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There is evidence that attention can be captured by a
feature that is associated with reward. However, it is
unclear how associating a feature with loss impacts
attentional capture. Some have found evidence for
attentional capture by loss-associated stimuli,
suggesting that attention is biased toward stimuli
predictive of consequence, regardless of the valence of
that consequence. However, in those studies, efficient
attention to the loss-associated stimulus reduced the
magnitude of the loss during training, so attention to the
loss-associated stimulus was rewarded in relative terms.
In Experiment 1 we associated a color with loss, gain, or
no consequence during training and then investigated
whether attention is captured by each color.
Importantly, our training did not reward, even in a
relative sense, attention to the loss-associated color.
Although we found robust attentional capture by
gain-associated colors, we found no evidence for
capture by loss-associated colors. A second experiment
showed that the observed effects cannot be explained
by selection history and, hence, are specific to value
learning. These results suggest that the learning
mechanisms of value-based attentional capture are
driven by reward, but not by loss or the predictability of
consequences in general.

Attention is required for the conscious representation
of object identities (Lamme, 2003; Mack & Rock,
1998; Rensink, O’Regan, & Clark, 1997), yet the
number of items that can be simultaneously attended
is exceedingly small (Becker & Pashler, 2005; Pashler,
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1988; Pylyshyn & Storm, 1988). As a result, it would
seem important to have mechanisms that ensure that
attentional resources are devoted to important aspects
of the environment, rather than being squandered on
the irrelevant. Indeed, research suggests that there are a
number of mechanisms that help guide the allocation of
attention to relevant aspects of the scene. Some of these
mechanisms are relatively automatic or “bottom-up,”
while others are volitional or “top-down,” and these
two systems appear to interact in the competition for
attention (Corbetta & Shulman, 2002). Among factors
that guide attention, there is evidence that people can
set attentional control settings that bias attention to
objects that share features of a target object (Folk,
Remington, & Johnston, 1992), and people can use
knowledge of likely locations for a target to prioritize
those locations for attention (Chun & Jiang, 1998;
Oliva & Torralba, 2001; Torralba, Oliva, Castelhano,
& Henderson, 2006). These findings suggest that
multiple factors help ensure that attention is allocated
efficiently.

Recently researchers have found that reward-based
learning can also prioritize features for attention
(Anderson, Laurent, & Yantis, 2011a; Anderson &
Yantis, 2012). This work demonstrates that associating
a particular feature with high reward leads to “value
driven attentional capture” — the rewarded feature
automatically captures attention even when it is
irrelevant to volitional goals (Anderson et al., 2011a;
Le Pelley, Pearson, Griffiths, & Beesley, 2015). The
common method of producing value-based attentional
capture in the lab (e.g., Anderson et al., 2011a) is to
have participants perform a training phase in which one
color is associated with high reward and a second color
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is associated with low reward. During a subsequent
test phase, color is made irrelevant to the task, and
participants must search an array of objects for one
unique shape—a shape singleton task. During this
task, one of the distractor items occasionally appears
in one of the previously rewarded colors. The typical
finding is that the high-reward distractor is effective
at capturing attention, thereby delaying the time to
find the shape target (Anderson & Yantis, 2012, 2013;
Bucker, Belopolsky, & Theeuwes, 2015; Mine & Saiki,
2015; Miiller, Rothermund, & Wentura, 2015). The low
reward distractor may also capture attention, but to a
lesser extent (Anderson, 2013).

This value driven attentional capture phenomenon
has garnered a great deal of recent interest for two
reasons. First, from a basic science perspective, it
provides insight into a basic learning mechanism that
helps ensure that attention is biased toward relevant
aspects of the environment. Second, at a practical
level, value driven capture may have implication for
understanding one of the factors that maintains
addiction. Addiction is associated with an attentional
bias toward stimuli associated with the addiction
(Lubman, Peters, Mogg, Bradley, & Deakin, 2000;
Marissen et al., 2006; Robbins & Ehrman, 2004), and
this attentional bias is believed to be one factor that
contributes to relapse among those seeking to quit their
addiction (Field & Cox, 2008). According to this theory,
the attentional bias toward addiction related stimuli
results in conscious processing of those stimuli, thereby
increasing craving and leading to relapse (Robinson &
Berridge, 2008).

To date, the work on value-driven capture has shown
that associating a feature with reward leads to a robust
capture of attention by that feature, even when it is
irrelevant and harmful to one’s task performance
(Anderson et al., 2011a; Le Pelley et al., 2015). However,
the attentional effect of associating a feature with loss
is less clear.

