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Abstract

A new approach for the segregation of monaural sound mixtures is presented based on the principle of temporal coherence
and using auditory cortical representations. Temporal coherence is the notion that perceived sources emit coherently
modulated features that evoke highly-coincident neural response patterns. By clustering the feature channels with
coincident responses and reconstructing their input, one may segregate the underlying source from the simultaneously
interfering signals that are uncorrelated with it. The proposed algorithm requires no prior information or training on the
sources. It can, however, gracefully incorporate cognitive functions and influences such as memories of a target source or
attention to a specific set of its attributes so as to segregate it from its background. Aside from its unusual structure and
computational innovations, the proposed model provides testable hypotheses of the physiological mechanisms of this
ubiquitous and remarkable perceptual ability, and of its psychophysical manifestations in navigating complex sensory
environments.
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Introduction

Humans and animals can attend to a sound source and

segregate it rapidly from a background of many other sources, with

no learning or prior exposure to the specific sounds. For humans,

this is the essence of the well-known cocktail party problem in which

a person can effortlessly conduct a conversation with a new

acquaintance in a crowded and noisy environment [1,2]. For frogs,

songbirds, and penguins, this ability is vital for locating a mate or

an offspring in the midst of a loud chorus [3,4]. This capacity is

matched by comparable object segregation feats in vision and

other senses [5,6], and hence understanding it will shed light on

the neural mechanisms that are fundamental and ubiquitous

across all sensory systems.

Computational models of auditory scene analysis have been

proposed in the past to disentangle source mixtures and hence

capture the functionality of this perceptual process. The models

differ substantially in flavor and complexity depending on their

overall objectives. For instance, some rely on prior information to

segregate a specific target source or voice, and are usually able to

reconstruct it with excellent quality [7]. Another class of

algorithms relies on the availability of multiple microphones and

the statistical independence among the sources to separate them,

using for example ICA approaches or beam-forming principles

[8]. Others are constrained by a single microphone and have

instead opted to compute the spectrogram of the mixture, and

then to decompose it into separate sources relying on heuristics,

training, mild constraints on matrix factorizations [9–11], spectro-

temporal masks [12], and gestalt rules [1,13,14]. A different class

of approaches emphasizes the biological mechanisms underlying

this process, and assesses both their plausibility and ability to

replicate faithfully the psychoacoustics of stream segregation (with

all their strengths and weaknesses). Examples of the latter

approaches include models of the auditory periphery that explain

how simple tone sequences may stream [15–17], how pitch

modulations can be extracted and used to segregate sources of

different pitch [18–20], and models that handle more elaborate

sound sequences and bistable perceptual phenomena [10,21–23].

Finally, of particular relevance here are algorithms that rely on the

notion that features extracted from a given sound source can be

bound together by correlations of intrinsic coupled oscillators in

neural networks that form their connectivity online [23,24]. It is

fair to say, however, that the diversity of approaches and the

continued strong interest in this problem suggest that no algorithm

has yet achieved sufficient success to render the ‘‘cocktail party

problem" solved from a theoretical, physiological, or applications

point of view.

While our approach echoes some of the implicit or explicit ideas

in the above-mentioned algorithms, it differs fundamentally in its

overall framework and implementation. It is based on the notion

that perceived sources (sound streams or objects) emit features,

that are modulated in strength in a largely temporally coherent

manner and that they evoke highly correlated response patterns in

the brain. By clustering (or grouping) these responses one can
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reconstruct their underlying source, and also segregate it from

other simultaneously interfering signals that are uncorrelated

with it.

This simple principle of temporal coherence has already been

shown to account experimentally for the perception of sources (or

streams) in complex backgrounds [25–28]. However, this is the

first detailed computational implementation of this idea that

demonstrates how it works, and why it is so effective as a strategy

to segregate spectrotemporally complex stimuli such as speech and

music. Furthermore, it should be emphasized that despite

apparent similarities, the idea of temporal coherence differs

fundamentally from previous efforts that invoked correlations

and synchronization in the following ways [29–33]: (1) coincidence

here refers to that among modulated feature channels due to slow

stimulus power (envelope) fluctuations, and not to any intrinsic
brain oscillations; (2) coincidences are strictly done at cortical time-

scales of a few hertz, and not at the fast pitch or acoustic frequency

rates often considered; (3) coincidences are measured among

modulated cortical features and perceptual attributes that usually

occupy well-separated channels, unlike the crowded frequency

channels of the auditory spectrogram; (4) coincidence must be

measured over multiple time-scales and not just over a single time-

window that is bound to be too long or too short for a subset of

modulations; and finally (5) the details we describe later for how

the coincidence matrices are exploited to segregate the sources are

new and are critical for the success of this effort. For all these

reasons, the simple principle of temporal coherence is not easily

implementable. Our goal here is to show how to do so using

plausible cortical mechanisms able to segregate realistic mixtures

of complex signals.

