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Abstract
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social
partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however,
competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the
field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often
referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait
variability and do not make a connection to competition. Although the observed phenotypic relationship between
competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and
inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to
inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and
agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values.
Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model
that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic
and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal
individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of
cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection
indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-
evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model
results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation
evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the
relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an
entire level of genetic variation in variability, the one due to IGEs.

Introduction

Social interactions are common in nature, and other indi-
viduals are usually the most important part of the environ-
ment experienced by an individual (Wolf 2003; Frank
2007). The environment created by social partners through
actions, such as competition or cooperation, is referred to as
the social environment. Variation in the quality of the social
environment may originate partly from genetic variation in
the social partners, which would make the social environ-
ment heritable (Wolf et al. 1998). The classical example of a
heritable environment is the one provided by a mother to
her offspring in mammals (Dickerson 1947; Willham 1963;
Falconer 1965; Kirkpatrick and Lande 1989; Cheverud
2003).
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In the traditional quantitative genetic model, the pheno-
type of an individual is the sum of the direct effect of its
own genes (DGE) and an environmental effect. However,
because the environmental effect includes a component due
to the social environment, the phenotype of an individual is
also a function of the genes of its social partners. The
heritable effect of a social partner on the trait value of the
focal individual is known as an Indirect Genetic Effect
(IGE) (Griffing 1967). IGEs have consequences for trait
values and fitness of individuals that interact, and subse-
quently for the course of the evolutionary processes (e.g.,
Hamilton 1964a; Moore et al. 1997; Wolf et al. 1998).

In the field of animal breeding, interest in social inter-
actions has increased in recent decades, as both theoretical
and empirical studies show that not only fitness but also trait
values of individuals can be affected by genes of other
individuals (Muir 2005; Bijma et al. 2007a, b). IGEs have
been studied in both animal and plant populations, and in a
number of those studies social interactions contributed
substantially to heritable variation in the trait (reviewed by
Ellen et al. 2014). Well-known cases of IGEs in domestic
animals include cannibalistic behavior in laying hens, which
causes mortality (Muir 1996; Ellen et al. 2008), competition
and tail biting in pigs, which is associated with poorer
growth (Arango et al. 2005; Camerlink et al. 2013, 2014;
Bergsma et al. 2013), and aggression and competition
in fish species such as Nile tilapia and Atlantic cod,
which reduces growth (Nielsen et al. 2014; Khaw et al.
2016).

In addition to the effects of social interactions on trait
values, it has been observed in aquaculture populations that
competition for feed and formation of social hierarchies also
inflates trait variability (Jobling 1995; Cutts et al. 1998;
Hart and Salvanes 2000). Because this pattern is so evident,
variability in body weight among individuals has become a
standard measure of the degree of competition in aqua-
culture; the degree of competition is measured by the
coefficient of variation (CV) of body weight, where a high
CV indicates strong inter-individual competition (Jobling
1995). In farmed fish populations, the CV is usually
between 20 and 60 % (Gjedrem 2000; Ponzoni et al. 2005;
Gjedrem and Baranski 2009), which suggests moderate to
strong competition.

Indications of a close relationship between competition
and variability are also coming from the field of plant
breeding, where breeders have successfully improved pro-
ductivity of crops by selecting, partly unintentionally, less
competitive phenotypes, which also resulted in more uni-
form crops (Donald 1968; Austin et al. 1980; Denison et al.
2003). Moreover, the connection between yield, competi-
tion, and variability has also been made in game theory,
where it was shown that the lowest competition and highest
yield is achieved when plants are phenotypically uniform

(Zhang et al. 1999). Hence, in plants, there is clear evidence
of a genetic relationship, where reduced competition leads
to less variability and higher yield.

The variability of trait values of a genotype, measured
either repeatedly on the same individual, or on multiple
individuals belonging to the same family, has been studied
as a quantitative trait in its own right. This trait is often
referred to as “inherited variability” or “heritable variation
in environmental variance” (SanCristobal-Gaudy et al.
1998; Mulder et al. 2008; Hill and Mulder 2010). The study
of variability has been a part of quantitative genetics for
several decades already, but it has gained particular atten-
tion in recent years due to the development of new methods
to estimate genetic variance in variability (SanCristobal-
Gaudy et al. 1998; Sorensen and Waagepetersen 2003;
Mulder et al. 2009; Rönnegård et al. 2010) and substantial
empirical evidence for a genetic basis of variability in
livestock, aquaculture, and laboratory populations
(reviewed by Hill and Mulder 2010). In several fish popu-
lations, for example, it has been found that variability of
body weight has a large genetic component (Janhunen et al.
2012; Sonesson et al. 2013; Khaw et al. 2015; Sae-Lim
et al. 2015a, b; Marjanovic et al. 2016). However, despite
the clear relationship between competition and variability
observed at the phenotypic level, inherited variability has
not been connected to competition in quantitative genetic
models.