Two studies that have used methods following the
original value-based capture paradigm have concluded
that stimuli associated with both gain and loss capture
attention and do so to a similar extent (Wang, Yu, &
Zhou, 2013; Wentura, Miiller, & Rothermund, 2014).
However, the methods in these studies did not actually
associate attending to the punished color with loss.
Instead, the color was associated with the possibility
of experiencing a substantial loss, but attending to
the color and rapidly responding could eliminate or
reduce this loss. For instance, in Wentura, Muller, and
Rothermund (2014), participants would lose 20 points
if they responded incorrectly or too slowly, but would
lose nothing if they responded rapidly and correctly.
Similarly, in Wang, Yu, and Zhou’s Experiment 1
(2013), participants would lose 15 points if they
responded too slowly or incorrectly to the punished
color and would lose only 10 points for responding
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quickly and accurately. Thus in both experiments the
optimal strategy was to learn to rapidly attend to the
punished color. That is, in relative terms attending to the
punished color was actually rewarding. In behaviorist
terms, these training protocols reinforced attention to
the “punished” color; the only difference between the
rewarded and punished colors was that attention to
the rewarded colors was positively reinforced, while
attention to the punished color was reinforced via
negative reinforcement (the removal/reduction of a
negative outcome). To our knowledge there are no
studies that have paired a feature with a financial
loss that avoided such potential confounds (but see
Schmidt, Belopolsky, & Theeuwes, 2015 for a study
of classical fear conditioning to a feature). Thus,
although these studies are informative in showing
that value-based capture can be driven by negative
reinforcement, they do not address how punishing
attention to a feature (by presenting a loss or negative
outcome) impacts the attentional priority of that
feature.

To further investigate this issue, here we use a
paradigm similar to that used in previous studies
showing that loss-associated stimuli capture attention,
but we no longer reinforce attending to the loss-
associated stimuli. Instead, we make it optimal to
suppress attention to loss-associated stimuli, to
determine whether doing so would still lead to capture
of attention by that feature.

The method in Experiment 1 followed the value
capture paradigm of Anderson and Yantis (2011a),
but rather than having one color associated with high
reward and the second with low reward during training,
we had one color associated with reward, a second
associated with loss, and a third that had no reward
contingency. During the test phase, there were four
conditions; three in which the target-colors from the
training phase appeared as distractors, and a fourth
in which a color that had not been associated with
a target during training appeared as a target. The
condition where the distractor was a prior target color
that was not associated with either reward or loss is
an appropriate baseline for evaluating the capture
of attention, as it controls for possible attentional
capture by the color simply being a target during
training (Sha & Jiang, 2015). The second control
condition, which had no training-relevant distractor
in the test phase, is similar to what prior studies
used and is presented for comparison with those
studies.
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Figure 1. Trial schematic for Experiment 1. The training example represents a trial where a correct response to the red target was
rewarded. The test example has the rewarded red item as a distractor.

Participants

Forty-eight undergraduates who reported normal
or corrected-to-normal vision, including color vision,
participated for financial compensation. This sample
size was based on a G*Power (Faul, Erdfelder, Lang,
& Buchner, 2007) calculation of the sample size that
would yield >0.9 power to detect an effect size of 0.2
(Cohen’s effect size f) for the omnibus analysis of the
test phase (a univariate repeated-measures analysis of
variance [ANOVA] with four levels). Prior research
suggests that the effect size for attentional capture is
usually >0.3 (e.g., Anderson & Yantis, 2012; Gupta,
Hur, & Lavie, 2016; Miiller et al., 2015; Wang et al.,
2013). We wanted to be conservative in our approach,

thus we chose a smaller effect size when determining
our sample size. Participants gave informed consent
and the experimental procedures were approved by
the Michigan State University Institutional Review
Board and adhered to the tenets of the Declaration of
Helsinki.

Stimuli

The experiment was programmed in E-Prime 2.0
(Psychology Software Tools, Sharpsburg, PA, USA).
Visual stimuli consisted of diamond- and circle-shaped
outlines (size 2.7° x 2.7°, line thickness 0.15°) and line
segments (length 1°, line thickness 0.08°) presented
on a black background. The shape outlines (referred
to as “shapes” for brevity below) could appear in nine
possible colors: red, green, yellow, blue, cyan, orange,
pink, purple, or white (see Figure 1 for example colors).
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These colors were selected by the experimenters to
be maximally distinct, and followed previous work
on value-based attentional capture (Anderson et al.,
2011b; Anderson & Yantis, 2012). The line segments
were always gray and could be in one of four possible
orientations: vertical, horizontal, and the two 45°
tilted orientations between the vertical and horizontal.
On each trial, six shapes were presented at evenly
spaced locations (60° apart) at an eccentricity of 8.9°
(Figure 1). Stimuli were presented on 19" cathode-ray
tube (CRT) monitors with a refresh rate of 85 Hz
and a resolution of 1024 x 768. Participants viewed
the screen from approximately 55 cm away in dark,
sound-attenuated booths.

