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Abstract: Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death
worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target
tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is
usually encountered within six months of treatment. Therefore, there is a critical need to identify
the underlying reasons for drug resistance. In the present study, we investigated the proteomic and
metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B
cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass
spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was
used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker).
For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database
was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were signif-
icantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype.
D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among
the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochon-
drial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain
small subunit 1 were among the significantly altered proteins. The findings revealed that resistant
Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways,
energy production pathways and other pathways related to cancer aggressiveness, such as migration,
proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways,
including the antifolate resistance pathway and other important pathways that maintain cancer
cells’ survival, growth, and proliferation. Collectively, the results identified potential biomarkers
for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance,
cancer initiation, progression and aggressiveness, which may contribute to better prognosis and
chemotherapeutic outcomes.

Keywords: proteomics; metabolomics; parental Hep3B cells; sorafenib-resistant Hep3B cells;
UHPLC-QTOF-MS

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancer types
and has a low two-year survival rate (50%) [1]. It is known to develop drug resistance and
is hard to be diagnosed in its early stages. It accounts for the second prominent cause of
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cancer-related death worldwide [2]. HCC occurs typically as a progression of liver diseases
related to numerous contributing factors, including toxins such as aflatoxin, alcohols, viral
liver diseases such as chronic hepatitis B virus (HBV) and C virus (HCV), autoimmune
and other metabolic-based diseases such as diabetes, hemochromatosis, and non-alcoholic
fatty liver disease [3–5]. Hepatic fibrosis triggered by chronic HBV or HCV viral infection
is known to be the primary predisposing factor in HCC development [6].

Early detection methodologies for HCC are often ineffectual. The diagnostic biomarker
α-fetoprotein (AFP) has been the main biomarker for HCC in the last 40 years. Nevertheless,
it is associated with shortcomings of low sensitivity and specificity and remains unsatis-
factory [7,8]. Most HCC patients are diagnosed in the advanced stages, in which several
treatment modalities are followed, including the tyrosine kinase inhibitor targeted therapy
(sorafenib), systematic chemotherapy using cytotoxic agents (cisplatin and 5-fluorouracil),
trans-arterial chemoembolisation, external irradiation, liver resection and orthotopic liver
transplantation (OLT). Despite the variety of treatment protocols, only OLT and surgi-
cal resection are curative [9,10]. Sorafenib, a multiple-target tyrosine kinase inhibitor, is
utilized as the first-line therapy for patients with advanced HCC stage. However, it is
associated with high costs that have been identified as a pivotal clinical obstacle, in addition
to common adverse events presented in HCC patients, including hypertension, bleeding,
cardiac ischemia, rash, and diarrhea [11]. Although around 30% of HCC patients can
benefit from sorafenib treatment, many unfortunately acquire drug resistance within a
six-month treatment period [12–15]. As a result, it is critical to identify the underlying
causes of sorafenib-resistant HCC so that a novel treatment strategy can be proposed to
overcome drug resistance.

Cancer drug resistance is a complicated process that can arise from various alterations
in cell cycle and DNA repair, cell apoptosis and autophagy, drug efflux, cancer stem cells
(CSCs) generation, abnormal activation of signaling pathways, epithelial-mesenchymal
transition (EMT) induction, mutations of drug targets and increase in drug metabolism [16].
Numerous mechanisms involved in the resistance to sorafenib including regulated cell
death, phosphatidylinositol 3-kinase (PI3K)/Akt pathway, JAK-STAT pathways, immune
microenvironment, EMT, activation of hypoxia-inducible pathways, microRNAs (miRNAs)
and epigenetic regulation [13,17]. Despite our knowledge of drug resistance in cancer, the
latest and innovative methodologies are important to capture those biomarkers responsible
for this resistance. Omics technologies (proteomics, metabolomics, etc.) have recently
displayed rapid progress in the early diagnosis of diseases and appraising the nature of
disease mechanisms and pathogenesis [7,18]. High-throughput proteomic and metabolomic
technologies offer an effective tool for the identification of distinguishing biomarkers of
tumorigenesis, as well as the evaluation of therapeutic efficacy, drug resistance and better
knowledge of the biological pathways involved [19].

Mass spectrometry (MS)-based techniques combined with separation techniques,
liquid chromatography (LC) and gas chromatography (GC) have been at the forefront in
biomarker innovation studies [20]. The LC-MS/MS technique provides superior sensitivity
and precision in quantifying metabolites and proteins. This is due to the identification of
the m/z ratio of the precursor ions via two successive MS detections [21].

This research study was performed using UHPLC-QTOF-MS, a novel platform of mass
spectrometry technology with a high level of identification and profiling of metabolites and
proteins in complex samples. Although previous studies had revealed metabolic and proteomic
changes in Hep3B cells [22–24] there is no metabolomics and proteomics study to date that
has comparatively profiled the metabolomic and the proteomic composition of parental and
resistant Hep3B cell lines via UHPLC-QTOF-MS analysis to study drug resistance.

The data obtained complements earlier studies describing the proteomic and
metabolomic profiles of parental and sorafenib-resistant Hep3B HCC and, therefore, pro-
vide new insights into the potential drug-resistance targets for studying the underlying
mechanisms in hepatic carcinoma.



Int. J. Mol. Sci. 2022, 23, 11975 3 of 24

2. Results
2.1. Sorafenib-Resistant Hep3B Cells

MTT cell viability assay was conducted to assess the sensitivity of parental and
resistant Hep3B cells to sorafenib. The results revealed that Hep3B resistant cells were
significantly (p value < 0.05) less sensitive to sorafenib by ~1.5 fold compared to parental
cells (Figure 1). The IC50 of sorafenib in Hep3B resistant cells and parental cells were
6.42 ± 0.52 and 4.36 ± 0.33 µM, respectively (Figure 1). The results indicated that Hep3B
cells acquired resistance to sorafenib.
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Figure 1. The generated Hep3B resistant subclones are less sensitive to sorafenib (A) Table represen-
tation of the IC50 of sorafenib in parental and resistant Hep3B cells after 48 h treatment. IC50 are
means ± SD of three individual experiments (n = 3), * (p value < 0.05). (B) Concentration-response
curves of sorafenib parental Hep3B cells and the resistant cells. MTT assay was conducted at 48 h
after treatment. Points, mean; bars, SD (n = 3).

2.2. Metabolomics Analysis Revealed a Significant Change/Shift of Metabolic Pathways Due to
Sorafenib Resistance

Metabolomics analysis of sorafenib-resistant Hep3B versus parental cells revealed
134 metabolites separated into two clusters, each representing a cell type (Figure 2). Sparse
partial least squares-discriminant analysis (sPLS-DA) showed no overlap between the
groups, indicative of significant differences between both clusters (Supplementary material:
Figure S1). Utilizing a two-tailed independent students t-test, a potential variation in the
metabolic profiles of parental and resistant Hep3B cells was detected. An overall number
of 27 metabolites were changed significantly (p value < 0.05) with log2-fold change < 2.
Hierarchical clustering demonstrated a clear separation of the metabolites between resistant
Hep3B and parental cells (Figure 3A). L-arginine was the only metabolite whose abundance
decreased in resistant Hep3B cells in comparison to parental Hep3B cells. On the other hand,
26 metabolites increased in resistant Hep3B cells. These included adenosine monophosphate
(AMP), adenosine di-phosphate (ADP), creatine, pyroglutamic acid and succinic acid (Figure 3B
and Table 1), all of which are important for energy production pathways [25–29]. In addition,
deoxyguanosine, uridine 5′-monophosphate, guanosine monophosphate, adenine and cytosine
might support the de novo synthesis of nucleotides and have been found to be elevated in
resistant Hep3B cells (Figure 3B and Table 1) [30]. Moreover, other metabolites like D-alanine,
L-proline and o-tyrosine increased in resistant Hep3B cells (Figure 3B and Table 1), might be
involved in some dysregulated metabolic pathways in cancer cells [31]. Furthermore, some
elevated metabolites in resistant Hep3B cells may contribute to choline metabolism included
in glycerophosphocholine and phosohatidylcholine (PC) (16:0/16:0) [32]. Other important
metabolites play a vital role in transcription, proliferation and apoptosis, such as cyclic AMP
and uridine diphosphate-N-acetylglucosamine, which were elevated in resistance Hep3B cells
(Figure 3B and Table 1) [33–35].