As we shall demonstrate, the proposed framework mimics

human and animal strategies to segregate sources with no prior

information or knowledge of their properties. The model can also

gracefully utilize available cognitive influences such as attention to,

or memory of specific attributes of a source (e.g., its pitch or

timbre) to segregate it from its background. We begin with a sketch

of the model stages, with emphasis on the unique aspects critical

for its function. We then explore how separation of feature

channel responses and their temporal continuity contribute to

source segregation, and the potential helpful role of perceptual

attributes like pitch and location in this process. Finally, we extend

the results to the segregation of complex natural signals such as

speech mixtures, and speech in noise or music.

Results

The temporal coherence algorithm consists of an auditory

model that transforms the acoustic stimulus to its cortical

representation (Fig. 1A). A subsequent stage computes a coinci-

dence matrix (C-matrices in Fig. 1B) that summarizes the pair-

wise coincidences (or correlations at zero-lag) between all pairs of

responses making up the cortical representation. A final auto-

encoder network is then used to decompose the coincidence

matrix into its different streams. The use of the cortical

representation here is extremely important as it provides a

multiresolution view of the signal’s spectral and temporal features,

and these in turn endow the process with its robust character.

Details of these auditory transformations are described elsewhere

[34], and summarized in Methods below for completeness.

Extracting streams from the coincidence matrices
The critical information for identifying the perceived sources is

contained in the instantaneous coincidence among the feature

channel pairs as depicted in the C-matrices (Fig. 1B). At each

modulation rate vi, the coincidence matrix at time t is computed

by taking the outer product of all cortical frequency-scale (f ,V)
outputs (X (t,f ; V,vi)). Such a computation effectively estimates

simultaneously the "average coincidence" over the time window

implicit in each vi rate, i.e., at different temporal resolutions, thus

retaining both short- and long-term coincidence measures crucial

for segregation. Intuitively, the idea is that responses from pairs of

channels that are strongly positively correlated should belong to

the same stream, while channels that are uncorrelated or anti-

correlated should belong to different streams. This decomposition

need not be all-or-none, but rather responses of a given channel

can be parceled to different streams in proportion to the degree of

the average coincidence it exhibits with the two streams. This

intuitive reasoning is captured by a factorization of the coincidence

matrix into two uncorrelated streams by determining the direction

of maximal incoherence between the incoming stimulus patterns.

One such factorization algorithm is a nonlinear principal

component analysis (nPCA) of the C-matrices [35], where the

principal eigenvectors correspond to masks that select the channels

that are positively correlated within a stream, and parcel out the

others to a different stream. This procedure is implemented by an

auto-encoder network with two rectifying linear hidden units

corresponding to foreground and background streams as shown in

Fig. 1B (right panel). The weights computed in the output

branches of each unit are associated with each of the two sources

in the input mixture, and the number of hidden units can be

automatically increased if more than two segregated streams are

anticipated. The nPCA is preferred over a linear PCA because the

former assigns the channels of the two (often anti-correlated)

sources to different eigenvectors, instead of combining them on

opposite directions of a single eigenvector [36].

Another key innovation in the model implementation is that the

nPCA decomposition is performed not directly on the input data

from the cortical model (which are modulated at vi rates), but

rather on the columns of the C-matrices whose entries are either

stationary or vary slowly regardless of the vi rates of the coincident

channels. These common and slow dynamics enables stacking all
C-matrices into one large matrix decomposition (Fig. 1B).

Specifically, the columns of the stacked matrices are applied (as

a batch) to the auto-encoder network at each instant t with the aim

of computing weights that can reconstruct them while minimizing

the mean-square reconstruction error. Linking these matrices has

two critical advantages: It ensures that the pair of eigenvectors

from each matrix decomposition is consistently labeled across all

Author Summary

Humans and many animals can effortlessly navigate
complex sensory environments, segregating and attending
to one desired target source while suppressing distracting
and interfering others. In this paper, we present an
algorithmic model that can accomplish this task with no
prior information or training on complex signals such as
speech mixtures, and speech in noise and music. The
model accounts for this ability relying solely on the
temporal coherence principle, the notion that perceived
sources emit coherently modulated features that evoke
coincident cortical response patterns. It further demon-
strates how basic cortical mechanisms common to all
sensory systems can implement the necessary representa-
tions, as well as the adaptive computations necessary to
maintain continuity by tracking slowly changing charac-
teristics of different sources in a scene.
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matrices (e.g., source 1 is associated with eigenvector 1 in all

matrices); It also couples the eigenvectors and balances their

contributions to the minimization of the MSE in the auto-encoder.