Training and test phases

There were two phases in the experiment: training
and test. During training, six circles appeared in
different colors with a line segment in each circle.
Targets were defined as three colors: red, green, or
yellow. On each trial, one target color appeared and the
remaining five colors were randomly sampled without
replacement from the remaining six non-target colors.
Inside the target circle was a vertical or horizontal line
segment, whereas inside the nontarget circles the line
segments were randomly tilted 45° to both directions.
Participants were asked to find a target color and report
via button press whether the line segment within that
target was oriented horizontally or vertically. Their
responses were either rewarded or punished (see below
for details).

During the test phase, the stimulus array contained
either five circles and one diamond, or five diamonds
and one circle. All shapes had different colors and the
target was defined as the unique shape. The target
shape was never in one of the training phase’s target
colors, whereas one of the distractors could be in one
of the target colors. Again, a line segment appeared in
each shape, with tilted lines in the non-target shapes
and a vertical or horizontal line in the target shape.
Participants were told that color was no longer relevant,
and there would be no reward or punishment, and their
task was to find the uniquely shaped item in the array
and report the line orientation within that shape.

Design and procedure

Before the training phase started, participants
completed 12 practice trials of the training task
(see Figure 1 for trial schematic), where the search array
was presented for 2000 ms. Participants were given
feedback at this time; their response was followed by
“Correct,” “Incorrect,” or “Too slow” (if they did not
respond within the 2000 ms window).
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After the practice, each participant started with
$10 in their bank, and they were told that they could
earn or lose money on each trial. For these training
trials, one of the target colors (red, green, yellow) was
assigned to be rewarded, the second was punished, and
the third was associated with no reward contingency.
The mapping of the reward contingency to target colors
was counterbalanced across participants. Participants
reported the orientation of the line segment inside
the target colored circle. A correct response to a
rewarded target was followed by a feedback display
that presented “40.10” (80% of the time) or “—0.10”
(20% of the time) in the center of the screen. This
payout contingency was reversed for correct responses
to targets of the punished color, that is, 80% of trials
were followed with a “—0.10” and 20% of trials were
followed with “+40.10”. When the target appeared in
the no-contingency control color, there was no reward
or loss (i.e., no visual feedback was displayed). For all
conditions, an incorrect response resulted in a beep
sound with no reward, or loss. The search array was
displayed until response or for 800 ms, whichever
occurred earlier. This short response window is in
line with prior experiments which used either 600 ms
(Anderson, Laurent, & Yantis, 2011a, Anderson,
Laurent, & Yantis, 2011b) or 1000 ms (Anderson &
Yantis, 2012). If participants did not respond within
800 ms (timed out), the words “Too Slow” appeared on
the screen, and there was no reward or loss. In this way,
attention to the punished color was truly punished;
rapidly attending and responding to the punished color
was associated with loss. Participants completed five
blocks of training trials, with each block consisting of
120 trials (40 for each colored target), for a total of 600
training trials. In addition to the trial-by-trial feedback
about the reward or punishment, their bank total was
displayed during each break between blocks.

During the test phase, participants were told that
color was no longer relevant to the task, and their
task was to find the unique shape, and report the
orientation of the line segment within the unique shape.
There were four randomly interleaved conditions.

In the Control condition, none of the target colors
from the training phase appeared in the display. In
the No-Contingency condition, one of the distractors
appeared in the target color that was associated with
neither reward nor loss during the training phase. In the
Rewarded condition, one of the distractors appeared
in the rewarded color, and in the Punished condition,
one of the distractors appeared in the punished color.
The test phase started with 10 practice trials (only the
control condition) followed by a single block of 240
trials (60 trials per condition). During the test trials
all reward contingencies were removed. Participants
were instructed to respond as fast as possible while
maintaining accuracy. Following prior work using this
task (Anderson, Laurent, & Yantis, 2011a, Anderson,
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Figure 2. The left panel shows the rate of successful target identifications in the training phase of Experiment 1 as a function of target
type and training block. The right panel shows the percentage of trials in which responses were not made within the 800-ms response
window as a function of target type and block. Error bars represent the standard error of the mean.

Laurent, & Yantis, 2011b; Anderson & Yantis, 2012),
participants were given a longer time to respond during
the test block than the training block. In our case, test
trials timed out after 1200 ms. At the completion of
the experiment, participants were given an open-ended
question to query whether they became aware of the
reward contingencies during the experiment. The
experiment took about 75 minutes to complete.

We eliminated participants who performed poorly
during training in the experiment. Poor performance
is defined as less than 50% accuracy for the rewarded
stimulus in the last four blocks of the training phase.
This criterion led to the elimination of two participants,
both from the attend green condition. Thus our
final sample had 14 participants in the attend green
condition and 16 in each of the attend red and attend
yellow conditions. For these remaining 46 participants,
we calculated the accuracy and median RTs for each
condition. We performed omnibus repeated measure
ANOVAs, followed by planned paired z-tests to isolate
the source of the effects. When paired comparisons
failed to reject the null hypothesis, we additionally
conducted Bayesian t-tests to evaluate the strength
of evidence for the null hypothesis using SPSS. The
null hypothesis was that the two conditions had the
same mean, and the priors were set to be uniform
distributions. We report the Bayes factors in terms of
the likelihood of the null over the alternative hypothesis
(BFo1). This method is more intuitive when trying
to evaluate support for the null hypothesis as BF
indicates how much more likely the null hypothesis is
than the alternative hypothesis. By convention, a Bayes
factor of one to three is considered weak evidence for

the null hypothesis, three to 20 is considered positive
evidence for the null hypothesis, and 20 to 150 is
considered strong evidence for the null (Rafterty, 1995;
Wagenmakers, 2007).