As social interactions are often a source of IGEs, the
observed relationship between competition and variability
on the phenotypic level (Jobling 1995; Cutts et al. 1998;
Hart and Salvanes 2000; Denison et al. 2003) strongly
suggests an underlying genetic relationship between the two
phenomena. At present, little is known of this genetic
relationship, both in plants and animals, which may be due
to a lack of quantitative genetic models that connect both
phenomena. On the one hand, current quantitative genetic
models of inherited variability ignore social interactions,
since they treat variability as a trait of the focal individual
only, ignoring the contribution of social partners. On the
other hand, standard IGE-models cannot explain the rela-
tionship between competition and variability, since pheno-
typic variance is independent of the level of IGEs in those
models. However, by ignoring IGEs, we may be over-
looking an important component of heritable variation in
trait variability.

The joint study of IGEs and inherited variability could
help us understand observations from animal and plant
breeding, and possibly enable utilization of genetic varia-
tion that has so far been untapped. In addition, it may bring
new insight in mechanisms of canalization or insensitivity
of individuals to genetic and environmental changes
(Waddington 1942), and broaden our understanding of
phenotypic evolution. Therefore, a joint study of IGEs and
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variability could make a significant contribution to the field
of quantitative genetics, and its applications in animal and
plant breeding and in evolutionary biology.

As a first step towards unraveling the genetic relationship
between social interactions and inherited variability, we
present a quantitative genetic model that integrates both
phenomena. We use Monte Carlo simulation to evaluate the
behavior of the model, and demonstrate that the model
mimics the co-evolution of social interactions and varia-
bility observed in phenotypic studies.

Theory

Model

The genetics of socially affected traits can be studied using
two approaches; variance component models or trait-based
models (McGlothlin and Brodie 2009; Bijma 2014). In
variance component models, the individual phenotype is
divided into a direct genetic component originating from the
focal individual, and an indirect genetic component origi-
nating from its social partner (Griffing 1967). In this
approach, it is not needed to know which traits are causing
the IGE. Instead, DGEs and IGEs are estimated as random
effects using linear mixed models and information on
genetic relationships between individuals (Muir 2005;
Bijma et al. 2007b). See Table 1 for notation.

The trait-based models, in contrast, define IGEs on the
phenotype of the focal individual as a function of trait
values of its social partners (Moore et al. 1997; Wolf et al.
1998; Bijma 2014). In this case, the traits causing the
indirect effects need to be identified. When interaction is
between two individuals, and the target trait and the trait
causing the IGE, also known as the “effector trait”, are the
same, the trait-based model can be written as (Moore et al.
1997)

Pi ¼ Ai þ ei þ ψPj; ð1Þ
where Pi is the phenotypic value of the focal individual i, Ai

is the additive genetic effect originating from the focal
individual, Pj is the phenotypic value of its social partner j,
ψ is the “regression coefficient” of Pi on Pj, and ei is a
residual. (With feedback, i.e., when trait levels of interact-
ing individuals are reciprocally affected, ψ is not a true
regression coefficient; see Bijma 2014). We will use this
model and observations from aquaculture as a starting point
to draw a connection between IGEs and inherited
variability.

Phenotypic studies in aquaculture suggest that the
behavior of a fish towards its social partners depends on its
size relative to that of its partners, where larger fish are
usually dominant and aggressive, while smaller fish are

subordinate and submissive (Doyle and Talbot 1986;
Huntingford et al. 2012). In anemonefish, for example, large
individuals are dominant members of social groups and
display aggressive behavior towards subordinates (Fricke
and Fricke 1977; Iwata et al. 2008). Similarly, Oscars
(cichlid fish, Astronotus ocellatus) chase and attack smaller
conspecifics, but avoid larger individuals (Beeching 2010).
Difference in body weight, therefore, affects phenotypes of
the interacting individuals, with higher body weight
giving a competitive advantage to the individual in terms of
growth rate. Thus, to account for the competitive effect
of body weight on growth rate, we need to model the
evolution of body weight over the life of the interacting
individuals.