Enriched metabolic pathway analysis revealed a significant impact on nucleotide
metabolism, including purine metabolism and the energy-producing pathways, specifically the
mitochondrial electron transport chain (ETC) and butyrate metabolism. Furthermore, important
biochemical processes such as the urea cycle, ammonia recycling and amino acid metabolisms
like proline, glutamate, glycine, alanine and serine were significantly impacted (Figure 4).
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Figure 3. (A) Hierarchical cluster analysis and heatmap analysis of differentially abundant metabolites
in resistant and parental phenotypes of Hep3B cells. Heatmap showing the abundance levels
and clustering of the significantly differentially deregulated metabolites (two-sample t-test with
p value < 0.05; log2FC < 2; resistant/parental Hep3B cells). Metabolite’s intensities up-regulated are
colored in red while down-regulated are colored in blue. Row headings represent metabolites names
and column headings represent samples. Euclidean distance measure and Ward linkage analysis were
used to carry out hierarchical clustering using the metabolomics data. Heatmap analysis showed that
metabolites clustered into two separate groups, a group representing the resistant Hep3B cells and
the other group representing the parental Hep3B cells. (B) Volcano plots showing the metabolites
that altered significantly in resistant Hep3B cells vs. parental Hep3B cells. Scatter plot showing the
metabolites log2 fold-change (resistant/parental) plotted against the -log10(p value) highlighting
the differentially metabolites (two-sample t-test with BH FDR < 0.05). Differentially significant
metabolites which are increased in resistant Hep3B cells are indicated in red. Differentially significant
metabolites which are decreased in resistant Hep3B cells are indicated in blue. Non-significant
metabolites are indicated in grey.
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Table 1. Significant deregulated metabolites in resistant Hep3B cells in comparison to parental
Hep3B cells.

Metabolite Name p-Value Fold Change

Uridine 5′-monophosphate 0.000002 14.729
ADP 0.000001 13.186

Adenosine monophosphate 0.000778 12.894
PC (16:0/16:0) 0.000219 11.971

Guanosine monophosphate 0.000521 10.978
Adenine 0.000012 10.673

Cyclic AMP 0.000006 8.304
Cytosine 0.000071 6.264

Urocanic acid 0.037089 5.207
Succinic acid 0.001392 5.133

Glycerophosphocholine 0.000014 5.088
Deoxyguanosine 0.000114 4.233

Creatine 0.000253 3.801
Phenylpropanolamine 0.006535 3.672

Guaifenesin 0.043493 2.978
Picolinic acid 0.000545 2.911

Pyridine 0.007763 2.874
D-Alanine 0.019774 2.688

Niacinamide 0.012453 2.55
L-Tryptophan 0.015553 2.39

L-Proline 0.007556 2.372
Uridine diphosphate-N-acetylglucosamine 0.013429 2.253

Pyroglutamic acid 0.033094 2.238
Cinnamic acid 0.037616 2.159

o-Tyrosine 0.049019 2.098
L-Phenylalanine 0.039898 2.052

L-Arginine 0.04468 −21.951
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2.3. Proteomics Analysis Indicate a Unique Protein Profile Associated with Hep3 Drug Resistance

In our proteomics analysis, 168,886 spectra were identified, and the redundant pep-
tides were filtered out, yielding 7809 non-redundant peptides, of which 7439 were unique
to their respective protein groups. The false discovery rate (FDR) for peptide identifica-
tions was 0.29%, while it was found to be 0.92% for protein identifications. A total of
1167 proteins were confidently detected and identified in parental and resistant Hep3B
cells. After filtration of the data with Perseus software, proteins with 70% valid values kept
yielding 730 proteins. Proteomics analysis revealed 730 proteins; of them, 212 proteins were
significant (p value < 0.05) and from these, 18 proteins were significantly (p value < 0.05)
changed between parental and resistant Hep3B cells with log2(fold-change) >1. Hierarchi-
cal clustering revealed a clear clustering of the proteins’ expression in resistant Hep3B cells
compared to parental phenotype (Figure 5A). A total of 13 proteins significantly decreased
in abundance in the resistant cells compared to parental cells, which demonstrated different
roles linked to cancer (Figure 5B, Table 2 and Supplementary material: Summary Table S1).
Some of these proteins are vital for cancer cell survival and migration. Proteins such as
calpain small subunit 1 play a role in regulating cell proliferation, whereas dipeptidyl pep-
tidase 4 participates in cell adhesion and migration (Figure 5B, Table 2 and Supplementary
material: Summary Table S1). In addition, other decreased proteins in the resistant Hep3B
cells are important in biosynthetic processes, metabolism, signaling and transporting in can-
cer. These include very-long-chain 3-oxoacyl-CoA reductase proteins, which contribute to
the very-long-chain fatty acid biosynthetic process, as well as hydroxymethylglutaryl-CoA
synthase, cytosolic fatty acid CoA ligase Acsl3 and cytoplasmic Acetyl-CoA acetyltrans-
ferase, all of which play a crucial role in cancer cell metabolism. Moreover, cytoplasmic
aspartate aminotransferase participates in Notch signaling pathway, while protein tweety
homolog 3 is involved in chloride transport and ion transmembrane transport (Figure 5B,
Table 2 and Supplementary material: Summary Table S1). Furthermore, hepatic fatty acid
binding proteins are involved in apoptosis and help regulate the cell death process. They
have also shown lower abundance levels in resistant Hep3B cells (Figure 5B, Table 2 and
Supplementary material: Summary Table S1). Additionally, some proteins participate in
the hemostasis and cancer cell survival: lysosome-associated membrane glycoprotein 2,
which is crucial for chaperon mediated-autophagy; fatty acid synthase, which is important
in cellular immune responses; serine-tRNA ligase, which is involved in transcription reg-
ulation; and cytoplasmic nuclear pore complex protein Nup160, nucleocytoplasmic and
protein transport, which were found to decrease in resistant Hep3B cells (Figure 5B, Table 2
and Supplementary material: Summary Table S1).

The proteins that increased in resistant Hep3B cells are as follows: ubiquitin carboxyl-
terminal hydrolase isozyme L1, which is a protein that contributes to cellular response to
xenobiotic stimulus, cell population and proliferation; mitochondrial superoxide dismutase,
which plays a crucial role in intrinsic apoptotic signaling pathway in response to oxidative
stress; sorbitol dehydrogenase, which is an enzyme responsible for sorbitol catabolic process;
UDP-glucose 6-dehydrogenase, which is involved in the metabolic process; and very-long-
chain (3R)-3-hydroxyacyl-CoA dehydratase 3, which participates in the very long-chain fatty
acid biosynthetic process (Figure 5B, Table 2 and Supplementary material: Summary Table S2).

