to elevated intes-
tinal permeability and inflammation [43]. Loss of tight 
junction proteins was found in endotoxin LPS stimulated 
enterocyte [44–49]. HFD, which produces LPS also leads 
to loss of tight junction proteins. Our results showed 
that SNP not only restored LPS-induced loss of the tight 
junction proteins ZO-1 and occludin in Caco-2 cell mon-
olayers, but also restored HFD induced loss of the tight 
junction proteins ZO-1 and Occludin in mice, which 
reversed the increased intestinal barrier permeability.

The impaired intestinal epithelum barrier has been 
considered to be a pathophysiological factor of metabolic 
diseases, such as obesity [50–52]. Gut microbiota dys-
biosis, which promotes intestinal barrier disruption, con-
tributes to the development of metabolic disease [53–55]. 

Meanwhile, the metabolic disease also causes gut dys-
function and then leads to gut problems such as colitis. 
So, gut dysfunction and obesity may interact as both 
cause and effect. Anyhow, NO is a pleiotropic signaling 
molecule that involves in regulation of both the intesti-
nal barrier function and the metabolic deseases.[56, 57]. 
Consistently, we found that NO donor SNP protects 
against gut dysfunction, as well as obesity.

AMPK signaling has been reported to be involved in 
endothelial homeostasis [58], Inhibition of AMPK pro-
motes epithelial barrier dysfunction [7], while the acti-
vated/phosphorylated AMPKα protects against colitis 
via alleviating intestinal barrier dysfunction and anti-
inflammation [7, 16]. The effect of prebiotics, fructo-oli-
gosaccharides (FOS) for example, in protecting intestinal 
epithelial tight junction has been reported to be mediated 
by AMPK activation[59]. The role of NO in endothelial 
homeostasis has been reported to be mediated by AMPK 
signaling. Increased NO derived from low-concentration 
SNP increases levels of phosphorylated AMPK and its 
activity in endothelial cells [60]. L-arginine, another pre-
cursor for NO synthesis, has been reported to increase 
the expression of tight junction proteins and improve 

Fig. 5  SNP alleviated HFD-induced gut microbiota dysbiosis. Mice (n = 6) were fed with ND or HFD for 16 weeks. SNP was supplemented in 
drinking water (1 mg/mL) from the fifth week of feeding to the end of the experiment. A Principal coordinate analysis (PCoA) plots of fecal 
microbiota; B Richness (Chao1 and ACE indexes) and diversity (Shannon and Simpson indexes) of microbial communities; C–F Relative abundance 
of Lactobacillus, Paraprevotella, Prevotella, and Helicobacter. Data were presented as the mean ± S.E.M. (* p < 0.05, **p < 0.01, ***p < 0.001)
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intestinal barrier function by activating of AMPK sign-
aling in rat small intestines and IEC-6 cells during 
heat stress [61]. Consistent with the previous reports, 
we found that NO donor SNP restored LPS and HFD 
induced loss of tight junction proteins via AMPKα-SIRT1 
signaling in Caco-2 cell monolayers and HFD-fed mice. 
What’s more, NO content and the activated AMPKα/
SIRT1 signaling were positively correlated in mice’s 
colons.

The present study didn’t include a SNP control on 
ND-fed mice. So if SNP reduced the basal mesenteric 
fat mass and blood glucose could not been shown here. 
Effects of SNP or other NO-generating compounds in 
regulating blood glucose and insulin sensitivity have 
been tested sufficiently on cell and animal models of 
diabetes and human with diabetes, and all the results 
have shown that treatment of NO donor SNP or NO 
precursor L-Arginine reduce blood glucose levels, 
improve insulin resistance and lipid profiles in diabetic 
models [62–68], however, they do not affect blood glu-
cose, lipid profile in non-diabetic group [69, 70]. So, 
we inferred that SNP might act specifically on subjects 
with metabolic problems while have little effects on 
normal subjects, however, this assumption need further 
investigation.

In conclusion, our study indicated that SNP, as a NO 
donor, which has been applied as an anti-hypertensive 
drug, had protective effects on epithelial barrier dys-
function and gut microbiota dysbiosis resulted from 
HFD. It was noted that SNP alleviated HFD induced 
intestinal epithelium barrier dysfunction and inflam-
mation by activating the AMPKα/SIRT1 signal, and 
these effects were dependent on the increased NO 
content derived from SNP. These results implied that 
SNP might be a potential drug for patients with gut 
dysfunction.
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