The weight vectors thus computed are then applied as masks on

the cortical outputs X (t,f ; V,v). This procedure is repeated at

each time step as the coincidence matrices evolve with the

changing inputs.

Role of feature separation, temporal continuity, and pitch
in source segregation

The separation of feature responses on different channels and

their temporal continuity are two important properties of the

model that allow temporal coherence to segregate sources. Several

additional perceptual attributes can play a significant role

including pitch, spatial location, and timbre. Here we shall focus

on pitch as an example of such attributes.

Feature separation. This refers to the notion that for two

sounds to be segregated, it is necessary (but insufficient) that their

features induce responses in mostly different auditory channels.

Temporal coherence then serves to bind the coincident channels

and segregate them as one source. For example, the tone

sequences of Fig. 2A, B are well separated at the start, and are

alternating and hence non-coincident. The sequences therefore

quickly stream apart perceptually and become two segregated

streams of high and low tones [1]. When the tones approach each

other and their responses interact (as in Fig. 2B), the channels

become more coherent and the segregation fails, as is evident by

the middle tones becoming momentarily attenuated in the two

segregated sequences [25].

Temporal continuity. The relatively slow dynamics of the

cortical rate-filters (tuned at 2–16 Hz) confer this important

property on streams. Specifically, the C-matrix entries inherit the

dynamics of their rate-filters and hence change only as fast as the

rate of their inputs, exhibiting an inertia or continuity. This

explains why a tone sequence of rapidly alternating tones across

two frequency channels splits into two streams each composed of

slowly changing or stationary tones. By contrast, when a tone

sequence changes its frequencies slowly, a stream can track the

slow change and maintain the ongoing organization (as demon-

strated by the slowly varying upper and lower frequency streams of

the ‘‘bouncing-tone" sequence in Fig. 2B). Another example is

when a new distant-frequency tone suddenly appears in a

sequence, the C-matrix entries cannot track it rapidly enough

causing the sequence to segregate and form a new stream that

perceptually pops-out of the ongoing background (Fig. 2C).

Finally, the bandpass character of cortical rate-filtering enhances

the response to tone onsets (relative to their sustained portions),

and hence repeated desynchronization of onsets is sufficient to

segregate tone sequences despite extensive overlap as seen in

Fig. 2D. These same phenomena are commonly seen with

mixtures of more complex signals such as speech and music

where the continuity of different streams is maintained despite

transient synchronization and overlap.

How pitch contributes to segregation. Harmonic com-

plexes evoke pitch percepts at their fundamental and are

commonly found in speech and music (see Methods for details).

Fig. 3A illustrates how two such alternating complexes with

different pitches (500 Hz and 630 Hz) form two streams. Aside

from the spectral channels, we also plot the pitch of the complexes

alternating below the spectrograms. The pitch estimates are

computed with a harmonic-template algorithm [37], and mapped

to an array of channels tuned to different values (see Methods for

details), e.g., as in the pitch-selective neurons reported in the

inferior colliculus or the auditory cortex [38,39]. We refer to the

activity of this pitch-ordered array of channels as a pitch-gram.

These pitch channels are exploited in the coincidence matrix

computations in an analogous way to the channels of the auditory

spectrograms. That is, they are simply augmented to the spectral

channels to create a larger feature vector that is used to compute a

correspondingly larger coincidence matrix. The additional pitch

channels contribute to the segregation of the alternating complexes

of Fig.3A. Thus, despite having some closely spaced harmonics

Fig. 1. The temporal coherence model consists of two stages. (A) Transformation of sound into a cortical representation [34]: It begins with a
computation of the auditory spectrogram (left panel), followed by an analysis of its spectral and temporal modulations in two steps (middle and right
panels, respectively): a multi-scale (or a multi-bandwidth) wavelet analysis along the spectral dimension to create the frequency-scale responses,
s(t,x; V), followed by a wavelet analysis of the modulus of these outputs to create the final cortical outputs X (t,x; V,v) (right panel). (B) Coincidence
and clustering: The cortical outputs at each time-step are used to compute a family of coincidence matrices (left panel). Each matrix (Ci) is the outer
product of the cortical outputs X (t,x; V,vi) (i.e., separately for each modulation rate vi). The C-matrices are then stacked (middle panel) and
simultaneously decomposed by a nonlinear auto-encoder network (right panel) into two principal components corresponding to the foreground and
background masks which are used to segregate the cortical response.
doi:10.1371/journal.pcbi.1003985.g001
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(1890, 2000 Hz), the two complexes are sufficiently different in

