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Abstract: The Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) is a key
player in the plant hormone abscisic acid (ABA) signaling pathway and is involved in plant response
to abiotic stress and development. Expression of the ABI4 gene is tightly regulated, with low basal
expression. Maximal transcript levels occur during the seed maturation and early seed germination
stages. Moreover, ABI4 is an unstable, lowly expressed protein. Here, we studied factors affecting the
stability of the ABI4 protein using transgenic Arabidopsis plants expressing 35S::HA-FLAG-ABI4-
eGFP. Despite the expression of eGFP-tagged ABI4 being driven by the highly active 35S CaMV
promoter, low steady-state levels of ABI4 were detected in the roots of seedlings grown under optimal
conditions. These levels were markedly enhanced upon exposure of the seedlings to abiotic stress and
ABA. ABI4 is degraded rapidly by the 26S proteasome, and we report on the role of phosphorylation
of ABI4-serine 114 in regulating ABI4 stability. Our results indicate that ABI4 is tightly regulated
both post-transcriptionally and post-translationally. Moreover, abiotic factors and plant hormones
have similar effects on ABI4 transcripts and ABI4 protein levels. This double-check mechanism for
controlling ABI4 reflects its central role in plant development and cellular metabolism.
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1. Introduction

Plant development and response to environmental cues involve signaling pathways
in which the last components are often transcription factors (reviewed by [1]). As a result,
these signaling pathways affect the transcription of a large number of genes, the expression
of which is affected by the respective transcription factors.

The Arabidopsis ABSCISIC ACID INSENSITIVE 4 (ABI4) gene encodes an APETALA 2
(AP2) family transcription factor [2]. APETALA 2 is a plant-specific DNA-binding domain
with a length of ~60 amino acids first characterized in the Arabidopsis APETALA2 homeotic
gene [3,4]. The ABI4 gene was identified by screening gamma-irradiated Arabidopsis
seeds for mutants capable of germination in the presence of inhibitory concentrations of
the plant hormone abscisic acid (ABA) [5]. ABI4 alleles were isolated by screening for
germination in the presence of high concentrations of salt and sugar [6–10]. ABI4 also plays
a central role in other plant signaling pathways, including lipid mobilization, lateral root
development, regulation of light-modulated genes, redox signaling, pathogen response,
and mitochondrial retrograde signaling (reviewed in [11]). Its role in chloroplast retrograde
signaling is disputed [12,13].

ABI4 expression is tightly developmentally regulated; the highest steady-state lev-
els of the ABI4 transcript are found in embryos, maturing pollen, and early germination
stages [14–16]. The transcript levels of ABI4 are significantly reduced in other develop-
mental stages; its expression is restricted to root phloem companion cells and parenchyma
and, to some extent, to the vascular system of the shoot [17–19]. In addition, steady-state
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levels of the ABI4 transcript are enhanced by ABA, NaCl, and glucose and repressed by
auxin [17,18,20].

ABI4 is a highly unstable protein [21,22]. Several protein motifs, such as PEST and
AP2-associated [21,22], destabilize ABI4 via degradation by the proteasome. Other regions
of the protein destabilize it in a proteasome-independent manner [21]. ABI4 is stabilized by
high concentrations of salt and sugar [21,22] and by preventing light exposure [23]. COP1
is involved in the light-mediated degradation of ABI4 [23]; levels of ABI4 were enhanced
in light-exposed cop1 mutant seedlings and further increased by treating cop1 mutants with
the MG132 proteasome inhibitor, suggesting that COP1, as well as additional E3s, modulate
ABI4 stability [23].

Being downstream of the signaling pathway cascades, transcription factors are fre-
quently modulated by phosphorylation, resulting in their activation or inhibition. ABI4
was phosphorylated in vitro by MPK3, MPK4, and MPK6 [24–27]. Phosphorylation of ABI4
by MAPKs repressed the expression of the LHCB gene [25] and inhibited the emergence
of adventitious roots [26]. In addition, the phosphorylation of S114 is essential for the
biological activity of ABI4, as shown in studies of the complementation of the abi4 mutant
phenotype [27].