Training phase

Accuracy for each participant was calculated for each
target condition for each of the five training blocks
(see Figure 2). A repeated-measures ANOVA with three
levels of target type (no contingency target, rewarded
target, punished target) and five levels of block found a
main effect of target type (F(2,90) = 18.02, p < 0.001,
np? = 0.286), a main effect of block (F(4, 180) = 24.30,
p < 0.001, n,> = 0.351), and a target type by block
interaction (F(8, 360) = 8.74, p < 0.001, n,*> = 0.163).
The source of the interaction is clear from the figure
and was verified by paired z-tests. The three target
types did not differ during block 1 (all t(45) < 1.51, p
> 0.138, BF(; > 2.92). Performance in the rewarded
target condition was significantly better than the other
two conditions in the second block (both t(45) >3.69,
p < 0.002, d > .599), and these significant differences
maintained for all subsequent blocks (all t(45) > 4.2, p
< 0.001, d > 0.8). The punished target did not differ
from the neutral target in the first three blocks (all t(45)
<1.23, p > 0.22, BF(; > 4.2) but marginally worse in
the fourth (t(45) = 1.97, p = 0.055, d = 0.294) and was
significantly worse in the fifth block (t(45) = 2.39, p =
0.021, d = 0.376).

The high performance in later blocks for the reward
targets, relative to the other targets was due largely
to decrease in trials that timed out in the rewarded
condition (see Figure 2). An ANOVA on these
timed-out trials mirrored the results of overall accuracy.
There were main effects of block (F(4,180) = 6.12, p
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Accuracy (95% Conf.)
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RT in ms (95% Conf.)

Experiment 1
Control
No contingency distractor
Punished distractor
Rewarded distractor
Experiment 2
Control
No contingency distractor
Punished distractor
Rewarded distractor

0.773 (0.736-0.810)
0.769 (0.730-0.807)
0.770 (0.731-0.808)
0.733 (0.698-0.768)

0.798 (0.781-0.815)
0.797 (0.780-0.814)
0.791 (0.774-0.808)
0.794 (0.777-0.811)

664 (653-675)
690 (679-702)
678 (667-689)
707 (696-719)

681 (671-691)
679 (669-689)
680 (670-690)
696 (686-706)

Table 1. Test phase means and within-subject 95% confidence intervals (Loftus & Masson, 1994). Note: RT = reaction time.

< 0.001, np? = 0.12), target type (F(2, 90) = 16.10,

p < 0.001, np,> = 0.26), and a block by target type
interaction (F(8, 360) = 7.78, p < 0.001, n,> = 0.15).
Paired z-test showed that the rewarded target produced
fewer timed-out trials than both the no contingency
and punished targets by the second block of trials that
maintained throughout the remaining blocks (all t(45)
> 3.84, p < 0.001, d > 0.72). The punished targets were
not significantly different from the neutral until the
fourth block (t(45) = 2.38 p = 0.022, d = 0.357), and
maintained for the fifth block (t(45) = 2.41, p = 0.02,
d = .36). Given the high number of timed-out trials,
we did not attempt to analyze reaction times for the
training phase.

Test phase

Descriptive statistics are presented in Table 1.

A repeated-measures ANOVA on accuracy (see
Figure 3) with four levels of distractor type (control,
no-contingency distractor, punished distractor, and
rewarded distractor) found a significant main effect
(F(3, 135) = 6.21, p = 0.001, n,*> = 0.12). Paired
t-testing demonstrated that the rewarded distractor
condition had lower accuracy than all other conditions
(all t(45) > 3.34, all p < 0.003, all d > 0.288 < 0.332).
No other conditions differed (all t(45) <.38, p > 0.7;
BFy; > 8.08).