To identify the gene ontology biological process (GOBP) terms associated with dys-
regulated proteins, we used gene ontology enrichment analysis (GOEA) using String 11.5.
From among the top significantly enriched pathways, some pathways have been found
to have impact in cancer development, survival, cellular homeostasis, migration and pro-
gression. These include telomerase holoenzyme complex assembly, positive regulation
of telomerase RNA reverse transcriptase activity [36], positive regulation of low-density
lipoprotein particle receptor biosynthetic process [37], farnesyl diphosphate biosynthetic
process [38], protein insertion into mitochondrial outer membrane [39], protein targeting
to lysosome involved in chaperone-mediated autophagy [40], protein unfolding [41], di-
adenosine tetraphosphate biosynthetic process [42], regulation of mRNA stability involved
in response to stress [43], the NADP biosynthetic process [44], the fumarate metabolic
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process [45] and the glyceraldehyde-3-phosphate biosynthetic process [46] (Figure 6). Our
findings indicate that a number of differentially abundant protein are related to energy
production, anabolic processes, drug resistance and cancer cell survival and growth in
sorafenib resistance (Supplementary material: Summary Tables S1 and S2).
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Figure 5. (A) Hierarchical cluster analysis and heatmap of differentially abundant proteins in resistant
and parental phenotypes of Hep3B cells. Heatmap showing the abundance levels and clustering of the
significantly differentially deregulated proteins (two-sample t-test with adjusted p value < 0.05; log2FC < 1;
resistant/parental Hep3B cells). High protein intensities are colored red while low intensities are colored
blue. Row headings represent protein names and column headings represent samples. Euclidean distance
measure and Ward linkage analysis were used to carry out hierarchical clustering using the differentially
abundant protein data. Heatmap analysis showed that the samples clustered into two separate groups, a
group representing the resistant Hep3B cells and the other group representing the parental Hep3B cells.
(B) Volcano plot showing those proteins which were altered significantly in resistant Hep3B cells vs. parental
phenotype. Scatter plot showing the proteins log2-transformed fold-change (resistant/parental) plotted
against the -log10(p value) highlighting the differentially proteins (two-sample t-test with BH FDR < 0.05).
Down-regulated and up-regulated proteins are indicated in red and blue, respectively.

Table 2. Gene ID refer to proteins significantly deregulated in resistant Hep3B cells in comparison to
Parental Hep3B cells.

Uniprot ID Adjusted p Value Effect Size Significance

Q9C0H2 0.000315988 −2.831839879 Decreased
P07148 4.39 × 10−6 −2.285889943 Decreased
Q12769 0.009665038 −2.158726692 Decreased
O95573 0.000719872 −1.838945548 Decreased
P49591 0.001699466 −1.737114747 Decreased

Q9BWD1 3.18 × 10−10 −1.703698476 Decreased
P13473 0.009289266 −1.515532017 Decreased
P04632 0.005943185 −1.197470983 Decreased
Q01581 0.001058751 −1.166633765 Decreased

Q53GQ0 6.19 × 10−6 −1.081565698 Decreased
P49327 1.72 × 10−10 −1.074158986 Decreased
P27487 0.000121063 −1.02650706 Decreased
P17174 1.74 × 10−6 −1.015660763 Decreased
P04179 7.79 × 10−5 1.049084345 Increased
Q9P035 0.003254458 1.252471606 Increased
Q00796 0.000258132 1.474272092 Increased
O60701 4.02 × 10−13 2.068751653 Increased
P09936 2.41 × 10−10 2.986876806 Increased
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Figure 6. Visualization of enrichment analysis for gene ontology biological process (GOBP) terms
using String software version 11.5. The graph shows top 25 significant GOBP terms colored according
to their respective enrichment p values.

2.4. Multi-Omics Integrated Analysis Demonstrated the Involvement of Major Pathways in HCC
Development and Drug Resistance

A joint pathways analysis was performed using MetaboAnalyst to generate an integra-
tive analysis that merges the metabolomics and proteomics profiles. All 212 proteins and
39 metabolites that were significantly altered (p value < 0.05) in resistant and parental Hep3B
cells were included. Several pathways were highly impacted, including the metabolic path-
ways for several amino acids such as arginine, glutamate, proline, glycine, alanine and
serine. Additionally, pathways related to the protein synthesis including in the ribosome,
which are proteins in the endoplasmic reticulum and aminoacyl-tRNA biosynthesis, were
observed to be dysregulated. Other enriched pathways important for energy production
and anabolic and catabolic pathways included those involving the peroxisome, fatty acid
degradation, pyruvate metabolism, central carbon metabolism in cancer, protein digestion
and absorption, synthesis and degradation of ketone bodies, glycolysis or gluconeogenesis,
citrate and the TCA cycle. In addition to these pathways, other pathways were found to be
important for transcription and RNA transporting, such as the PPAR signaling pathway,
spliceosome and RNA transport. Interestingly, antifolate resistance was one of the top 25
enriched pathways (Figure 7).
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Figure 7. Visualization of joint pathway enrichment analyses. Graph that resulted from the joint
pathway enrichment analysis using MetaboAnalyst of the proteins and metabolites that altered
significantly (p value < 0.05) in resistant Hep3B cells vs. parental Hep3Bcells. Nodes are colored
according to p value. Significant pathways are colored red, while non-significant pathways are
colored yellow to white. Nodes are sized according to the number of associated members proteins
and/or metabolites.

3. Discussion

In this study, a multi-omics (metabolomics and proteomics)-based comparative anal-
ysis of sorafenib-resistant Hep3B cells compared to parental cells was performed. The
metabolites’ and proteins’ patterns of expression in resistant Hep3B cells were differentially
abundant in comparison to their corresponding parental cells (Figures 3B and 5B). The dif-
ference developed due to drug resistance is associated with alteration in several biological
mechanisms [16].

3.1. Comparative Metabolomics Revealed That Sorafenib-Resistant Hep3B Cells Demonstrated a
Significant Dysregulation in Amino Acid and Nucleotide Metabolic Pathways, Energy Production
Pathways and Other Cancer Aggression, Migration, Proliferation and Drug Resistance-Related Pathways

Our metabolomic findings showed significant variations in the levels of some amino
acids in the resistant compared to the parental Hep3B cells, including D-alanine, L-proline
and o-tyrosine (Figure 3B), and, interestingly, most of the significantly impacted pathways
in metabolomic enrichment analysis are amino acid metabolic pathways such as proline,
glutamate, alanine, serine and glycine metabolic pathways (Figure 4). These metabolic
pathways are well-known to be dysregulated in cancer cells, since cancer has the capabil-
ity to rewire the amino acid metabolism to support their survival and chemoresistance
through protein anabolism, de novo nucleotide metabolism, energy generation, epige-
netic modulation and maintenance of cellular redox homoeostasis [31,47]. In addition, the
energy-producing pathways were highly impacted, specifically the mitochondrial electron
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transport chain and butyrate metabolism (Figure 4). This is in line with the superior de-
mand of tumor cells for elevated levels of ATP to support their various metabolic pathways,
survival, proliferation and drug insensitivity [48–52]. In this context, one recent article
demonstrated that multidrug resistance of melanoma relies on oxidative ATP production
to support the rewired metabolic pathways. Mitochondrial ETC inhibition by biguanides
and antidiabetics increase the chemotherapeutic effect [52]. Besides amino acid and energy
metabolism, purine metabolism was found to be significantly changed in resistant Hep3B
cells, which might be due to the reprogramming of the nucleotide metabolism to maintain
resistance to chemotherapeutics [30,53,54].