Here, we studied factors affecting the stability of the ABI4 protein in Arabidopsis
plants by expressing HA-FLAG-ABI4-eGFP driven by the constitutive highly active 35S
promoter. The tagged ABI4 was detected in embryos rescued from imbibed seeds but not
in seedlings. Treatment of the seedlings with NaCl resulted in a transient stabilization of
ABI4, peaking at 2–4 h. ABA and high glucose also stabilized ABI4-eGFP but with slower
kinetics, reaching lower levels than with NaCl treatment. The phosphomimetic ABI4
(S114E) protein was more stable than the wild-type ABI4 and the phosphorylation-null
ABI4 (S114A) mutant in salt-treated plants, suggesting that phosphorylation of ABI4 by
MAPKs results in stabilization of ABI4. Interestingly, NaCl, ABA, and glucose are known
to similarly affect the steady-state levels of ABI4 transcripts [17,18,20]. We thus propose
that the MAPK signaling cascade also activates ABI4 transcription via the phosphorylation
of MYB, WRKY, and ABI4 transcription factors known to transactivate the transcription
of the ABI4 gene. As a result, similar cues regulate ABI4 in terms of transcriptional and
post-transcriptional levels, resulting in a very tight regulation of this key factor.

2. Results
2.1. The 35S::HA-FLAG-ABI4-eGFP Construct Encodes a Biologically Active Protein

To study ABI4 in planta, we used the enhanced green fluorescent protein (eGFP) [28]
fused to the carboxy terminus of ABI4 and transcription driven by the highly active
cauliflower mosaic virus constitutive 35S promoter (35S) [29]. We previously found that
overexpressing 35S::ABI4 in Arabidopsis resulted in seedling death within three days of
germination, whereas fusing the HA3-FLAG3 tag to the N terminus of ABI4 resulted in
viable plants [18]. Therefore, constructed 35S::HA-FLAG-ABI4-eGFP and used it for the
transformation of Arabidopsis. To determine whether HA-FLAG-ABI4-eGFP protein is
biologically active, we tested whether tagged ABI4 can complement the abi4-1 mutant.
abi4-1 is a frameshift mutant resulting from a single-bp deletion at codon 157 [2]; the
expressed protein has the AP2 DNA binding domain but lacks the transactivation domain.
The resulting transgenic plants did not have any visible phenotype when grown on agar
plates with 0.5×MS, 0.5% sucrose medium or in pots containing potting mix. To determine
whether the expressed HA-FLAG-ABI4-eGFP (ABI4-eGFP) protein retains the biological
activity of ABI4, we examined its ability to complement the phenotype of abi4 mutants by
assaying seed germination in the presence of ABA, the most extensively studied phenotype
of these mutants [30]. Figure 1 shows that expressing HA-FLAG-ABI4-eGFP in abi4-1
plants restored the ABA sensitivity, indicating that tagging ABI4 at neither its amino- nor
carboxy-termini impairs its biological activity.
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dium supplemented with the indicated concentrations of ABA. Germination was scored 7 days later. 
abi4, abi4-1 mutant; abi4/ABI4-1, -5, -9, transgenic lines 1, 5, and 9 of abi4-1 plants transformed with 
the 35S::HA3-FLAG3-ABI4-eGFP construct. Data represent means ± SE; n = 3 biological replicates. 

The 35S promoter is a commonly used strong constitutive promoter that is active in 
most plant tissues [31]. We therefore expected to detect high eGFP fluorescence signals in 
seedlings of WT plants transformed with the 35S::HA-FLAG-ABI4-eGFP construct 
(WT/ABI4-eGFP). Surprisingly, we did not detect significant fluorescent signals in these 
plants (Figure 2A,B). To confirm the construct, we examined the fluorescence in embryos 
prepared from imbibed seeds and detected a highly fluorescent signal in the entire em-
bryo (Figure 2C,D). These results suggest that ABI4 levels may be subject to post-tran-
scriptional regulation. 

 
Figure 2. Fluorescence levels of 35S::HA3-FLAG3-ABI4-GFP seedling roots and embryosroots. The 
fluorescence of plants transformed with the 35S::HA3-FLAG3-ABI4-GFP construct was examined by 
microscopy. (A,B) Ten-day-old root; (C,D) embryo extracted from a seed imbibed for 24 h; (A,C) 
fluorescence images; (B,D) bright-field images. Scale bar = 100 µm. 

  

Figure 1. Complementation of the abi4-1 mutant by 35S::HA3-FLAG3-ABI4-eGFP. Seeds of the ho-
mozygous plants of the indicated genotypes were plated on agar-solidified 0.5 ×MS, 0.5% sucrose
medium supplemented with the indicated concentrations of ABA. Germination was scored 7 days
later. abi4, abi4-1 mutant; abi4/ABI4-1, -5, -9, transgenic lines 1, 5, and 9 of abi4-1 plants transformed
with the 35S::HA3-FLAG3-ABI4-eGFP construct. Data represent means± SE; n = 3 biological replicates.