pitch (and in other spectral components) that they produce largely

uncorrelated responses in their pitch and spectral channels and

hence can be readily segregated. The C-matrices in this simulation

utilize all spectral and pitch channels. Note however, that not all

these channels are necessary as comparable segregation can be

achieved based only on a subset of channels. For example, since

the pitch channel responses are correlated with their own spectral

harmonics, it is sufficient to compute the nPCA decomposition

only on the columns of the pitch channels in the C-matrices (see

Methods for more details) to segregate the two complex

sequences. Similarly, using coincidences between spectral scale-

frequency inputs alone also yields similar segregation. In fact, if the

pitch range of one harmonic complex is known (e.g., the pitch of

the first complex is in the range 450 to 550 Hz), then its stream

can be readily extracted by iterating the auto-encoder on the

columns of the C-matrix that lie only in this pitch range. All these

variations illustrate that the C-matrices can be exploited in various

ways to segregate sources depending on availability of the different

sound attributes, and that even partial information is often

sufficient to form the streams and bind all their correlated

components together. For example, if the location information is

extracted and is available to the C-matrices (analogous to the

pitch-grams), then they can be exploited in parallel with, and in a

manner exactly analogous to the pitch. Temporal coherence can

similarly help segregate speech using co-modulated signals of other

modalities as in lip-reading as demonstrated later.

Segregating speech from mixtures
Speech mixtures share many of the same characteristics already

seen in the examples of Fig. 2 and Fig. 3. For instance, they

contain harmonic complexes with different pitches (e.g., males

versus females) that often have closely spaced or temporally

overlapped components. Speech also possesses other features such

as broad bursts of noise immediately followed or preceded by

voiced segments (as in various consonant-vowel combinations), or

even accompanied by voicing (voiced consonants and fricatives).

In all these cases, the syllabic onsets of one speaker synchronize a

host of channels driven by the harmonics of the voicing, and that

are desynchronized (or uncorrelated) with the channels driven by

the other speaker. Fig. 4A depicts the clean spectra of two speech

utterances (middle and right panels) and their mixture (left panel)

illustrating the harmonic spectra and the temporal fluctuations in

the speech signal at 3–7 Hz that make speech resemble the earlier

harmonic sequences. The pitch tracks associated with each of

these panels are shown below them.

Fig. 4B illustrates the segregation of the two speech streams

from the mixture using all available coincidence among the

spectral (frequency-scale) and pitch channels in the C-matrices.

The reconstructed spectrograms are not identical to the originals

(Fig. 4A), an inevitable consequence of the energetic masking

among the crisscrossing components of the two speakers.

Nevertheless, with two speakers there are sufficient gaps between

Fig. 2. Stream segregation of tone sequences and complexes. Top row of panels represent the "mixture" audio whose two segregated
streams are depicted in the middle and bottom rows. (A) The classic case of the well-separated alternating tones (top panel) becoming rapidly
segregated into two streams (middle and bottom panels). (B) Continuity of the streams causes the crossing alternating tone sequences (top) to
bounce maintaining an upper and a lower stream (middle and bottom panels). (C) Continuity also helps a stream maintain its integrity despite a
transient synchronization with another tone. (D) When a sequence of tone complexes becomes desynchronized by more than 40 ms (top panel), they
segregate into different streams despite a significant overlap (middle and bottom panels).
doi:10.1371/journal.pcbi.1003985.g002

Fig. 3. Segregation of harmonic complexes by the temporal
coherence model. (A) A sequence of alternating harmonic complexes
(pitches = 500 and 630 Hz). (B) The complexes are segregated using all
spectral and pitch channels. Closely spaced harmonics (1890, 2000 Hz)
mutually interact and hence their channels are only partially correlated
with the remaining harmonics, becoming weak or may even vanish in
the segregated streams.
doi:10.1371/journal.pcbi.1003985.g003
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the syllables of each speaker to provide clean, unmasked views of

the other speaker’s signal [40]. If more speakers are added to the

mix, such gaps become sparser and the amount of energetic

masking increases, and that is why it is harder to segregate one

speaker in a crowd if they are not distinguished by unique features

or a louder signal. An interesting aspect of speech is that the

relative amplitudes of its harmonics vary widely over time

reflecting the changing formants of different phonemes. Conse-

quently, the saliency of the harmonic components changes

continually, with weaker ones dropping out of the mixture as

they become completely masked by the stronger components.