Targeting such upregulated amino acid metabolic pathways might shine a spotlight
on a potential therapeutic target in resistant cancer cells. Consistent with our observa-
tion, a recent publication showed that targeting overexpressed glutamine metabolism
in sorafenib-resistant HCC through the inhibition of peroxisome proliferator-activated
receptor-δ (PPARδ) enabled the overcoming of sorafenib resistance in HCC [55]. To the
best of our knowledge, our study is the first to demonstrate the inclusion of D-alanine and
o-tyrosine in sorafenib-resistance in Hep3B cells. Thus, we hypothesized that these two
amino acids could be valuable biomarkers in drug resistance in HCC.

Resistant Hep3B cells showed a significant increase in the level of phosphatidylcholine
(PC 16:0/16:0), a form of glycerophospholipids, which is a component of cellular mem-
branes that participates in numerous cellular functions (Figure 3B). It has been reported that
elevated levels of (PC 16:0/16:0) can participate with other phospholipids in discriminating
HCC patients from cirrhotic control patients [56]. Their importance arises from the fatty
acyl residues that greatly impact cancer cells that differentiate from drug-resistant and
drug-sensitive cells. It has been previously reported that phosphatidylcholine synthesis in
colorectal cancer is linked with the expression of lysophosphatidylcholine acyltransferase
2 (LPCAT2) in the lipid droplet (LD) accumulation of cancer cells. LD accumulation was
shown to overcome the therapeutic effect of oxaliplatin and 5-fluorouracil by curtailing the
endoplasmic reticulum (ER) stress responses and impairing the activation of the caspase
cascade [57]. Furthermore, PC (16:0/16:0) was found to accumulate in the lymphoid, sug-
gesting its engagement in the inflammatory reactions of cancer cells [58]. In this context,
we assumed that PC (16:0/16:0) could be a valuable potential biomarker for resistant HCC.

Excitingly, one of the significantly increased metabolites in resistant Hep3B cells
was succinic acid (Figure 3B). Succinic acid is an intermediate metabolite in the TCA
cycle in mitochondria that plays a vital role in many metabolic pathways, especially
ATP production [27]. It has been reported that succinic acid is accumulated as a result
of a mutation in the succinate dehydrogenase (SDH) enzyme, which is required in the
conversion of succinate to fumarate in mitochondria. Moreover, it is the main driver of
tumorigenesis in hereditary paragangliomatosis with phaeochromocytomas (HPGL) [59].
This is most likely due to the activation of the hypoxia-inducible factor (HIF) pathway and,
consequently, an angiogenic increase in an anaerobic metabolism called “pseudo-hypoxic
drive” [60–62]. Remarkably, this might enable resistance to certain apoptotic signals and
could be a biomarker for drug insensitivity.

Our metabolomic results also revealed that a group of metabolites, including uridine
5’-monophosphate, guanosine monophosphate, adenine, cytosine and deoxyguanosine,
all of which are involved in the synthesis of nucleotides, are significantly increased in
resistant Hep3B cells (Figure 3B). All are correlated with the significantly enriched purine
metabolism (Figure 4). It is worth stating that the survival of cancer cells requires an ade-
quate supply of nucleotide pools to maintain increased DNA, RNA and protein synthesis,
energy production and conservation, cancer cell growth and proliferation via upregulated
de novo nucleotide metabolism [30].

Metabolic enrichment analysis revealed significant dysregulation of important biologi-
cal processes in the resistant Hep3B cells, such as urea cycle (UC), ammonia recycling and
arginine metabolism. These may be associated with the significantly decreased abundance
of L-arginine that was identified in our metabolomics results (Figures 3B and 4). It has
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been stated that UC and ammonia recycling play an important role in liver cancer, in
which the cancerous cells might release ammonia into the blood circulation [63] which
is in turn metabolized to urea through the UC, which is then secreted into the blood
circulation [64]. Thus, circulating urea may be considered a biomarker for HCC [65]. Inter-
estingly, dysregulation of UC in cancer is linked with the reduced generation of nitrogen
waste and augmented re-routing of carbon and nitrogen to anabolic pathways due to the
alteration in the expression of the UC [66]. One recently published article reported that
decreased argininosuccinate synthetase1 (ASS1) expression, an important enzyme in UC,
in doxorubicin-resistant sarcoma might greatly impact drug resistance [67]. Additionally,
ASS1 is one of the rate-limiting enzymes in the de novo arginine metabolism, and it has
been reported that hepatocellular cells do not express ASS1 [68,69]. We speculated that dys-
regulation of UC and arginine metabolism, along with a decrease of L-arginine in resistant
Hep3B cells, might be due to the lower expression of argininosuccinate synthetase1 (ASS1),
which has been linked to drug resistance. Consequently, decreased L-arginine levels could
be a beneficial biomarker for drug resistance in HCC.

3.2. Comparative Proteomics Indicated That Resistant Hep3B Cells Significantly Alter Specific
Pathways That Have a Great Impact on the Development of Chemotherapeutic Resistance

We identified proteins associated with sorafenib resistance in Hep3B cells and its
relationship to cancer aggressiveness, migration and proliferation. Two important proteins
were identified in this context: ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1)
and mitochondrial superoxide dismutase. Both proteins significantly increased in resistant
Hep3B cells compared to parental phenotype (Figure 5B). UCHL1 is a neuronal-related
protein that scavenges ubiquitin at its C-terminal peptide, isopeptide, amide, ester and
thioester bonds through thiol-related hydrolysis [70]. Despite its neuronal expression,
various studies have proven its overexpression in different cancer types [71–73]. UCHL1
plays a vital role in anti-apoptosis, cancer cell invasion, migration and proliferation. More-
over, it enhances the multi-drug resistance in different cancer cells and tissues [73–75]. A
previous study showed that UCHL1 overexpression supported apoptosis in verapamil- and
Adriamycin-treated hepatoma cell lines (BEL-7402 and SMMC-7721) [76]. Verapamil re-
verses the multi-drug resistance (MDR) through competition on P-glycoprotein chemother-
apeutic associated binding sites and increases chemotherapeutic drug retention in cancer
cells [77]. Knockdown of UCHL1 by siRNA attenuated the cell apoptosis effect of combined
drugs, which indicated the important role of UCHL1 in the verapamil-mediated reversal of
drug resistance [76]. In another study, UCHL1 overexpression improves the early diagnosis
and detection rate and provides targeted drug therapy for lung adenocarcinoma [75]. The
underlying mechanism of UCHL1 mediated MDR to P-glycoprotein (P-gp) substrate drugs
and the increased invasion and migration in resistant breast cancer cells compared to the
sensitive phenotype, which might be associated with MAPK/Erk pathway activation [74].
This resulted in the upregulation of MDR1 gene, metalloproteinase inducer (CD147) and
matrix metalloproteinases (MMP2 and MMP9), which are highly associated with the cancer
cells invasiveness and migration, and MDR in cancer [74]. Additionally, increased UCH-L1
levels in advanced breast cancer patients who did not respond to chemotherapy led to
overexpression of epidermal growth factor receptor (EGFR) and an increase in cancer cell
invasion, metastasis and shortened the rate of survival [78]. Furthermore. it has been
demonstrated that p-ERK, EGFR and p-Akt [79] expressions were upregulated in the
sorafenib-resistant cells. The resistance here triggered by overexpression of EGFR that
might led to Akt and ERK signaling pathway activation and enhancing the proliferation
and survival of HCC cells [80]. In this context, as mentioned above, UCHL1 is associated
with MAPK/Erk pathway activation and overexpression of EGFR, which might have a
great impact on sorafenib resistance in HCC. To the best of our knowledge, our study
was the first to reveal the elevated levels of UCHL1 in resistant Hep3B cells. Our findings
with the support of the published data suggested that UCH-L1 might be a potential prog-
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nostic biomarker and valuable target in chemoresistance, and its target may improve the
chemotherapeutic outcomes in HCC.