The 35S promoter is a commonly used strong constitutive promoter that is active
in most plant tissues [31]. We therefore expected to detect high eGFP fluorescence sig-
nals in seedlings of WT plants transformed with the 35S::HA-FLAG-ABI4-eGFP construct
(WT/ABI4-eGFP). Surprisingly, we did not detect significant fluorescent signals in these
plants (Figure 2A,B). To confirm the construct, we examined the fluorescence in em-
bryos prepared from imbibed seeds and detected a highly fluorescent signal in the entire
embryo (Figure 2C,D). These results suggest that ABI4 levels may be subject to post-
transcriptional regulation.
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Figure 2. Fluorescence levels of 35S::HA3-FLAG3-ABI4-GFP seedling roots and embryosroots. The
fluorescence of plants transformed with the 35S::HA3-FLAG3-ABI4-GFP construct was examined
by microscopy. (A,B) Ten-day-old root; (C,D) embryo extracted from a seed imbibed for 24 h;
(A,C) fluorescence images; (B,D) bright-field images. Scale bar = 100 µm.
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2.2. Accumulation of ABI4-eGFP Is NaCl-Dependent

Previous studies showed that environmental signals post-transcriptionally regulate
ABI4. To examine whether varying external and internal cues affect the steady-state levels
of ABI4, we tested cues known to affect the activity of the ABI4 promoter. The steady-state
levels of ABI4 mRNA driven by its endogenous promoter are enhanced by NaCl [17]. We
therefore examined whether NaCl also affects protein levels of ABI4 when transcription
is driven by the 35S promoter. Exposing WT plants expressing ABI4-eGFP to 0.3 M NaCl
resulted in a transient increase in the eGFP fluorescence signal, with the maximal signal
observed 2–3 h following seedling exposure to salt (Figure 3A). The signal was NaCl-dose-
dependent, with the maximum at 0.3 M NaCl (Figure 3B). No fluorescence was observed
in seedlings transferred to fresh 0.5 × MS, 0.5% sucrose medium, suggesting that the
transient increase in fluorescence observed in the NaCl-treated seedlings did not result from
transferring the seedlings from the agar plates to the buffer-soaked filter paper. To confirm
the observed fluorescence signals, protein extracts of the roots of salt-treated WT/ABI4-
eGFP seedlings were subjected to western blot analysis using an anti-GFP antibody. The
results confirmed that ABI4-eGFP was essentially undetectable in control untreated roots,
whereas a transient increase in ABI4-eGFP was observed following exposure to NaCl,
peaking 2 h after the application of NaCl (Figure 3C). The protein levels of ABI4-eGFP were
low, even at maximal values, and were detected with a high-sensitivity detection assay.
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Figure 3. NaCl treatment transiently enhances ABI4-eGFP protein levels. Ten-day-old Arabidopsis
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expression levels of ABI4-eGFP following NaCl treatment. β-actin was used as the loading control.
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The NaCl-dependent increase in ABI4 protein levels may result from either a change in
the transcript levels of the encoding mRNA or regulation of the protein levels. To assess this
point, we quantified the ABI4-eGFP transcript and protein levels in roots of untreated and
NaCl-treated seedlings. ABI4-eGFP transcript levels were determined by RT-qPCR using
amplification primers from the sequence encoding the HA3-FLAG3 tag to avoid assaying
the expression of the endogenous ABI4 gene. The steady-state mRNA levels of ABI4-eGFP
were increased by 2.0-and 1.6-fold at 2.5 and 4 h, respectively, after seedling exposure to
high salt concentration. The ABI4-eGFP protein levels quantified using the fluorescence
intensity of the roots were 32.7 and 7.3 times higher for roots of plants exposed to 0.3 M
NaCl for 2.5 and 4 h, respectively, compared to control untreated roots (Figure 4). Control
fluorescence signals of plants expressing 35S::GFP were not affected by salt treatment
(Figure S1). These results indicate that the NaCl-dependent increase in ABI4-GFP protein
levels resulted from post-transcriptional regulation of ABI4 rather than from changes in the
transcript levels or the effect of salt on the GFP tag.
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Figure 4. Effect of NaCl treatment on steady-state levels of ABI4-eGFP transcript and protein in
the roots. Ten-day-old seedlings transformed with the 35S::HA3-FLAG3-ABI4-eGFP construct were
transferred onto a filter paper soaked with 0.5 ×MS salts, 0.5% sucrose with or without 0.3 M NaCl.
Roots were harvested at the indicated times, and the levels of HA3-FLAG3-ABI4-eGFP transcript
(blue) or protein (red) were determined by RT-qPCR and fluorescence microscopy, respectively. Data
represent mean ± SE. Bars with different letters indicate significant differences according to one-way
ANOVA and Tukey’s HSD post hoc test (p ≤ 0.01).