Despite these changes, speech syllables of one speaker maintain a

stable representation of a sufficient number of features from one

time instant to the next, and thus can maintain the continuity of

their stream. This is especially true of the pitch (which changes

only slowly and relatively little during normal speech). The same is

true of the spectral region of maximum energy which reflects the

average formant locations of a given speaker, reflecting partially

the timbre and length of their vocal tract. Humans utilize either of

these cues alone or in conjunction with additional cues to

segregate mixtures. For instance, to segregate speech with

overlapping pitch ranges (a mixture of male speakers), one may

rely on the different spectral envelopes (timbres), or on other

potentially different features such as location or loudness. Humans

can also exploit more complex factors such as higher-level

linguistic knowledge and memory as we discuss later.

In the example of Fig. 4C, the two speakers of Fig. 4A are

segregated based on the coincidence of only the spectral

components conveyed by the frequency-scale channels. The

extracted speech streams of the two speakers resemble the original

unmixed signals, and their reconstructions exhibit significantly less

mutual interference than the mixture as quantified later.Finally, as

we discuss in more detail below, it is possible to segregate the

speech mixture based on the pattern of correlations computed with

one ‘‘anchor’’ feature such as the pitch channels of the female, i.e.,

using only the columns of the C-matrix near the female pitch

channels as illustrated in Fig. 4D.

Exactly the same logic can be applied to any auxiliary function

that is co-modulated in the same manner as the rest of the speech

signal. For instance, one may ‘‘look’’ at the lip movements of a

speaker which open and close in a manner that closely reflects the

instantaneous power in the signal (or its envelope) as demonstrated

in [41]. These two functions (inter-lip distance and the acoustic

envelope) can then be exploited to segregate the target speech

much as with the pitch channels earlier. Thus, by simply

computing the correlation between the lip function (Fig. 5B) or

the acoustic envelope (Fig. 5C) with all the remaining channels, an

effective mask can be readily computed to extract the target female

Fig. 4. Segregation of speech mixtures. (A) Mixture of two sample utterances (left panel) spoken by a female (middle panel) and male (right
panel); pitch tracks of the utterances are shown below each panel. (B) The segregated speech using all C-matrix columns. (C) The segregated speech
using only coincidences among the frequency-scale channels (no pitch information). (D) The segregated speech using the channels surrounding the
pitch channels of the female speaker as the anchor.
doi:10.1371/journal.pcbi.1003985.g004
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speech (and the background male speech too). This example thus

illustrates how in general any other co-modulated features of the

speech signal (e.g., location, loudness, timbre, and visual signals

such as lip movements can contribute to segregation of complex

mixtures).

The performance of the model is quantified with a database of

100 mixtures formed from pairs of male-female speech randomly

sampled from the TIMIT database (Fig. 6) where the spectra of

the clean speech are compared to those of the corresponding

segregated versions. The signal-to-noise ratio is computed as

SNR segregated speech~

max 10 � log
jS1 �O1j2

jS1 �O2j2

 !
,10 � log

jS2 �O1j2

jS2 �O2j2

 ! !
ð1Þ

SNR mixture~10 � log
DM �O1D2

DM �O2D2

� �
ð2Þ

where S1,S2 are the cortical representations of the segregated

sentences and O1,O2 are the cortical representations of the

original sentences and M is the cortical representation of the

mixture. Average SNR improvement was 6 dB for mixture

waveforms mixed at 0 dB.

Another way to demonstrate the effectiveness of the segregation

is to compare the match between the segregated samples and their

corresponding originals. This is evidenced by the minimal overlap

in Fig. 6B (middle panel) across the distributions of the coinci-

dences computed between each segregated sentence and its

original version versus the interfering speech. To compare directly

these coincidences for each pair of mixed sentences, the difference

between coincidences in each mixture are scatter-plotted in the

bottom panel. Effective pairwise segregation (e.g., not extracting

only one of the mixed sentences) places the scatter points along the

diagonal. Examples of segregated and reconstructed audio files can

be found in S1 Dataset.
Segregating speech from music and noise. In principle,

segregating mixtures does not depend on them being speech or

music, but rather that the signals have different spectrotemporal

patterns and exhibit a continuity of features. Fig. 7A illustrates the

extraction of a speech signal from a highly overlapping temporally

modulated street noise background. The same speech sample is

extracted from a mixture with music in Fig. 7B. As explained

earlier, this segregation (psychoacoustically and in the model)

becomes more challenging in the absence of ‘‘clean looks’’, as

Fig. 5. Segregation of speech utterances based on auxiliary functions. (A) Mixture of two sample utterances (right panel) spoken by a
female (left panel) and male (middle panel) speakers; (B) The inter-lip distance of the female saying ‘‘twice each day’’ used as the anchor to segregate
the mixture into its target female (middle panel) and the remaining male speech (bottom panel); (C) The envelope of the female speech ‘‘twice each
day’’ used as anchor to segregate the mixture into its target female speaker (middle panel) and the remaining male speech (bottom speech).
doi:10.1371/journal.pcbi.1003985.g005
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when the background is an unmodulated white noise or babble

that energetically masks the target speech.