A repeated-measures ANOVA on reaction time with
four levels of distractor type (control, no-contingency
distractor, punished distractor, and rewarded distractor)
found a significant main effect (F(3, 135) = 11.03, p <
0.001, np2 = 0.20). Paired t-test demonstrated that the
rewarded distractor condition resulted in significantly
longer reaction times than the punished and control
condition (all t(45) > 3.91, all p < 0.001, d = 0.264 and
0.409, respectively) and was marginally slower than the
No Contingency Distractor condition (t(45) = 1.97, p
= 0.055, d = 0.169). The punished distractor did not
differ significantly from the no contingency distractor
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© T T
3
Q
&’ 70%
60%
50%
Control No Contingency Punished Rewarded
Distractor Distractor Distractor
740
720
0
£ 700 T
()
£ 680 i
= I
c
660
g |
Q
IS 640
o
620
600
Control No Contingency Punished Rewarded

Distractor Distractor Distractor

Figure 3. The top panel presents accuracy during the test phase
of Experiment 1 as a function of distractor condition. The

bottom panel presents reaction time as a function of distractor
condition. Error bars represent the standard error of the mean.

condition (t(45) = 1.34, p = 0.19; BFy; = 3.67) and
was slower than the control condition (t(45) = 2.17,
p =0.035,d = 0.127). The no contingency distractor
condition also yielded significantly slower reaction
times than the control (both t(45) = 3.43, p = 0.001, d
=0.269).

The training phase clearly indicated that participants
were sensitive to the reward contingencies. As training
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progressed, participants learned to rapidly attend to the
rewarded targets and to a lesser extent they also learned
to rapidly identify the no reward contingency targets.
Performance for these two types of targets gradually
increased over the five training blocks. However, for
the punished target, there was little change in correct
identification beyond the second block. In short, our
training phase was effective in encouraging people to
rapidly attend to rewarded targets but had little effect
on punished targets.

More interestingly, in the test phase we found
robust value-based capture effects for the rewarded
color; the rewarded distractors were more distracting
than any other condition. We also found that the
no-contingency and punished distractor conditions
were more distracting than the control condition
in which none of the distractors were target colors
during training. This suggests that simply being a
target during training imbues that feature with some
attentional prioritization and is consistent with prior
reports of these target-based effects (Sha & Jiang,
2015). However, in that article, the authors argued
that effects attributed to reward contingencies might
be entirely due to these target-based effects. The fact
that our rewarded condition produced more distraction
than the no-contingency distractor condition suggests
that reward increases attentional prioritization above
and beyond the effect produced by being a task-relevant
target during training and is consistent with studies
showing that pairing reward with task-irrelevant stimuli
can also lead to value-based attention capture (Hopf,
Schoenfeld, Buschschulte, Rautzenberg, Krebs, &
Boehler, 2015; Le Pelley, et al., 2015; Mine & Saiki,
2015).

Finally, we find that the punished distractor condition
is significantly less distracting than the rewarded
distractor, and although there is a trend toward
being more distracting than the control condition,
the punished distractor is clearly no more distracting
than the no-contingency distractor. Thus our results
suggest that associating attention to a particular color
with a loss results in that color neither attracting nor
suppressing attention.

However, we note a few potential issues that could
weaken the conclusion from Experiment 1. First, it is
possible that in the punished condition participants
were learning to rapidly attend to the punished color
and simply withhold responses. We doubt that is the
case for the following reasons. If the participants
learned to rapidly attend to the punished distractor and
withhold the response, we would expect attention to
be captured by distractors that matched the punished
color, but during testing we found no evidence of
increased slowing by this distractor. In addition, if this
was a strategic decision to attend to the punished color
and withhold response, then it should have occurred
only for those participants who were aware of the
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contingencies. To investigate this issue, we examined
the responses to the open-ended survey question that
asked participants to describe why they gained or lost
money on a trial. We coded participants who mentioned
anything about the color of the stimulus influencing
the reward contingencies as explicitly aware. Based on
this criterion, 24 of our subjects were explicitly aware
of some of the payout contingencies. To assess the
contribution of awareness, we ran a mixed-factorial
ANOVA on the reaction time during the test phase, with
awareness as a between-subject factor and distractor
type as a within-subject factor. We found no main effect
of awareness (F(1,44) = 1.79, p = 0.188, n,” = 0.039)
nor an awareness by condition interaction (F(3, 132) <
1,p=0.67, np2 =0.012). In short, there was no evidence
that the pattern of results in the test phase relied on
explicit knowledge of the reward contingencies, thereby
casting doubt on the strategic explanation of these
results based on rapidly finding the punished color but
withholding responses (see Supplementary Material
including Supplementary Figures S1, S2, and S3 for
more complete analyses of the effect of awareness).

A second potential shortcoming is that training
task accuracy was lowest for the loss-associated color
condition, which differs from previous studies reporting
capture of attention by punishment (Wang, Yu, &
Zhou, 2013; Wentura, Miiller, & Rothermund, 2014),
which reported equivalent accuracies across training
conditions. As a result, participants in our experiment
experienced fewer trials of negative feedback from
the punished color than positive feedback from the
rewarded color. This translates to less opportunity for
learning in the punished condition. This difference in
accuracy during training also resulted in differences
in “selection history.” Selection history can influence
attention such that items that have been selected in the
past are more likely to be selected in the future (Awh,
Belopolsky, & Theeuwes, 2012). Thus fewer correct
trials during the training phase for the punished color
condition raises the possibility that our results during
the test phase were due to difference in selection history
or the number of learning opportunities rather than
reward contingency effects, per se. Similarly, given
the way reward contingencies were implemented in
Experiment 1, some participants could have adopted an
approach to only look for the rewarded color during
training, thereby reducing the effects of training for
the punished color. To address these shortcomings we
performed Experiment 2.