2.3. Subcellular Localization of ABI4-GFP following NaCl Treatment Is Cell-Type-Specific

Although NaCl treatment of plants expressing the 35S::HA-FLAG-ABI4-eGFP construct
resulted in enhanced protein levels in most root cells, the observed fluorescence pattern
of the ABI4-eGFP was diffusive in most cell types. In contrast, it was found in spherical
structures mostly in the root stele, suggesting nuclear localization (Figure 5A). Staining
nuclei of the roots of NaCl-treated ABI4-eGFP plants with the DNA fluorescence stain 4′,6-
diamidino-2-phenylindole (DAPI) (Figure 5B) shows that the DAPI and eGFP fluorescence
signals overlap, confirming that ABI4-eGFP is localized in the nuclei of root stele cells
(Figure 5C). This pattern is specific to ABI4, as it was not observed in the roots expressing
the eGFP tag alone (Figure S1).
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Figure 5. The subcellular localization of ABI4-GFP in the roots is cell-type-dependent. Ten-day old
seedlings expressing the 35S::HA3-FLAG3-ABI4-GFP construct were treated with 0.3 M NaCl for 2.5 h.
Roots were stained with DAPI and examined by confocal microscopy. (A) GFP fluorescence; (B) DAPI
fluorescence; (C) merged images of (A,B). Arrows mark columns of cells expressing ABI4-eGFP in
the nuclei. Scale bar = 10 µm.

2.4. ABA and Glucose Treatment Enhance ABI4-eGFP Protein Levels

Transcript levels of endogenous ABI4 are also induced by treatment with ABA or
high concentrations of glucose [20]. To determine whether these treatments also affect the
levels of the ABI4-eGFP protein, ten-day-old 35S::HA-FLAG-ABI4-eGFP transgenic plants
were transferred to media containing ABA or glucose, and ABI4-eGFP accumulation was
followed by fluorescence microscopy. Enhanced ABI4-eGFP levels were detected in the
root stele of seedlings approximately 24 h after treatment with ABA or glucose (Figure 6).
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FLAG3-ABI4-eGFP-expressing plants were incubated for 24 h in 0.5 × MS, 0.5% sucrose growth
medium (A) or in the same medium supplemented with 7% glucose (B) or 30 µM ABA (C).
(D,E) Bright-field and merged image of the ABA treated root shown in (C). Scale bar = 100 µm.

2.5. Auxin Counteracts the NaCl-Induced Increase in ABI4-eGFP Levels

ABI4 mediates cytokinin inhibition of lateral root formation by reducing the polar
transport of auxin, a plant hormone known to induce the formation of lateral roots [18].
Exogenous auxin also reduced the steady-state levels of ABI4 transcripts in the roots [18].
To test whether auxin also post-transcriptionally regulates ABI4, we tested whether auxin
counteracts the NaCl-induced enhancement of ABI4-eGFP. Figure 7 shows that when added
together with NaCl, 3-indole acetic acid (IAA) prevented the NaCl-induced accumulation
of ABI4-eGFP, indicating that auxin negatively regulates the steady-state levels of the
ABI4 protein.
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Roots were examined 2.5 h later. Scale bar = 100 µm.

2.6. Steady-State Levels of ABI4-eGFP Are Controlled by De Novo Translation and Degradation by
the 26S Proteasome

We used the protein synthesis inhibitor cycloheximide (CHX) and the proteasome
inhibitor MG132 to further characterize the transient accumulation of ABI4-eGFP following
exposure to NaCl. As expected, CHX prevented the NaCl-dependent accumulation of ABI4-
eGFP protein (Figure 8A), suggesting that exposure to NaCl enhances de novo translation
of ABI4-eGFP. Treatment with a mix of NaCl and MG132 resulted in increased stabilization
of ABI4-eGFP, and a high signal was detected, even 6 h after the co-application of NaCl
and MG132 (Figure 8B) but not in the roots of plants treated with NaCl alone.
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Figure 8. The NaCl-dependent transient increase in the ABI4-eGFP levels is a result of de novo
protein synthesis and its degradation by the 26S proteasome. Ten-day-old ABI4-eGFP-expressing
seedlings were incubated in light for 2.5 h (A) or 6 h (B) on filter paper soaked with 0.5 ×MS, 0.5%
sucrose solution supplemented, as indicated, with 0.3 M NaCl, 20 µg/mL cycloheximide (CHX) or
20 µg/mL MG132. Roots were then examined by fluorescence microscopy. Scale bar = 100 µm.