The mitochondrial superoxide dismutase (SOD2) was also upregulated in resistant
Hep3B cells compared to the corresponding parental phenotype (Figure 5B). SOD2 is a
mitochondrial enzyme responsible for the conversion of superoxide to hydrogen perox-
ide and in the protection against reactive oxygen species (ROS)-mediated cell death [81].
Many cancers have high levels of expression of SOD2, particularly in the metastatic and
aggressive phenotypes [82,83]. Additionally, SOD2 plays a chief role in the clearance of
chemotherapeutics-induced ROS. Overexpression of miR-146a, a micro-RNA dysregu-
lated in many cancers, in epithelial ovarian cancer (EOC) downregulates SOD2 expression
considerably, which consequently elevates ROS levels and leads to suppression of cell
proliferation, promotion of apoptosis and enhancement of chemosensitivity [84]. Further
study confirmed that SOD2 overexpression is a biomarker in predicting poorer prognosis
with endometrioid ovarian carcinoma and shows extreme resistance to chemotherapeutics-
mediated oxidative stress [85]. The recent publication also demonstrated the anticancer
effect of fraxetin, an extract from Fraxinus rhynchophylla, on Hep3B and Huh7 cells by
lowering the SOD2 expression and disrupting antioxidant mechanisms in the mitochon-
dria [86]. Consequently, we hypothesized that SOD2 overexpression in resistant Hep3B
cells could be a potential biomarker for drug resistance, as well as critical in improving the
effectiveness of the chemotherapeutic.

Sorbitol dehydrogenase (SORD) is a crucial enzyme in the polyol pathway that con-
verts sorbitol to fructose. It was also identified in our proteomics analysis to be significantly
increased in abundance in resistant cells (Figure 5B). Polyol pathway promotes the cancer
cell progression and aggressiveness through sugar alcohols produced by two enzymes:
SORD and aldo-keto reductase [87]. More specifically, the high level of fructose produced
via SORD in pancreatic cancers was proven to participate in cancer cell proliferation via
nucleic acids biosynthesized by the induction of thiamine-dependent transketolase flux and
the metabolic nonoxidative pentose phosphate pathway (PPP) [88]. It has been reported
that the levels of sugar alcohol in the blood increase from the early to late stages of HCC
patients [89]. It has been suggested that the prognostic ability of SORD along with AFP
for recurrence-free survival (RFS) after surgical resection (SR) should be incorporated in
HCC patients’ management [90]. Elevated SORD expression was observed in the serum of
some HCC patients after SR. Those patients demonstrated a shorter RFS rate as compared
to patients with low serum SORD. To conclude, SORD might be a remarkable biomarker
for HCC in the late stage, which shows more cancer aggressiveness that might be related
to drug resistance in HCC. Further studies are required to investigate its direct relation to
drug resistance and its use in the early detection of HCC.

Our proteomics results demonstrated that UDP-glucose-6-dehydrogenase (UGDH)
was significantly increased in resistant Hep3B cells compared to parental phenotype
(Figure 5B). UGDH is a rate-limiting enzyme in the glucuronic acid pathway, which is
involved in xenobiotics metabolism and elimination (Supplementary material: Summary
Table S2). UGDH catalyzes the production of UDP-glucuronic acid (UDP-GlcUA) from
UDP-glucose (UDP-Glc). UDP-GlcUA is metabolized as glycosaminoglycans (GAGs)
precursor-like hyaluronic acid and in glucuronidation reaction, conjugation with xenobiotic
functional groups via UDP-glucuronosyltransferases, which increases the polarity of the
compound for faster elimination [91]. The effect of UGDH in promoting metastasis in
colorectal carcinoma through GAG production has been previously reported [92]. UGDH
knockout attenuates the migration of breast cancer cells in vivo [93]. In the context of
UGDH role in chemoresistance, sensitivity of HCC to sorafenib might be improved by com-
bining UGDH depletion with sorafenib. Sorafenib activates the glucuronic acid metabolism
and elevates the UGDH in HCC patients [94]. Combining UGHD depletion and sorafenib
can reduce the levels of UGDH and consequently inhibits the unfolded protein response
(UPR), which participates in controlling cell survival and apoptosis [94]. Thus, UGDH
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elevated levels in resistant HCC cells might be a promising target in chemotherapeutic
drug resistance.

Calpain small subunit 1 (CAPNS1) significantly decreased in resistant Hep3B cells
compared to its parental phenotype (Figure 5B). CAPNS1 is a cysteine proteinase that
functions in catalyzing the limited proteolysis of various substrates in many physiological
processes, including cellular signaling, apoptosis, cytoskeletal remodeling and cell sur-
vival [95]. It has been shown that resistant gastric cancer cells demonstrate upregulated
levels of miR-99a and miR-491 gene expression regulators, which are highly associated
with drug resistance [96] and CAPNS1 gene downregulation. Inhibition of miR-99a and
miR-491 leads to overexpression of CAPNS1, which augments the sensitivity to cisplatin in
the resistant cells [97]. Therefore, targeting CAPNS1 in resistant cells could be valuable in
chemo-sensitizing approaches in resistant HCC cells.

3.3. Top Significantly Enriched Gene Ontology Biological Process Terms Indicate Dysregulation in
Processes Linked to Energy Production, Anabolism and Cancer Cell Survival and Growth

Gene ontology enrichment analysis of the significantly differentially abundant pro-
teins (p value > 0.05) between the resistant and parental Hep3B cells demonstrated their
significant participation in many processes that support the cancer cell survival (Figure 6).
Most of these processes are mainly related to energy generation and maintenance of home-
ostasis such as the NADP biosynthetic process, protein targeting to lysosome involved
in chaperone-mediated autophagy, chaperone-mediated autophagy, farnesyl diphosphate
biosynthesis, protein unfolding, and protein insertion into mitochondrial outer mem-
brane (Figure 6). It is well-known that tumor cells protect themselves from apoptosis and
DNA damage by maintaining the redox homeostasis and overcoming the oxidative stress
produced by ROS overexpression through developing complicated antioxidant defense
mechanisms that utilize various antioxidant enzymes such as glutathione reductase [98].
These antioxidant enzymes are nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent [44], which maintain the reduction potential in several anabolic reactions [99].
These anabolic reactions might aid in cell survival.