Therefore, we developed a basic quantitative genetic
model involving interactions of two individuals. In this
model, our target trait is growth rate between time point t−1
and t, while the effector trait is the difference in body
weight between the individuals that interact at the previous
time point t−1. The change in body weight, i.e., growth
rate, of the focal individual is a function of genetic and
environmental effects of the focal individual itself on its
growth rate, and of the difference in body weight between
the social partner and the focal individual, multiplied by a

Table 1 Notation key

Symbol/abbreviation Meaning

DGE, IGE Direct genetic effect, indirect genetic effect

i, j Focal individual, group mate of individual i

Pt,GR Body weight in the current time point

Pt−1,GR Body weight in the previous time point

μGR Mean growth rate

AGR Breeding value for growth rate

AD Direct breeding value for b—genetic
resistance to competition

AI Indirect breeding value for b—genetic
cooperation effect

Ep,GR, Et,GR Permanent and temporary environmental
effects on growth rate

ED, EI Direct and indirect environmental effects for b

b Regression coefficient

b Average regression coefficient

b value Regression coefficient that affects the
phenotype of the focal individual

σ2AGR
, σ2AD

, σ2AI
Genetic variance for growth rate, direct and
indirect genetic variance for b

σ2Ep;GR
, σ2Et;GR

Permanent and temporary environmental
variance for growth rate

σ2ED
, σ2EI

Direct and indirect environmental variance for
b

σ2PGR
Phenotypic variance of growth rate

h2 Heritability of growth rate
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regression coefficient,

Pt;i � Pt�1;i ¼
μGR þ AGR;i þ Ep;GR;i þ Et;GR;i þ bij Pt�1;j � Pt�1;i

� � ð2Þ

where Pt,i is the body weight of focal individual i at time
point t, Pt−1,i is body weight of i at the previous time point,
μGR is the mean growth rate of the population, AGR,i is a
(direct) breeding value for growth rate of individual i, Ep,GR,i

and Et,GR,i are permanent and temporary non-heritable
(“environmental”) effects of individual i, and bij is a
regression coefficient.

The meaning of bij

The bij in our model measures the effect of a difference in
body weight between the social partner and the focal indi-
vidual on the growth rate of the focal individual. Hence, the
absolute value of bij reflects the strength of the social
interaction. When bij is negative, growth rate of individual i
is reduced when j has higher body weight than i, indicating
competition. Conversely, when bij is positive, growth rate of
i is increased when j has higher body weight than i, indi-
cating cooperation, i.e., “helping the one who lags behind”
(Box 1). Thus, b is a measure of cooperation; negative b
indicates competition, positive b cooperation, and an
increase in b an increase of cooperation (i.e., less compe-
tition). The model described by Eq. 2 can be written in
matrix form for both individuals simultaneously, which may

facilitate analysis of the behavior of the model
(Appendix A).

Genetic variation in b

Trait-based IGE models usually assume that the “regression
coefficient” ψ is constant within a population (Eq. 1).
However, several empirical studies that were able to esti-
mate ψ, show that it may differ between genotypes (Kent
et al. 2008; Bleakley and Brodie 2009; Chenoweth et al.

Fig. 1 Expected growth curves of two individuals in a group under
competition (a) and cooperation (b)

Box 1: Direct and indirect breeding values for b

Direct breeding value (AD) is the additive genetic effect of the focal
individual on its own b and is referred to as a “resistance to
competition”. Negative AD would mean that the individual is
sensitive to competition, while the individual with positive AD is
resistant to competition.
Indirect breeding value (AI) refers to additive genetic effect of a
social partner on b of a focal individual. It is also referred to as
“cooperativeness”. The social partner with negative AI is
competitive, while the one with positive AI is cooperative.
Each individual, therefore, has two breeding values for b—one that
affects their own b and one that affects their social partner’s b.
If we consider two individuals, i and j, that differ in their body size
in the previous time period by 2 g, such as that j is the larger
individual, i.e., Pt−1,j− Pt−1,i= 2 g and Pt−1,i− Pt−1,j=−2 g, then
the change in phenotype for individual i from time t−1 to t is given
as ΔPt,i= bij(Pt−1,j− Pt−1,i)= 2bij, and similarly ΔPt,j= bji(Pt−1,i