2.7. The Phosphorylation State of Serine 114 Affects the Stability of the ABI4 Protein

We recently showed that phosphorylation of serine 114 of ABI4 by MPK3 or MPK6 is
essential for its biological activity [27]. Here, we tested whether the phosphorylation state
of S114 of ABI4 also affects its stability; WT Arabidopsis plants were transformed with
35S::HA-FLAG-ABI4-eGFP constructs encoding the ABI4 (S114A), phosphorylation-null
mutant or ABI4 (S114E), phosphomimetic mutated proteins. Ten-day-old NaCl-treated
seedlings were examined by fluorescent microscopy. Roots expressing WT (114S) ABI4-
eGFP showed very low levels of fluorescence (Figure 9A), as shown in Figure 3. Fluores-
cence levels in roots of plants transformed with the ABI4-eGFP (S114A) phosphorylation-
null mutant (Figure 9B) were similar to those of the WT ABI4-eGFP protein. In contrast, the
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S114E phosphomimetic mutation stabilized the ABI4-eGFP protein, and high levels were
observed, even 6 h following NaCl exposure (Figure 9C). The fluorescence signal was quan-
tified (Figure 9D), and the ABI4-eGFP protein levels were also confirmed by western blot
analysis using an anti-GFP antibody (Figure 9E). Our data indicate that the phosphorylation
of serine 114 by MAPKs stabilizes ABI4, the active form of this transcription factor.
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Figure 9. Phosphorylation of S114 stabilizes the ABI4 protein. Ten-day-old ABI4-eGFP expressing
seedlings (A) WT ABI4-eGFP, (B) the phosphorylation-null (S114A) mutant, or (C) the phospho-
mimetic (S114E) mutant, were incubated for 6 h with 0.5 ×MS, 0.5% sucrose and 0.3 M NaCl. The
roots were examined by fluorescence microscopy. Scale bar = 100 µm. (D) The fluorescent signals of
70 plants were quantified. Data are expressed as average ± SE. Bars with different letters represent
statistically significant differences according to Tukey’s HSD post hoc test (p < 0.05). (E) Western blot
analysis of seedling proteins using anti-GFP antibody showing the expression levels of the S114 ABI4-
eGFP phosphorylation state mutants following 6 h of NaCl treatment (upper panel). Ponceau-stained
RuBisCo large subunit was used as a loading control (lower panel).

3. Discussion

In this study, we showed that ABI4 protein is highly unstable and that it is degraded
by the 26S proteasome. In the roots, ABI4 is transiently stabilized by salt, ABA, and high
glucose. Phosphorylation of S114 of ABI4, a residue previously shown to be phosphorylated
by MAP kinase, increases its stability. ABI4 is a master transcription regulator, acting as
both activator and repressor in the regulation of developmental processes, such as seed
development, germination, root development, response to stress and hormones, disease
resistance, and lipid metabolism [11,32]. ABI4 is evolutionarily conserved and is a single
gene in Arabidopsis and in most plant genomes that encode ABI4 [11,33], suggesting that its
biological role is non-redundant. As a result, abi4 mutants display pronounced phenotypes,
such as insensitivity to ABA inhibition of seed germination and reduced sensitivity to high
glucose and salt [6,7,18,30].



Plants 2022, 11, 2179 9 of 15

3.1. ABI4 Is a Lowly Expressed and Highly Regulated Gene

As expected, as a key regulator, ABI4 levels and activity are tightly regulated. Maximal
levels of ABI4 transcripts are detected in developed seeds and in early germination stages,
with very low levels present during other developmental stages [14–16,19] in which it is
expressed in the phloem and parenchyma of the roots [18,19]. ABI4 expression is regulated
by plant hormones: enhanced by ABA [14] and cytokinin [34] and reduced by auxin [18]. It
is also enhanced in response to high glucose [20], as well as osmotic [20] and salt [17] stresses.
Arabidopsis ABI4 is encoded by an intronless gene. Intronless genes are characteristic of
highly regulated TFs in both plants and animals [35,36]. Moreover, intronless genes are
differentially expressed in response to drought and salt treatment [36].