Protein targeting to lysosome involved in chaperone-mediated autophagy and
chaperone-mediated autophagy (CMA) were among the top significantly enriched GO
terms (Figure 6). CMA is an oncogenic process that supports cancer cell survival and growth
via maintaining the energy supply and cellular homeostasis [40]. Furthermore, protein
unfolding and protein insertion into the mitochondrial outer membrane were significantly
enriched in our GO enrichment analysis (Figure 6). Tumor cells, in consequence of cellular
stresses, such as hypoxia and nutrient deprivation, exhibit inefficient protein folding in the
endoplasmic reticulum leading to the accumulation of unfolded proteins, which cause ER
stress. Subsequently, unfolded proteins will trigger the unfolded protein response (UPR) to
restore the ER homeostasis and maintain cancer survival [41]. Interestingly, to maintain
efficient cellular functions and biosynthesis, protein insertion into the outer membrane
supports cell viability [100]. Cancer reprograms mitochondrial functions to drive aerobic
glycolysis and boost ATP production [101]. Low ATP levels during glycolysis trigger the
mitochondria to upregulate import proteins to increase the ATP generation [39]. It is worth
noting that “telomerase holoenzyme complex assembly” and “regulation of mRNA stability
involved in response to stress” were significantly enriched in our GOEA results (Figure 6).
Telomerase in cancer is critical to maintaining the telomeric length that is vital for cancer
development and survival [36]. It has been found that, mortalin; stress-inducible molecular
chaperone, can activate telomerase functions enhancing tumor progression, survival and
sorafenib resistance [102,103]. Moreover, regulation of mRNA stability is important for
gene expression and sustaining mRNA’s availability for translation [43].

3.4. Multi-Omics Joint Pathway Enrichment Analysis Revealed Unique Pathways That Might be
Druggable Targets in the Resistant HCC

In our joint pathway enrichment analysis, the spectrum of pathways was enriched, and
the molecular signatures of each were related to cancer. A subset of pathways was signifi-
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cantly associated with protein biosynthesis, misfolding and hemostasis (Figure 7). Unique
pathways in terms of protein production involves ribosome pathway and aminoacyl-tRNA
biosynthesis. Ribosome aids in upsurging protein synthesis to support cancer growth [104].
In a recent published article, it was stated that ribosomal biogenesis up-regulation and
transcriptome alteration aid in tamoxifen resistance development via translation profile
modulation of c-MYC, which is linked to tamoxifen resistance [105]. Aminoacyl-tRNA
biosynthesis plays a key role in transferring amino acids to tRNA in protein translation
and protein biogenesis [106]. The other subset of pathways that were significantly enriched
and related to transcription includes spliceosome and PPAR signaling pathway (Figure 7).
The spliceosome is an RNA-protein complex that aids in introns removal and splicing
from pre-mRNA in the nucleus [107]. Various factors can alter splicing in cancer cells like
spliceosome mutation, deregulation of transcription, post-transitional modifications, long
non-coding RNAs (lncRNAs) and microRNA. Consequently, spliceosome function and
localization are altered, leading to cell signaling alteration [108]. Additionally, splicing
events in cancer-related genes generate mRNA variants and this encode proteins with
differential functions and structure that affect the cancer response to treatment and promote
resistance [109]. Moreover, PPARs are nuclear hormone receptors regulating gene expres-
sion, cell proliferation, energy hemostasis and apoptosis [110]. As discussed in Section 3.1,
inhibiting (PPARδ) will affect the glutamine metabolism in sorafenib-resistant HCC and
combat sorafenib resistance [55].

Added to the enriched amino acid and nucleotide metabolic pathways identified
in the metabolomic analysis, the pyruvate pathway was significantly enriched in the
joint pathway enrichment analysis (Figure 7). In cancer cells, the Warburg Effect boosts
the glucose consumption to undergo glycolysis or gluconeogenesis, which was highly
enriched in our joint pathway analysis (Figure 7). This may cause pyruvate production
and conversion to lactate. These pathways support the growth and survival of cancer cells
through energy production and driving anabolic pathways [111]. In addition, pyruvate
kinase (PKM2) is a pyruvate flux gatekeeper [112] that playes an important role in drug-
resistance in many types of cancer. PKM2 expression was demonstrated to be upregulated
in enzalutamide-resistant prostate cancer [113]. Additionally, fatty acid degradation, central
carbon metabolism in cancer, protein digestion and absorption, and TCA cycle were
significantly enriched in the joint pathway enrichment analysis (Figure 7), which are key
pathways in energy production required for the survival of cancer cells [47]. Synthesis
and degradation of ketone bodies were also significantly enriched pathways in our GOEA
(Figure 7). During nutrient deprivation in HCC, metabolic pathways, such as 3-oxoacid
CoA-transferase 1, are upregulated to enhance the energy supply through ketone body
consumption [114]. Additionally, the ATP production linked to ketone body may reduce
the phosphorylation of AMP-activated protein kinase (AMPK) as well as autophagy [114].

The joint pathway analysis of the significant metabolomics and proteomics profiles of
resistant Hep3B cells compared to parental phenotype revealed various pathways that aids
in understanding the mechanism of drug resistance, and whose targeting could improve
the therapeutic outcomes and assist future studies into the pathophysiological processes
in HCC.

4. Materials and Methods
4.1. Reagents

Methanol (≥99.9%), acetonitrile (ACN) and deionized water, as well as LC-MS CHRO-
MASOLV, were purchased from Honeywell (Wunstorfer, Strasse, Seelze, Germany). Trifluo-
roacetic acid (TFA) and formic acid (FA) were purchased from Fisher Scientific (Loughbor-
ough, UK). Hydrochloric acid (HCl) (37%) was purchased from VWR chemicals (France).
C18 columns, lysis buffer, Pierce trypsin protease, lysyl-endopeptidase LysC and Pierce
protease inhibitor tablets were obtained from Thermo Scientific (Rockford, IL, USA). Brad-
ford’s reagent and bovine serum albumin were bought from Sigma-Aldrich (St. Louis, MO,
USA). Sorafenib was obtained from BioVision (Milpitas, CA, USA #BAY 43-9006).
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4.2. Cell Lines and Culture Conditions

The Hep3B cell line was selected as the in vitro model for this study because it is one
of the most widely used and well-characterized liver cancer cell lines. It is frequently used
as an experimental model and is used as a cellular reference model in pharmaceutical
studies that aim to develop new drugs and gain insights into drug metabolism, including
knowledge of involved enzymes and the drug’s inhibition or induction potential [115].
The Hep3B cell line used in this study was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Sorafenib-resistant Hep3B cells were developed from Hep3B cell lines as described in
Section 2.3. One million Hep3B cells were seeded in T75 flasks and cultured in Dulbecco’s
Modified Eagle Medium (DMEM) as monolayers. The medium was supplemented with
10% fetal bovine serum (FBS) (Sigma Aldrich, St. Louis, #F2442-500ML) and 1% peni-
cillin/streptomycin (Sigma Aldrich, St. Louis, #P4333). Cultures were then incubated in 5%
CO2 humidified atmosphere at 37 ◦C for 3–4 days until 70–80% confluency was reached.
Aseptic techniques were applied to avoid potential contamination, and the confluency and
contamination were checked routinely.

4.3. Generation of Resistant Hep3B Cell Line

Resistant Hep3B cells were developed in clinically relevant models [116], as previously
reported [117]. In T-75 flasks, Hep3B cells were seeded overnight and incubated at 37 ◦C.
The cells were then treated with sorafenib at the 10% inhibitory concentration (IC10)
(0.4 µM) of sorafenib (Biovision, Milpitas, CA, USA #BAY 43-9006) to mimic the clinically
consumed low dose of chemotherapeutic drugs by a cancer patient who is then exposed to
escalating doses over time [116]. To develop resistance, the survived cells were transplanted
to a new flask and then treated with sorafenib at escalating concentrations over six months.
Then, sorafenib at concentration IC10 (0.4 µM) was persistently retained in the culture
media to ensure and maintain resistance. MTT cell viability assay was performed each
month to validate the resistance behavior of the cells.