The main goal of Experiment 2 was to determine
whether the results demonstrating capture by reward but
not by punishment would replicate given a design that
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equated selection history and learning opportunities
across conditions. The experiment used a training task
similar to Experiment 1’s but with an algorithm that
dynamically changed the number of trials presented for
each condition to ensure an equal number of correct
responses across training conditions. If the results of
Experiment 1 were simply due to selection history or
the number of learning opportunities, we would expect
the punished color to attract attention to a similar
degree as the rewarded color. If, however, the effects
were due to the consequence (reward or loss) associated
with a color, the results should replicate those of
Experiment 1.

Participants

A new group of 46 undergraduates participated
for financial compensation; all reported normal
or corrected-to-normal vision and normal color
vision. Participants gave informed consent and the
experimental procedure was approved by the Michigan
State University Institutional Review Board.

Stimuli

Visual stimuli and computer displays were identical
to those in Experiment 1.

Design and procedure

The method was identical to Experiment 1, except a
change in the training phase. Similar to Experiment 1,
each trial contained a single target which was associated
with either reward, punishment, or no consequence
(neutral). Different from Experiment 1, we implemented
an adaptive method to equate the number of correct
responses across three conditions. The computer
program maintained three counters that stored the
cumulative number of correct responses for each
condition (rewarded, punished, neutral). After each
trial, the program determined the condition for the next
trial based on the following rules: if the three counters
had equal values, then the next trial will be randomly
selected from the three trial types with equal probability;
if one value was higher than the other two values, then
the next trial will be randomly chosen from the latter
two types; if two values were both higher than the third
value, then the next trial will be the same type as the
third type. After participant responded, the counter
corresponding to the trial type was updated such that
its value was incremented by one if the participant was
correct in the line orientation judgment on the current
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trial. This algorithm guarantees that the total number
of correct trials will be at most different by one across
conditions during the entire learning phase (see Results
below), thus equating selection history across the three
conditions.

We eliminated the data from four participants
because their overall accuracy in the reward condition
was below 50% for the last four blocks of training,
leaving 42 participants for analysis. After this trimming
there were 13 participants in the green rewarded, 14
in the red rewarded, and 15 in the yellow rewarded
conditions.

Training phase

Our algorithm was successful at equating the
selections of each color; 16 participants had
exactly equal numbers of correct responses across
the three training conditions, with the remaining
26 varying by only one more correct trial in the
highest condition than the lowest. Unsurprisingly,
an ANOVA on the number of correct responses
for each condition showed that conditions did not
differ (F(2, 82) = 0.04, p = 0.96, n,”> = 0.001), and,
as Figure 4 (top panel) shows, the average number of
correct responses was equated across each condition
within each block. However, as with the previous
experiments, the percentage correct (see Figure 4,
bottom panel) did differ across conditions (F(2, 82) =
7.56, p = 0.001, n,> = 0.156), with significantly better
performance for the rewarded group (M = 74.1%, SE =
1.8%) than either the punished (M = 66.2%, SE = 2.8%)
or the neutral (M = 69.3%, SE = 2.0%) conditions,
both (t(41) > 3.22, ps < 0.002, ds > 0.39). The punished
condition did not differ significantly from the neutral
condition (t(41) = 1.37, p = 0.178, BF¢; = 3.37). The
reason that the number of correct detections was
equated, even though the percentage correct differed,
was that the algorithm resulted in significantly (F(2, 82)
=7.71, p = 0.001, n,> = 0.16) fewer rewarded target
trials (M = 187.7, SE = 5.11) than no consequence (M
= 201.12, SE = 5.09) or punished (M = 225.5, SE =
10.54) trials (both t (41) > 3.15, p < 0.004, d > 0.40).
The number of trials for the punished condition was
significantly more than the number of trials for the
neutral condition (t(41) = 2.13, p = 0.04, d = 0.45).
As a consequence of equating the number of correct
responses, the net gain/loss during training was close to
0. The final payoff for all participants were essentially
constant, in the range of $10 £ 0.1 across conditions.
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Figure 4. The top panel shows the number of correctly
responded trials for the three conditions in each block of the
training phase in Experiment 2. The near identical values across
conditions show that our algorithm of equating selection
history is effective. The bottom panel shows the percentage of
times that participants correctly reported each type of target as
a function of display type and training block.