3.2. ABI4 Is a Post-Transcriptionally Regulated Low-Level Protein

Because the transcription of ABI4 is highly regulated, in order to study the post-
transcriptional regulation of ABI4, we expressed HA-FLAG-ABI4-eGFP driven by the con-
stitutive highly expressed CaMV 35S promoter (35S). eGFP is a GFP variant that is 35 times
brighter than the original GFP [37], allowing for the detection of lower concentrations
of tagged proteins than with the previously used ABI4-GFP [21]. This construct comple-
mented the phenotype of the abi4-1 mutant, indicating that tagging ABI4 at its N and C
termini does not eliminate its biological activity (Figure 1). We did not detect recombinant
ABI4 protein in ten-day-old seedlings grown on plates under control conditions (Figure 2).
In contrast, a high fluorescence signal was observed in imbibed embryos, confirming the
performance of the construct (Figure 2). Although we used the highly active constitutive
viral 35S CaMV promoter to express ABI4-eGFP, the resulting transgenic plants did not
show any significant fluorescence of the eGFP tag (Figure 2). GFP-ABI4 was not detected
in Arabidopsis plants transformed with 35S::GFP-ABI4 [21]. GUS activity staining iden-
tified the expression of ABI4-GUS recombinant protein driven by the same promoter. In
contrast, ABI4-GFP fluorescence was detected in Arabidopsis protoplasts transfected with
a 35S::ABI4-GFP construct [22]. This discrepancy may be explained by protoplasts being
under stress caused by enzymatic digestion of the cell wall [38].

3.3. ABI4 Is Stabilized by External Signals

Although the 35S promoter is active in most plant tissues, ABI4-GFP is expressed
primarily in the roots following stress (Figure 3), confirming observations by Finkelstein
et al., who expressed ABI4-GUS fusion protein [21]. ABI4-eGFP was observed mainly in
the vascular system of the roots following ABA and glucose treatments (Figure 6). ABI4-
eGFP accumulated in the cells in which the endogenous ABI4 promoter was active [18].
Although NaCl treatment resulted in the accumulation of ABI4-eGFP throughout the roots,
it was targeted to the nuclei only in the vascular cells (Figure 5), suggesting that both the
accumulation and subcellular localization of the ABI4 protein are regulated in a cell-specific
manner. This is similar to the transcription factor ABI5, which also accumulated following
NaCl and ABA treatments, although increased levels were observed only four days after
exposure to 200 mM NaCl [39]. Furthermore, ABA stabilization of ABI5 was restricted to a
narrow developmental window 2 days after germination [39]. The difference in kinetics
and responsive window suggests that although ABI5 and ABI4 proteins are stabilized by
similar agents (ABA and NaCl), each protein has different domains [2,40], and as such, they
are likely to be stabilized through other mechanisms. Transient expression of stress-induced
genes has been reported for many genes, whereby the steady-state levels of mRNA peak
at a given time after application of the stress agent, followed by a decrease. For example,
mRNA levels of the stress-induced Arabidopsis transcription factors DREB1A DREB2A and
rd29A are transiently induced following exposure to cold, drought, and salt stresses [41].

3.4. Phosphorylation of S114 Stabilizes ABI4

The phosphomimetic S114E form of ABI4 was more stable than the WT or the non-
phosphorylated S114A mutant (Figure 9), suggesting that phosphorylation of S114 may
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decrease its ubiquitylation by a yet unidentified ubiquitin ligase. The S114 residue is
included in the serine/threonine (S/T) region motif of ABI4 [2]. Several domains are
proposed to contribute to the instability of ABI4: the PEST domain located at the N terminus
of ABI4 (amino-acids 22–40) enhances the degradation of ABI4 [21,22]. Furthermore, the N-
terminal half of the ABI4 protein, including the PEST, APETALA2 (AP2), serine/threonine
rich domain (S/T); the glutamine-rich domain (Q); and the C-terminal half containing the
Q and proline-rich (P) domains, were shown to be highly unstable [21]. Degradation of
the N-terminal half but not the C-terminal half of ABI4 was suppressed by the MG132
proteasome inhibitor, suggesting that although highly unstable, the C-terminal half of ABI4
may not be degraded by the proteasome [21]. The AP2-associated motif was also shown to
destabilize ABI4 [22]. Although the S/T rich region was included in the labile N-terminal
half of ABI4 [21], the instability of this region was mainly attributed to the PEST motif.
Proteasomal degradation of ABI4 through the PEST motif is modulated by sugar levels [22].

Using the proteomic approach in human cell lines, Wu et al. [42] recently showed that
phosphorylation delays the turnover of many proteins in growing cells. Moreover, the phos-
phomimetic mutated proteins catenin beta-1 (CTNNB1) S191D and the transcriptional recep-
tor protein YY1 S118D were more stable than the WT proteins, and the phosphorylation-null
in which the respective serine residues were mutated to alanine were destabilized [42]. In
addition, phosphoserine residues had a larger stabilization effect than phosphothreonine,
and phosphotyrosine had only a marginal stabilization effect.