Attention and memory in streaming
So far, attention and memory have played no direct role in the

segregation, but adding them is relatively straightforward. From a

computational point of view, attention can be interpreted as a

focus directed to one or a few features or feature subspaces of the

cortical model which enhances their amplitudes relative to other

unattended features. For instance, in segregating speech mixtures,

one might choose to attend specifically to the high female pitch in

a group of male speakers (Fig. 4D), or to attend to the location

cues or the lip movements (Fig. 5C) and rely on them to segregate

the speakers. In these cases, only the appropriate subset of columns

of the C-matrices are needed to compute the nPCA decomposition

(Fig. 1B). This is in fact also the interpretation of the simulations

discussed in Fig. 3 for harmonic complexes. In all these cases, the

segregation exploited only the C-matrix columns marking

coincidences of the attended anchor channels (pitch, lip, loudness)

with the remaining channels.

Memory can also be strongly implicated in stream segregation

in that it constitutes priors about the sources which can be

effectively utilized to process the C-matrices and perform the

segregation. For example, in extracting the melody of the violins in

a large orchestra, it is necessary to know first what the timbre of a

violin is before one can turn the attentional focus to its unique

spectral shape features and pitch range. One conceptually simple

way (among many) of exploiting such information is to use as

‘template’ the average auto-encoder weights (masks) computed

from iterating on clean patterns of a particular voice or

instrument, and use the resulting weights to perform an initial

segregation of the desired source by applying the mixture to the

stored mask directly.

Discussion

A biologically plausible model of auditory cortical processing

can be used to implement the perceptual organization of auditory

scenes into distinct auditory objects (streams). Two key ingredients

are essential: (1) a multidimensional cortical representation of

sound that explicitly encodes various acoustic features along which

streaming can be induced; (2) clustering of the temporally coherent

features into different streams. Temporal coherence is quantified

by the coincidence between all pairs of cortical channels, slowly

integrated at cortical time-scales as described in Fig. 1. An auto-

encoder network mimicking Hebbian synaptic rules implements

the clustering through nonlinear PCA to segregate the sound

mixture into a foreground and a background.

The temporal coherence model segregates novel sounds based

exclusively on the ongoing temporal coherence of their perceptual

attributes. Previous efforts at exploiting explicitly or implicitly the

correlations among stimulus features differed fundamentally in the

details of their implementation. For example, some algorithms

attempted to decompose directly the channels of the spectrogram

representations [42] rather than the more distributed multi-scale

cortical representations. They either used the fast phase-locked

responses available in the early auditory system [43], or relied

exclusively on the pitch-rate responses induced by interactions

among the unresolved harmonics of a voiced sound [44]. Both

these temporal cues, however, are much faster than cortical

dynamics (.100 Hz) and are highly volatile to the phase-shifts

induced in different spectral regions by mildly reverberant

environments. The cortical model instead naturally exploits

multi-scale dynamics and spectral analyses to define the structure

of all these computations as well as their parameters. For instance,

the product of the wavelet coefficients (entries of the C-matrices)

naturally compute the running-coincidence between the channel

pairs, integrated over a time-interval determined by the time-

Fig. 6. Signal to noise ratio. (A) Box plot of the SNR of the segregated speech and the mixture over 100 mixtures from the TIMIT corpus. (B) (Top)
Notation used for coincidence measures computed between the original and segregated sentences plotted in panels below. (Middle) Distribution of
coincidence in the cortical domain between each segregated speech and its corresponding original version (violet) and original interferer (magenta).
100 pairs of sentences from the TIMIT corpus were mixed together with equal power. (Bottom) Scatter plot of difference between correlation of
original sentences with each segregated sentence demonstrates that the two segregated sentences correlate well with different original sentences.
doi:10.1371/journal.pcbi.1003985.g006

Fig. 7. Extraction of speech from noise and music. (A) Speech mixed with street noise of many overlapping spectral peaks (left panel). The two
signals are uncorrelated and hence can be readily segregated and the speech reconstructed (right panel). (B) Extraction of speech (right panel) from a
mixture of speech and a sustained oboe melody (left panel).
doi:10.1371/journal.pcbi.1003985.g007
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constants of the cortical rate-filters (Fig. 1 and Methods). This

insures that all coincidences are integrated over time intervals that

are commensurate with the dynamics of the underlying signals and

that a balanced range of these windows are included to process

slowly varying (2 Hz) up to rapidly changing (16 Hz) features.