− Pt−1,j)=−2bij (Eq. 2, assuming no effect of breeding value for
growth and no environmental effects).
As given in Eq. 3, bij ¼ bþ AD;i þ AI;j, where b is population
parameter, negative with competition and positive with coopera-
tion, 0 when neutral. Correspondingly, bji ¼ bþ AD;j þ AI;i.
Competitive environment
In the competitive environment, where, for example, b=−0.05,
and both individuals are cooperative and resistant to competition,
with breeding values of 0.03, i.e., AD,i= AD,j= AI,j= AI,i= 0.03,
the change in growth for individual i (ΔPt,i) is 0.02 g, while ΔPt,j

=−0.02 g. However, if both individuals are competitive and
sensitive to competition, AD,i= AD,j= AI,j= AI,i=−0.03, then ΔPt,

i=−0.22 g, while ΔPt,j= 0.22 g. Hence, in a competitive
environment, when both b and individual breeding values for b
are negative, the larger individual grows fast, while the growth of
smaller one is slowed down. Positive breeding values in a
competitive environment lead to small increase in growth for the
smaller individual, and a small decrease for the larger one.
For explanation on chosen values see “Simulation and Appendix
C” section.
Cooperative environment
In the cooperative environment, where b is, for example, 0.05, and
individuals have positive breeding values of 0.03, ΔPt,i= 0.22 g,
while ΔPt,j=−0.22 g. If both individuals have all negative
breeding values of −0.03, then ΔPt,i=−0.02 g, while ΔPt,j=
0.02 g. Therefore, when both b and individual breeding values for
b are positive, the growth of the larger individual slows down,
allowing the smaller individual to catch up. Negative breeding
values in a cooperative environment lead to small increase in
growth for the larger individual, and a small decrease in growth for
the smaller individual.
For more scenarios and effects of combining positive and negative
breeding values for b, see Supplementary File 1.
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2010). Hence, empirical studies suggest that ψ shows
genetic variation, and can thus respond to selection. Fol-
lowing this evidence, we allow b to evolve. Therefore, b is
not a fixed parameter, but specific for every interacting
couple. We propose that heritable variation in b is a result of
a direct genetic effect of the focal individual (AD,i), repre-
senting resistance to competition, and an indirect genetic
effect of its social partner, representing cooperative effect
(AI,j). While b is a property of both the focal individual and
its social partner, it affects the phenotype of the focal
individual only; we will therefore refer to this b as “the b
value of the focal individual”. Thus, for focal individual i
with social partner j, the regression coefficient bij, i.e., the b
value of the focal individual, is given by

bij ¼ bþ AD;i þ ED;i þ AI;j þ EI;j; ð3Þ

where b represents the average regression coefficient, which
is a population parameter that is negative under competition
and positive under cooperation. The AD,i and ED,i are the
direct genetic and environmental effect of individual i on bij,
while AI,j and EI,j are the indirect genetic and environmental
effect of individual j on bij. Appendix B contains extension
of Eq. 2 to accommodate larger group size.

Inherited variability

Note that our model does not include an explicit breeding
value for inherited variability. Instead, as shown in the
section “Simulation” below, genetic variation in variability
is an emerging property of the model, resulting from genetic
effects of competition, i.e., the direct and indirect breeding
values for b. In other words, our model shows that heritable
effects on competition result in inherited variability. In the
“Discussion” section, we further investigate how breeding
values for b correlate with direct and indirect breeding
values for inherited variability (see section “Estimating b”
below; see also section “Breeding values for b and
variability”).

Competition, cooperation, and the sign of b

We use the term “competition” to describe the situations
where the larger individual continues to increase in size,
while the smaller individual lags behind, leading to diver-
gence of their body weights through time (Fig. 1a). This is
typical for populations where b < 0. We use the term
“cooperation” to describe the situation where individuals
become increasingly similar in body weight over time (Fig.
1b). This occurs when growth rate of the larger individual
decreases, while the smaller one catches up. This is typical
for populations, where b > 0.

Asymmetry: bij vs. bji

Note that we distinguish between resistance to competition
(AD) and cooperativeness (AI), as these may be different
properties of an individual. For example, consider the pair i
and j in a population showing competition (b < 0). Suppose
that i is very competitive (AI,i < 0) and also resistant to
competition (AD,i > 0), while j is very cooperative (AI,j > 0)
but very sensitive to competition (AD,j < 0). Then the effect
of j on i will be small, while the effect of i on j will be large
(Supplementary File 1, grey cells in Table S2). In other
words, an individual that is strongly affected by its social
partner does not necessarily also have a strong effect on its
social partner. Hence, b is non-symmetric, i.e., bij ≠ bji.