Phosphorylation of type-A response regulator 5 (ARR5) by SnRK2s enhanced its stabil-
ity [43]. Furthermore, overexpressing WT ARR5 but not the non-phosphorylatable mutated
protein enhanced ABA hypersensitivity, suggesting that the phosphorylated form of ARR5
is biologically active. ABA suppressed the degradation of ARR5 [43]. Phosphorylation
of the rate-limiting enzymes of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic
acid synthase2 and 6 (ACS2 and ACS6), by MPK6 stabilizes the respective ACS proteins.
Furthermore, the phosphomimetic ACS6 mutant was constitutively active, suggesting that
phosphorylation of ACS6 by MPK6 is essential for its activity [44]. The RNA-binding pro-
tein tandem zinc finger 9 (TZF9) is destabilized by MAPK-mediated phosphorylation [45].

3.5. MAPK Regulates ABI4 Both Transcriptionally and Post-Transcriptionally

We showed that phosphorylation of S114 stabilizes ABI4 (Figure 9). We recently
demonstrated that MPK3, MPK4, and MPK6 phosphorylate S114 of ABI4 and that this
phosphorylation is essential for the biological activity of ABI4 and the complementation
of abi4 mutant plants [27]. MPK3, MPK4, and MP6 are involved in the abiotic and biotic
stress response (reviewed in [46]). Treatments with NaCl, ABA, and high glucose, which
result in stabilization of ABI4 (Figures 3 and 6), also enhance the steady-state levels of the
ABI4 transcripts [17,18,20]. Our results indicate that MAPK signaling affects both ABI4
transcription and protein stability.

The kinetics we observed for the transient stabilization of ABI4 following salt treatment
(Figure 3) resemble the described transient activation of MKK5 following exposure of
Arabidopsis plants to high salt, whereby increased activity of MKK5 was detected within
30 min of the treatment, reaching maximal activity at 2–4 h and declining at 6 h after
exposure to NaCl to nearly basal activity levels [47]. MKK5 phosphorylates and activates
several MPKs, including MPK3, MPK4, and MPK6. Therefore, the activity of these MPKs
is also expected to be transient following salt treatment, resulting in a transient wave of
phosphorylation of ABI4. MPK4 and MPK6 are rapidly activated by treatments such as
high salt and osmotic stress but not by ABA treatment [48]. ABA activates the transcription
of many genes encoding components of the MAPK cascade [49], suggesting that the
slow kinetics leading to accumulation of ABI4-eGFP following ABA treatment may result
from slow de novo synthesis of the MAPKs rather than fast activation of pre-existing
latent enzymes.

MPK3, MPK4, and MPK6 also phosphorylate the transcription factors WRKY and
MYB [24,50]. Several WRKY and MYB transcription factors may regulate ABI4 expres-
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sion [51–60]. In addition, as ABI4 also activates the transcription of its own gene [61], its
phosphorylation by these MAPKs also enhances its transcript levels.

In summary, our results show that phosphorylation of ABI4 by MAPK results in the
stabilization of ABI4. Phosphorylation of S114 by MPKs may interfere with its binding to
a yet unidentified E3 for proteasomal degradation. Alternatively, the catalytic efficiency
of the E3 may be reduced toward phosphorylated ABI4. MAPK signaling also regulates
ABI4 transcription. Thus, we suggest that regulation of both the ABI4 transcript and ABI4
protein levels results in the tight regulation of the activity of this key transcription factor in
the ABA signaling pathway.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Arabidopsis thaliana (Col) seeds of the indicated genotypes were surface-sterilized,
cold-treated for 3 days, and plated in Petri dishes containing 0.5 ×Murashige and Skoog
medium (MS), 0.55% plant agar, and 0.5% (w/v) sucrose, as previously described [18].
Plates were incubated at 22–25 ◦C and 50% humidity under a circadian regime of 12 h
light/12 h dark.