The biological plausibility of this model rests on physiological

and anatomical support for the two postulates of the model: a

cortical multidimensional representation of sound and coherence-

dependent computations. The cortical representation is the end-

result of a sequence of transformations in the early and central

auditory system with experimental support discussed in detail in

[34]. The version used here incorporates only a frequency

(tonotopic) axis, spectrotemporal analysis (scales and rates), and

pitch analysis [37]. However, other features that are pre-cortically

extracted can be readily added as inputs to the model such as

spatial location (from interaural differences and elevation cues) and

pitch of unresolved harmonics [45].

The second postulate concerns the crucial role of temporal

coherence in streaming. It is a relatively recent hypothesis and

hence direct tests remain scant. Nevertheless, targeted psycho-

acoustic studies have already provided perceptual support of the

idea that coherence of stimulus-features is necessary for perception

of streams [27,28,46,47]. Parallel physiological experiments have

also demonstrated that coherence is a critical ingredient in

streaming and have provided indirect evidence of its mechanisms

through rapidly adapting cooperative and competitive interactions

between coherent and incoherent responses [26,48]. Nevertheless,

much more remains uncertain. For instance, where are these

computations performed? How exactly are the (auto-encoder)

clustering analyses implemented? And what exactly is the role of

attentive listening (versus pre-attentive processing) in facilitating

the various computations? All these uncertainties, however, invoke

coincidence-based computations and adaptive mechanisms that

have been widely studied or postulated such as coincidence

detection and Hebbian associations [49,50].

Dimensionality-reduction of the coincidence matrix (through

nonlinear PCA) allows us effectively to cluster all correlated

channels apart from others, thus grouping and designating them as

belonging to distinct sources. This view bears a close relationship

to the predictive clustering-based algorithm by [51] in which input

feature vectors are gradually clustered (or routed) into distinct

streams. In both the coherence and clustering algorithms, cortical

dynamics play a crucial role in integrating incoming data into the

appropriate streams, and therefore are expected to exhibit for the

most part similar results. In some sense, the distinction between

the two approaches is one of implementation rather than

fundamental concepts. Clustering patterns and reducing their

features are often (but not always) two sides of the same coin, and

can be shown under certain conditions to be largely equivalent

and yield similar clusters [52]. Nevertheless, from a biological

perspective, it is important to adopt the correlation view as it

suggests concrete mechanisms to explore.

Our emphasis thus far has been on demonstrating the ability of

the model to perform unsupervised (automatic) source segregation,

much like a listener that has no specific objectives. In reality, of

course, humans and animals utilize intentions and attention to

selectively segregate one source as the foreground against the

remaining background. This operational mode would similarly

apply in applications in which the user of a technology identifies a

target voice to enhance and isolate from among several based on

the pitch, timbre, location, or other attributes. The temporal

coherence algorithm can be readily and gracefully adapted to

incorporate such information and task objectives, as when specific

subsets of the C-matrix columns are used to segregate a targeted

stream (e.g., Fig. 3 and Fig. 4). In fact, our experience with the

model suggests that segregation is usually of better quality and

faster to compute with attentional priors.

In summary, we have described a model for segregating

complex sound mixtures based on the temporal coherence

principle. The model computes the coincidence of multi-scale

cortical features and clusters the coherent responses as emanating

from one source. It requires no prior information, statistics, or

knowledge of source properties, but can gracefully incorporate

them along with cognitive influences such as attention to, or

memory of specific attributes of a target source to segregate it from

its background. The model provides a testable framework of the

physiological bases and psychophysical manifestations of this

remarkable ability. Finally, the relevance of these ideas transcends

the auditory modality to elucidate the robust visual perception of

cluttered scenes [53,54].

Methods

The auditory representation
Sound is first transformed into its auditory spectrogram,

followed by a cortical spectrotemporal analysis of the modulations

of the spectrogram (Fig. 1A) [34]. Pitch is an additional perceptual

attribute that is derived from the resolved (low-order) harmonics

and used in the model [37]. It is represented as a ‘pitch-gram’ of

additional channels that are simply augmented to the cortical

spectral channels prior to subsequent rate analysis (see below).

Other perceptual attributes such as location and unresolved

harmonic pitch can also be computed and represented by an array

of channels analogously to the pitch estimates.