4.4. MTT Cell Viability Assay

The MTT cell viability assay was carried out in triplicates as described previously [118].
Briefly, parental and resistant Hep3B cells were seeded in 96-well plates (4 × 103 cells per
well) for 24 h. To determine the sorafenib related half-maximal inhibitory concentration
(IC50), each cell line was treated with different concentrations of sorafenib (Sigma-Aldrich,
Steinheim, Germany) for 48 h. Afterwards, 200 µL of MTT solution (5 mg/mL) (Sigma-
Aldrich, Germany) was applied to replace the media, and the cultures were incubated at
37 ◦C for 2 h. Then, a 200 µL volume of dimethyl sulfoxide (DMSO) was added to dissolve
the formed formazan crystals. Lastly, Varioskan Flash (Thermo Fisher Scientific, Waltham,
MA, USA) was utilized to determine the absorbance at 570 nm.

4.5. Metabolite Extraction

For metabolomics, three biological replicates were used. An equal number of cells
were utilized for each sample. The cells were centrifuged separately at 15000 rpm for 10 min
to separate the cells and cell-free supernatants. The supernatants were discarded, and to
each cell pellet (~3 × 106), 1 mL of 0.1% formic acid in methanol was added, followed by
vertexing for 2 min × 4 and interrupted by 15 min incubation on ice. This was followed by
sonication using a COPLEY probe-sonicator (QSONICA SONICATOR, USA) for 30 s with
30% amplifier in an ice bath. Subsequently, the cellular debris of each sample was collected
by centrifugation at 15,000 rpm for 10 min at 4 ◦C. The supernatants were separated and
dried at 37 ± 1 ◦C using EZ-2 Plus (GeneVac, Ipswich, UK). Finally, 200 µL of 0.1% formic
acid in water was used to resuspend the dried samples, which were then vortexed for
2 min, filtered by a 0.45 µm hydrophilic nylon syringe filter and transferred to 200 µL
(micro-inserts) in LC vials. The quality control (QC) sample was prepared by pooling the
same volume (10 µL) of each sample, and all samples were placed in the autosampler at a
temperature set at 4 ◦C and analyzed with UHPLC-QTOF-MS.
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4.6. Protein Extraction and Quantification

For proteomics, three biological replicates were used. In protein extraction, each cell
pellet (~3 × 106) was lysed by 400 µL lysis buffer (Catalog number: FNN0011, Thermo
Fisher Scientific, USA) made by dissolving one tablet of protease inhibitors in 10 mL
lysis buffer (1× protease inhibitors:10 mL Lysis buffer) for 10 min. This was followed by
sonication at 30% amplifier for 30 sec and then centrifuged at 15,000 rpm for 5 min at 4 ◦C.
The supernatants were then collected in 1.5 mL microcentrifuge tubes. To precipitate the
cell proteins, 400 µL methanol and 300 µL chloroform were added to each sample and
vortexed for 1 min. Next, all samples were centrifuged at 13,000 rpm for 5 min at 4 ◦C to
generate a white protein disk interface in biphasic solution. The supernatant was thrown
out, while the bottom phase was vortexed after the addition of 300 µL methanol and then
centrifuged at 13,000 rpm for 1 min at 4 ◦C. The formed supernatant was again discarded,
and the resultant protein pellet was air-dried and then resuspended in denaturation buffer
(2M thiourea and 6M urea in 10mM Tris buffer at pH 8).

4.7. Bradford Assay

To quantify the protein in all samples, a modified Bradford assay was performed as
previously described [119]. The modified Bradford assay was chosen since the urea in the
denaturation buffer interferes with the standard Bradford. In this case, acidification of the
sample buffer is required to obtain stable standard curves [119]. Briefly, the standard curve
of bovine serum albumin (BSA) was prepared using diluted BSA stock (10mg/mL) with
deionized water in (5:100) dilution. Aliquots in volumes of 0, 0.5, 1, 2, 4 and 8 µL were
selected, and all were performed in triplicate. For each sample, two volumes were selected
(1 and 2 µL) and performed in duplicate to avoid wasting the samples. First, a volume of
90 µL of HCl 1:8 (HCl 0.1N: deionized water) was applied to 96-well plate for the standard
and samples. Then, the selected volumes of the standard and the samples were added
and diluted with deionized water to reach a final volume of 9 µL followed by agitation for
5 min. Then, 150 µL Bradford’s reagent: deionized water (1:2) was added and agitated for
5 min. Finally, the absorbance was measured at 570 nm using Varioskan Flash (Thermo
Fisher Scientific, Waltham, MA, USA).

4.8. In-Solution Protein Digestion and Peptide Desalting

In-solution protein digestion was performed as previously described [120]. Briefly,
protein samples (100 µg) were reduced using dithiothreitol (DTT) at 1 mM followed by in-
cubation for 1 h with gentle agitation at 100 rpm under room temperature (RT). Afterwards,
the samples were alkylated using iodoacetamide (IAA) at 5.5 mM and incubated in the
dark for 1 h at 100 rpm and RT. After each step, the pH was adjusted, if necessary, to 8.0.
Then, 1 µg of Lysyl Endopeptidase LysC was added (1:100, w/w), and the samples were
incubated for 3 h with 100rpm at RT. Subsequently, the samples were diluted four times
using 20 mM ammonium bicarbonate and then digested with 1 µg trypsin (1:100 ratio) and
incubated overnight at 100 rpm and RT.

For desalting, all samples were dried and resuspended using 1% trifluoroacetic acid
(TFA) and filtered using commercial C18 STAGE (stop and go extraction) tips. C18 mem-
branes were first activated by repeatedly aspirating and dispensing 100 µL 50% ACN
followed by equilibration using 100 µL of 0.1% TFA. The digested protein samples were
loaded by repetitively aspirating and dispensing the samples ten times. The columns were
then rinsed with 0.1% TFA in 5% ACN. The peptides were then eluted into LC vials through
careful aspiration and dispensing of 100 µL of 0.1% formic acid (FA) in 60% ACN. The
resulted desalted peptides were then dried using EZ-2 Plus (GeneVac, Ipswich, UK) and
resuspended in 0.1% FA in 2% ACN prior to LC-MS/MS analysis.
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4.9. Ultra-High-Performance Liquid Chromatography-Tandem Mass Spectrometry
(UHPLC-MS/MS)

The Elute UHPL and Q-TOF Mass Spectrometer (Bruker, Bremen, Germany) were uti-
lized for metabolite and peptide detection. The Elute HPG 1300 pumps, Elute Autosampler
(Bruker, Bremen, Germany) and Hamilton® Intensity Solo 2 C18 column (100 mm × 2.1 mm,
1.8 m beads) were employed using reversed-phase chromatography. Solvents used for
separation were 0.1% FA in LC grade water (solvent A) and 0.1% FA in ACN (solvent B).

Each metabolite and protein extract were analyzed in duplicate. For metabolomics
analysis, the column was kept at 35 ◦C, and each sample was injected twice with an injection
volume of 10 µL. Sample elution was performed in 30 min gradient starting with 1% ACN
for 2 min and then ramped to 99% ACN within 15 min. After that, 99% ACN was kept for
3 min, and then the re-equilibration to 1% ACN was done for 10 min. The flow rate was
0.25 mL/min for 20 min and then 0.35 mL/min for 8.3 min and then the flow rate set at
0.25 mL/min for 1.7 min.