4.2. Constructs and Plant Transformation

The pGA-eGFP2 vector was constructed by replacing the sequences of the MCS and
35S::mGFP5 (9640–1038) in the pCAMBIA1302 vector (www.cambia.org accessed on 1 April
2010) with the 2 × 35S-MCS-eGFP DNA sequence (405–2332) from the pSAT4-eGFP-N1
plasmid using Gibson assembly cloning [62]. The DNA sequence encoding HA3-FLAG3-
ABI4 was isolated by digesting the pJIM19-ABI4 plasmid [17] with restriction enzymes
NcoI and PstI and subcloning into the respective sites in pGA-eGFP2 to yield the pGA-HA3-
FLAG3-ABI4 plasmid. To construct plasmids encoding ABI4 (S114A) and ABI4 (S114E)
mutant proteins, the respective DNA sequences were amplified from the respective pRSET-
ABI4 plasmid [27] using gene-specific primers flanked by the SalI restriction sites and
digesting the amplified sequences with SalI. The DNA sequence encoding WT-ABI4 was
removed from the pGA-HA3-FLAG3-ABI4 plasmid by digestion with SalI, followed by
subcloning of the DNA sequences encoding mutated ABI4 protein. Primers used for the
construction of plasmids are shown in Table S1. The resulting plasmids were verified
by PCR and DNA sequencing and were introduced into Agrobacterium tumefaciens strain
GV3101. The transformed bacteria were used to transform WT Col or abi4-1 Arabidopsis
plants by the floral dip method [63]. Transgenic plants were selected on plates containing
hygromycin and transferred to pots. Plant were grown at 22–25 ◦C and 50% humidity with
16 h light/8 h dark. Homozygous T2 and T3 generation plants were used in this study.

4.3. Germination Assay

Sterilized cold-treated seeds were plated on agar-solidified 0.5 ×MS, 0.5% sucrose
medium supplemented with the indicated concentrations of the phytohormone ABA.
Germination was scored 7 days later.

4.4. Plant Treatment

For the various treatments, 10-day-old seedlings were transferred to Petri dishes
containing Whatman No.1 filter papers soaked with 0.5 × MS medium and 0.5% (w/v)
sucrose supplemented with the indicated stress agent, plant hormone, or inhibitors. Plants
were incubated at room temperature in under light for the indicated times.

4.5. Microscopy

The indicated tissues were examined using a fluorescent microscope (ECLIPSE Ci-
L; Nikon) with filters set for GFP. The images reflect GFP signals in all the cells of the
examined tissue, thus representing the expression levels in all cell types. All images
in each experimental repeat were taken using the same microscope, camera setup, and

www.cambia.org
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exposure times. Each experiment was repeated at least three times using at least four
independent lines of the transgenic plants. Fluorescent signals were quantified using
ImageJ software [64], with the black background set as zero for the measurement of the
fluorescent intensity of the image. Subcellular localization images were taken with a Zeiss
LSM-880 confocal microscope

4.6. Embryo Excision

Arabidopsis seeds imbibed for 24 h in water at room temperature were pressed gently
between two microscope slides. Embryos released from seed coats were collected and
rinsed briefly in water.

4.7. Protein Extraction, SDS-PAGE, and Western Blot Analysis

Ten-day-old seedlings were harvested into a 1.5 mL microcentrifuge tube, and their
fresh weight was determined. Next, 2:1 (v/w) 4× SDS-PAGE sample buffer [65] was added,
and the seedlings were homogenized with a microcentrifuge pestle. To ensure efficient
solubilization of plant proteins, homogenates were passed through 2 cycles of freezing
in liquid nitrogen andboiling for 5 min. Tubes were centrifuged for 10 min at 12,000× g
at room temperature, and supernatant samples were resolved by SDS PAGE. Proteins
were electroblotted onto nitrocellulose membranes. ABI4-eGFP and β-actin were detected
using the primary antibodies anti-GFP (Abcam, ab1218, Cambridge, UK) and anti-β-actin
(Sigma, A4700, Saint Louis, MO, USA), respectively, and secondary peroxidase-coupled
anti-mouse IgG antibody (Sera Care 5450–0011). Membranes were incubated in reaction
mixes prepared from with a highly sensitive SuperSignal West Dura extended substrate
kit (Thermo scientific, Waltham, MA, USA), and chemiluminescent signals were recorded
using ImageQuant RT ECL Imager (GE Healthcare, Chicago, IL, USA).

4.8. Quantitative RT-PCR Analysis

Total RNA was isolated from roots using a ZR Plant RNA MiniPrep kit (Zymo re-
search). The RNA concentration was estimated spectrally (Nano Drop ND-1000; Nano
Drop Technologies). cDNA was synthesized using a qScript cDNA synthesis kit (Quanta).
The reaction mixture contained 700 ng total RNA and random primers. Primer design and
RT-qPCR assays for determining relative steady-state transcript levels were as previously
described [17]. Primers are described in Table S1.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants11162179/s1, Figure S1: eGFP expression in roots of salt-
treated 35s::eGFP plants; Table S1: Primers used in this study.
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