Test phase

Descriptive statistics are presented in Table 1
and Figure 5 presents the mean accuracy and reactions
times as a function of condition. An ANOVA on
accuracy (F(3, 123) < 1, p = 0.93, n,> = 0.004;
all BFy; > 6.88) showed no difference in accuracy
across conditions. The reaction time pattern basically
replicates that of Experiment 1; there is evidence of
the standard reward capture effect but the punished
distractor has little effect. An ANOVA on the reaction
time data was significant (F(3, 123) = 2.79, p = 0.043,
np> = 0.064) and the pairwise comparisons showed
that the rewarded distractor significantly slowed
reaction times relative to the no-contingency distractor
condition (t(41) = 2.46, p = 0.018, d = 0.152) and the
punished distractor condition (t(41) =2.12, p = 0.04,d
= 0.138). Furthermore, the no-contingency distractor
condition did not differ from the punished distractor
condition (t(41) = 0.12, p = 0.91; BFy; = 8.25). Thus
the data pattern replicates those of Experiment 1 with
one exception: the control condition that involved a
distractor that had not been a target during the training
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Figure 5. The top panel presents accuracy during the test phase
of Experiment 2 as a function of distractor condition. The

bottom panel presents reaction time as a function of distractor
condition. Error bars represent the standard error of the mean.

did not differ from the punished and no-contingency
distractors (both t(41) < 0.22, p > 0.8; BF(; > 8.11).

Through a dynamic updating algorithm, we equated
the number of correct responses among the three
conditions during training. If Experiment 1 failed
to show capture by a punished color because the
infrequent selection history or limited opportunities
for learning were counteracting a bias to attend to
punished features, then Experiment 2 should have
shown a robust attentional bias for the punished color.
Instead, we again found that associating a color with
reward resulted in an attentional bias, but associating
a feature with loss produced no such bias. Thus we
replicated the effects of Experiment 1, and the results
of this experiment could not be explained by differences
in learning opportunities or selection histories between
conditions. We conclude that the failure to find
attentional capture by the punished color in these
experiments was not caused by fewer selections, but
resulted because loss appears not to capture attention.
Notably, gains do, even when the selection history is
matched with other conditions.
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Again, to examine whether the results were driven
by intentional, strategic responses among those
who became aware (n = 20) of the contingencies,
we performed a mixed-factorial ANOVA on the
reaction time during the test phase, with awareness
as a between-subject factor and distractor type as
a within-subject factor. We found no main effect of
awareness (F(1, 40) = 2.94, p = 0.094, n,> = 0.068) and
no distractor type by awareness interaction (F(3, 120)
< 1,p=10.98, n,> = .001). The lack of an awareness by
distractor type interaction suggests that the patterns
of results we found in the test phase were not due to
strategic shifts among those who became explicitly
aware of the reward contingencies, but it also occurred
for those who lacked this explicit knowledge (see
Supplementary Material including Supplementary
Figures S1, S2, and S3 for more complete analyses of
the effect of awareness).

Across both experiments we found robust evidence
that associating attention to a particular color with
reward led to subsequent attentional capture by that
color, the standard value-driven capture effect. In
Experiment 1, this was true even when compared with
capture by a color that was a potential target, but had
no reward contingency, during training. Although some
have argued that the value-driven capture effect may be
due to the color being associated with a potential target
rather than the reward contingencies (Sha & Jiang,
2015), our results suggest that being a potential target
during training can increase attentional capture by that
color (at least in Experiment 1), but associating a color
with reward increases attentional capture beyond this
target-based capture.! Furthermore, our conclusion is
consistent with findings that a color associated with
high reward produces more attentional capture than a
color associated with low reward; in those designs both
colors are potential targets, yet the higher rewarded
color produces more capture (Anderson, Laurent &
Yantis, 2011b).

Besides replicating the standard value-driven capture
effect, the main focus of our experiments was to
investigate the effect of associating attention to a color
with loss rather than reward. Across both experiments
we found no evidence that a color associated with
loss during training captured attention during the test
phase; the target associated with loss was never more
attention grabbing than the target that had no reward
contingency during training, and was consistently
less attention grabbing than the color associated with
reward, even when we equated selection history between
colors. These observations were supported by the
Bayesian analyses which provided consistent positive

Becker, Hemsteger, Chantland, & Liu 10

support for the null hypothesis that the loss-associated
condition did not differ from the control conditions.
This finding is in direct contradiction to findings that
loss-associated stimuli capture attention to the same
extent as reward-associated stimuli (Miiller et al., 2015;
Wang et al., 2013; Wentura et al., 2014). Those authors
argued that the “value” in value driven capture is based
on the informational relevance of the stimuli since it
signals a consequence, rather than the valence of that
consequence. As we discussed in the Introduction, in
those designs, attending to the punished color reduced
loss relative to failing to attend to that color. As a
result, paying attention to the loss-associated color was
actually rewarded in a relative sense. By contrast, in our
experiments, attending to the loss-associated color was
punished, while failing to attend to it was not. Thus, our
interpretation is that attention is captured by features
that are associated with relative gains, but not captured
by features associated with loss.