For MS2 acquisition in metabolomics analysis, the collision energy was fluctuated
between 100–250% of 20 eV and end plate offset of 500 V. The acquisition was in two
sections: auto MS scan for the calibrant sodium formate in 0–0.3 min, and auto MS/MS for
fragmentation, in 0.3 to 30 min. Positive mode at 12 Hz was performed in both acquisition
sections. The scan range was 20 to 1300 m/z, the precursor ion’s width of ±0.5, the
precursors number of 3, the cycle time of 0.5 s, and the threshold of 400 counts. After three
spectra, active exclusion was performed and released after 0.2 min.

For proteomics analysis, the column was kept at 32 ◦C and an amount of 10 µg of
peptide in each sample was injected twice. Sample elution was achieved through a 110-min
gradient starting with 5% ACN for 5 min, then gradually increased to 35% ACN during
85 min, until it reached 95% ACN over 5 min. The back pressure values were < 350 bar
during the separation, and the flow rate was steady at 300 µL/min.

A Q-TOF (Bruker, Bremen, Germany) with an Apollo II electrospray ionization (ESI)
source was utilized for the MS analysis with the following parameters. The nebulizer pres-
sure was 2.2 bar, the drying gas flow rate was 10 L/min, the drying temperature was 220 ◦C
and the capillary voltage was 4500 V. The scan range for proteomics was 150–2200 m/z
and peptides were analyzed in auto-MS/MS mode, with 100 eV collision energy, a target
intensity of 10,000 counts per second (cps), a minimum relative intensity threshold of 500
counts per thousand, a fixed cycle length of 3 s and an analyte charge of 2 ≥ x ≥ 5. In the
first 0.3 min of each LC-MS/MS run, the external calibrant, sodium formate, was injected.
Mass calibration was done prior to analysis according to the manufacturer’s recommen-
dations using external mass calibration (10 mM sodium formate calibrant solution). The
performance of the column and the mass spectrometer was tested using a test mixture
of (TRX-2101/RT-28-calibrants for Bruker T-ReX LC-QTOF solution from Nova Medical
Testing Inc.) to check the performance of reversed-phase liquid chromatography (RPLC)
separation and perform multipoint retention time calibration and (TRX-3112-R/MS certi-
fied human serum for Bruker T-ReX LC-QTOF solution from Nova Medical Testing Inc.)
to check the performance of sample preparation protocols, as well as LC-MS instruments.
This product was prepared from pooled human blood.

4.10. Data Analysis and Statistical Approach
4.10.1. Metabolomics Data Processing

For metabolomic analysis, MetaboScape® 4.0 program was employed (Bruker Dalton-
ics, Billerica, MA, USA). In the T-ReX 2D/3D workflow, to identify the molecular features,
a minimum peak length was set to 7 spectra and the minimum intensity threshold was 1000
counts for peaks detection. The peak area was employed for quantification and the injected
external calibrant in the interval of 0–0.3 min was used to recalibrate the mass spectra. The
selected mass to charge ratio (m/z) and retention time for scanning were in the ranges of
50–1000 m/z and 0.3–25 min, respectively. The auto MS/MS scanning method was set
to average. Features found at least in 3 of the 12 samples were the only ones taken into
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further consideration. MetaboScape® was used to detect the metabolites by matching them
to the human metabolome database (HMDB) in two ways: matching with MS2 spectra and
retention time. Where multiple features’ matched to a given database entry, the annotation
quality score (AQ score) was used to select only the best matching feature. A greater the AQ
score denoted the best overall match by considering which features best fits the combined
MS/MS, precursor m/z values, retention time and isotopic pattern scores.

The resulting metabolite quantitation data were scaled to unit variance and mean-
centered, and principal component analysis (PCA) and sparse partial least squares-discriminant
analysis (sPLS-DA) were applied, using MetaboAnalyst, to visualize the metabolomic data.
Two-tailed independent students T-test utilising MetaboScape® were used to identify the signif-
icant differences in metabolite abundance between parental and resistant Hep3B cells. Features
with a p value < 0.05 and a log2 (fold-change) more than two were considered statistically
significant. MetaboAnalyst was utilized to obtain the volcano plot and the heatmap with hier-
archical clustering (p value < 0.05 and log2(fold-change) > 2) and the pathway enrichment
analyses for the significant metabolites sets (p value < 0.05) through over-representation
analysis (ORA) available at https://www.metaboanalyst.ca. ORA examines if a certain
set of metabolites is represented more than anticipated by chance within the uploaded
metabolite list through hypergeometric test.

4.10.2. Proteomics Data Processing

To identify the proteins and peptides, the raw data were processed by way of MaxQuant
1.6.17.0 [121] using the Uniprot proteome for Homo sapiens (Proteome ID: UP000005640,
79,052 entries, 14 April 2022) and the Andromeda search engine. Default parameters were
applied in the MS/MS database search, including methionine oxidation and acetylation
of protein N-termini as variable modifications and carbamidomethylation of cysteine
residues as a fixed modification. Peptide spectral matching (PSMs) was filtered with
a 20-ppm precursor mass tolerance and 1% false discovery rate (FDR). For label-free
quantification (LFQ) [122], the MaxLFQ algorithm was used. In the in-silico digestion,
the default trypsin/P enzymatic cleavage rule was utilized. To ensure a reliable label-free
quantification, the protein groups were identified with at least two peptides and were
selected for further downstream analysis. Perseus software 2.0.5.0 was used for further
data processing and statistical analysis. The potential contaminant proteins, along with the
proteins only identified by site and reverse proteins, were filtered out from the data. LFQ-
values were transformed into log2(x). Proteins were annotated, and those with 70% valid
values in total were preserved for analysis. Subsequently, imputation was done by replacing
the missing values from a normal distribution calculated separately for each sample with
a downshift of 1.8 and width of 0.3. To visualize the data after imputation, PCA was
performed. Two-tailed independent student t-test was utilized to identify the significantly
expressed proteins in the parental and resistant Hep3B cells. Multiple testing correction
was done using the Benjamini-Hochberg procedure. Proteins were considered differentially
expressed if the adjusted p value was < 0.05 and log2 fold change was more than 1. A
volcano plot was used to visualize the deregulated proteins. Hierarchical clustering and a
heatmap were applied to the differentially expressed proteins to assess their expression in
each group and to visualize group clustering. Significantly, dysregulated proteins with an
adjusted p value < 0.5 were analyzed for enrichment using the GOEA using String software
version 11.5 to visualize the biological process gene ontology (GO) terms.

4.10.3. Joint Pathway Analysis

Metaboanalyst was utilized for the joint pathway analysis. The entry IDs of the 212 signif-
icant proteins (p value < 0.5) and names of the 39 significant metabolites (p value < 0.05) were
applied in the joint pathway analysis tool to visualize the enriched pathways.

https://www.metaboanalyst.ca
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5. Conclusions

Our findings revealed that sorafenib-resistant Hep3B cells exhibited a significant alter-
ation in amino acid and nucleotide metabolism, energy production and other pathways
linked to cancer aggressiveness, migration, proliferation and drug-resistance. D-alanine,
o-tyrosine and PC (16:0/16:0) were among the significantly altered metabolites we pro-
posed as potential biomarkers for drug resistance in HCC. Promising potential proteomics
biomarkers for drug resistance in HCC include UCHL1, mitochondrial SOD2, UGDH,
SORD and CAPNS1. Unique pathways were identified in the joint pathway enrichment
analysis, including the antifolate resistance pathway that might contribute to MDR in HCC
and other extremely important pathways that maintain cancer cell survival, growth and
proliferation. Our results shed light on the molecular basis of chemotherapeutic drug
resistance, cancer initiation and progression and identifying potential diagnostic and/or
prognostic biomarkers for HCC.
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