The auditory spectrogram, denoted by y(t,f ), is generated by a

model of early auditory processing [55], which begins with an

affine wavelet transform of the acoustic signal, followed by

nonlinear rectification and compression, and lateral inhibition to

sharpen features. This results in F = 128 frequency channels that

are equally spaced on a logarithmic frequency axis over 5.2

octaves.

Cortical spectro-temporal analysis of the spectrogram is

effectively performed in two steps [34]: a spectral wavelet

decomposition followed by a temporal wavelet decomposition, as

depicted in Fig. 1A. The first analysis provides multi-scale (multi-

bandwidth) views of each spectral slice y(t, : ), resulting in a 2D

frequency-scale representation s(t,f ; V). It is implemented by

convolving the spectral slice with S complex-valued spectral

receptive fields hi similar to Gabor functions, parametrized by

spectral tuning Vi, i.e., s(t,f ,Vi)~h(t,f ,Vi)�f y(t,f ).

The outcome of this step is an array of FxS frequency-scale

channels indexed by frequency f and local spectral bandwidth Vi

at each time instant t. We typically used S = 2 to 5 scales in our

simulations (e.g., Vi~1,2,4,::: cyc/oct), producing S copies of the

spectrogram channels with different degrees of spectral smoothing.

In addition, the pitch of each spectrogram frame is also computed

(if desired) using a harmonic template-matching algorithm [37].

Pitch values and saliency were then expressed as a pitch-gram (P)

channels that are appended to the frequency-scale channels

(Fig. 1B).

The cortical rate-analysis is then applied to the modulus of each

of the channel outputs in the freq-scale-pitch array by passing

them through an array R of modulation-selective filters (Q~1),

each indexed by its center rate vi which range over 2{32 Hz in

1=2 octave steps (Fig. 1B). This temporal wavelet analysis of the

response of each channel is described in detail in [34]. Therefore,

the final representation of the cortical outputs (features) is along
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four axes denoted by X (t,f ,V,v). It consists of R coincidence

matrices per time frame, each of size (FSzP)x(FSzP) (Fig. 1B).

The exact choice of all above parameters is not critical for the

model in that the performance changes very gradually when the

parameters or number of feature channels are altered. All

parameter values in the model were chosen based on previous

simulations with the various components of the model. For

example, the choice of rates (2–32 Hz) and scales (1–8 cyc/oct)

reflected their utility in the representation of speech and other

complex sounds in numerous previous applications of the cortical

model [34]. Thus, the parameters chosen were known to reflect

speech and music, but ofcourse could have been chosen differently

if the stimuli were drastically different. The least committal choice

is to include the largest range of scales and rates that is

computationally feasible. In our implementations, the algorithm

became noticeably slow when Sww5, Pww40, Fww128, and

Rww5.

Coherence computations and nonlinear principal
component analysis

The decomposition of the C-matrices is carried out as described

earlier in Fig. 1B. The iterative procedure to learn the auto-

encoder weights employs Limited-memory Broyden-Fletcher-

Goldfarb-Shannon (L-BFGS) method as implemented in [56].

The output weight vectors (Fig. 1B) thus computed are subse-

quently applied as masks on the input channels X (t,f ,V,v). This

procedure that is repeated every time step using the weights

learned in the previous time step as initial conditions to ensure that

the assignment of the learned eigenvectors remains consistent over

time. Note that the C matrices do not change rapidly, but rather

slowly, as fast as the time-constants of their corresponding rate

analyses allow (&1=vi). For example, for the vi~4 Hz filters, the

cortical outputs change slowly reflecting a time-constant of

approximately 250 ms. More often, however, the C-matrix entries

change much slower reflecting the sustained coincidence patterns

between different channels. For example, in the simple case of two

alternating tones (Fig. 2A), the C-matrix entries reach a steady

state after a fraction of a second, and then remain constant

reflecting the unchanging coincidence pattern between the two

tones. Similarly, if the pitch of a speaker remains relatively

constant, then the correlation between the harmonic channels

remains approximately constant since the partials are modulated

similarly in time. This aspect of the model explains the source of

the continuity in the streams. The final step in the model is to

invert the masked cortical outputs Xm(t,f ,V,v) back to the sound

[34].

Supporting Information

S1 Dataset Example segregation of a male-female
mixture. The female sentence is ‘The clothes dried on a thin
wooden rack’. The male sentence is ‘The juice of lemons makes fine
punch’. Female_original.wav is the original female speech.

Male_original.wav is the original male speech. Mixture.wav is

the 0 dB mixture speech. Female_reconstructed.wav is the

segregated female speech and Male_reconstructed.wav is the

segregated male speech.

(ZIP)
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