A few other researchers have used quite different
methods from ours and have also concluded that gains
may attract attention but losses do not. For instance,
Raymond and O’Brien (2009) associated faces were
with loss or gain during a game in which participants
selected one of two faces. After selecting a face, a
reward or loss of money (five pence) was delivered.
After training, participants performed an attentional
blink procedure in which they looked for two targets.
Faces that were associated with reward did not suffer
from the attentional blink, suggesting that they were
prioritized for attention. However, those associated
with loss suffered from an attentional blink, suggesting
that pairing the face with loss did not increase its
attentional priority. An experiment by Gupta, Hur and
Lavie (2016) used a similar training game to associate
specific neutral faces with gains or losses. After training,
the faces appeared as irrelevant distractors when the
participant searched an array of letters for a target
letter. When the search task was a high perceptual load
task that encouraged the filtering of irrelevant stimuli,
the face associated with reward captured attention,
whereas the face associated with loss did not. Both
of these studies are consistent with our findings that
value-based capture is specific to reward-associated
stimuli. Our results thus provide converging evidence
for this conclusion using the standard value-based
capture paradigm.

Other researchers have claimed that pairing a
feature with loss may actually result in suppression of
attention by that feature (Bucker & Theeuwes, 2016;
Muiiller et al., 2015). Our experiment was not designed
to detect suppression, and our test phase may have
been insensitive to suppression effects, even if the
punished distractor was effectively suppressed that
would amount to reducing the number of distractors in
the display by one item, which may have little impact
on the overall reaction time to find the shape target.
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However, there may be preliminary evidence for the
suppression of attention by loss in our training data.
In both experiments, participants were less likely to
respond rapidly and correctly to the loss-associated
target than either the no-contingency or the rewarded
target during training. This reduction in accuracy
may be a result of suppression of attention by loss. In
addition, across both experiments, an ANOVA on the
accuracy data for the punished condition as a function
of block found a significant quadratic trend (Exp 1:
F(1, 45) = 10.14, p = 0.003, n,> = 0.18; Exp 2: F(1, 41)
= 23.33, p < .001, n,> = 0.36), suggesting an initial
increase in correct responses followed by a subsequent
decrease as one learns to suppress attention to the
punished color. Although this is only weak evidence
of suppression, it may be fruitful to conduct future
experiments with more sensitive designs to demonstrate
a genuine suppression effect.

Although speculative, we can envision two reasons
why a reward-associated feature would capture
attention in a subsequent test phase, whereas a loss-
associated feature would neither capture nor suppress
attention during testing. The first is that a single
learning mechanism may be responsible for altering
the attentional priority of both reward-associated
and loss-associated features, but this mechanism may
be more sensitive to gains than losses. Under this
explanation, the magnitude of gains we used may have
been potent enough to drive the learning mechanism,
resulting in subsequent attentional capture, but the
same magnitude of loss may have been insufficient
to drive this learning mechanism, leading to neither
capture nor suppression by a loss-associated feature.
Results showing that Pavlovian fear conditioning of
a stimulus feature results in subsequent capture of
attention by that feature may be consistent with this
explanation (Armony & Dolan, 2002; Koster, Crombez,
Van Damme, Verschuere, & De Houwer, 2005; Schmidt,
Belopolsky, & Theeuwes, 2015; Wang et al., 2013).

For example, if the negative association is created by
pairing a color with an electric shock, the magnitude of
the negative consequence may be great enough to drive
a value-based learning mechanism, resulting in capture
of attention by colors that are associated with negative
outcomes.

Although the above scenario is plausible, we favor a
second possibility, derived mostly from neurobiological
evidence. Namely, that the mechanism responsible for
the standard value-based capture effect is driven by
rewards but not by losses. Consistent with this proposal
are recent suggestions that the capture of attention by
reward-associated features is due to increased dopamine
(Schultz, Dayan, & Montague, 1997; Zald et al.,
2004), perhaps specifically in the striatum (Anderson
et al., 2016; Anderson et al., 2017). If the mechanism
responsible for learning the reward contingencies is
due to the release of striatal dopamine, losses, which
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produce a reduction of striatal dopamine (Oleson

et al., 2012), may not activate this learning mechanism.
As such, gains should produce learned associations
whereas losses should not. Under this explanation, the
results showing attentional capture by Pavlovian fear
conditioning would be driven by a completely different
mechanism. Fear conditioning is usually associated
with neural activity in the amygdala (Fendt & Fanselow,
1999; Maren, 2001; Phillips & LeDoux, 1992) and
thus may be subserved by a different system than the
striatal dopamine system involved in the standard
value-based capture effect. To summarize, we found
that associating a color with reward caused attentional
capture in a subsequent test phase even when color
was no longer relevant. Associating a color with loss,
however, resulted in neither capture nor suppression of
attention to that color. The distinct effect of reward and
loss on attentional prioritization might suggest distinct
neural systems responsible for learning via reward that
is not activated in response to loss. Further research is
necessary to delineate how motivational and emotional
outcomes alter attentional priority of stimulus features.

Keywords: value-based attention, visual attention, loss,
attention capture
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