Simulation

We used Monte Carlo simulation to investigate whether our
model (Eq. 2) predicts the empirically observed relationship
between competition and variability, and whether methods
for selection against competition (e.g. group selection) also
result in a reduction of variability. We considered five
values for the average value of bðbÞ, to which we refer as
scenarios (Table 2).

Negative values of b correspond to competition (Sce-
nario 1-strong competition; Scenario 2-moderate competi-
tion), while positive values reflect cooperation (Scenario 4-
moderate cooperation; Scenario 5-strong cooperation).
Scenario 3 represents a neutral environment with b= 0.

The genetic values of all individuals in the population
were simulated as inherited from their parents (base popu-
lation), assuming Mendelian inheritance, while their envir-
onmental values were sampled from independent normal
distributions. All individuals were randomly assigned to
groups of 2 members. Phenotypes were constructed for 10
time points using Eqs. 2 and 3. Average starting weight was
10 g, and average growth rate between time points was also
10 g. Hence, to illustrate the behavior of our model as
simple as possible, we considered absolute growth.
Obviously, for the analysis of real data, a more biologically
realistic growth model, such as relative growth, may be
used. With relative growth, the impact of competition may
be higher, since individuals may diverge more in scenarios
with competition, as larger individuals grow faster, while
smaller individuals slower, compared to absolute growth
(see Supplementary file 2 for two small simulation
examples).

For each scenario, there were 100 replicates. Table 2
contains parameter values used in the simulation. Appendix
C contains a detailed description of the simulation
procedure.
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Relationship between b and variability

The relationship between competition and variability gen-
erated by our model was assessed at two levels. First, we
considered the average within-group variance of body
weight at the last time point. Second, we considered the
overall phenotypic variance in the entire population. Results
are presented in Fig. 2 as averages over 100 replicates.

Across the five scenarios, both average within-group
variance and phenotypic variance decreased curvilinear
with increasing b, i.e., with increasing cooperation (Fig. 2).
The average within-group variance ranged from 376.4 g2

(sd, ±14.4 g2) to 20.9 g2 (sd, ±0.7 g2), which is an 18-fold
difference in variability of body weight between scenarios 1
and 5. The phenotypic variance ranged from 457.3 g2 (sd,
±15.7 g2) to 95.1 g2 (sd, ±2.6 g2), showing a 5-fold differ-
ence in variability between scenarios 1 and 5. These results
show that our model results in a relationship between
competition (b) and variability that is also found in real
data.

The difference between the average within-group var-
iance and the phenotypic variance is related to the similarity
of group mates. Total phenotypic variance is the sum of
between- and within-group variance. When group mates are
independent and group size equals two, the average within-
group variance is half of the phenotypic variance. Average
within-group variance, however, was much larger than half
of the phenotypic variance in scenarios with negative b, but
much smaller in scenarios with positive b. The correlation
between group mates is calculated as ρ ¼ σ2b�σ2w

σ2bþσ2w
, where σ2b is

between group variance and σ2w is within-group variance. In
scenarios with negative b, the correlation between group
mates was negative, which means that group mates were
dissimilar in the competitive environment (Fig. 2). When b
was positive, correlation between group mates was positive,

indicating higher similarity of group mates in the coopera-
tive environment (Fig. 2). For b= 0, the average within-
group variance was approximately one half of the pheno-
typic variance.

Growth curve patterns in relation to b values

In this section, we look into how variation in b around its
average, affects the variability among group mates. Within
every scenario (Table 2) b was the same for all individuals;
however, variation in b values of individuals existed due to
variation in direct and indirect genetic and environmental
components that make up b (Eq. 3). Therefore, in every
scenario some groups would have individuals that both have
high b values, some groups would have individuals with
low b values, and variations in between. We hypothesize
that group mates that both have high b values, i.e., that are
both cooperative and resistant to competition, grow more
uniform compared to those with low b values, i.e., group
mates that are both competitive and sensitive to
competition.

To illustrate this, we selected groups that have indivi-
duals with the highest and the lowest b values for each of
the scenarios. An additional condition when selecting
groups was that individuals have an initial difference in
their body weight of ~2 sd. The growth curves in relation to
the level of b values within a group are illustrated in Fig. 3a,
d for scenario 1 (b=−0.08, strong competition) and 5 (b=
+0.08, strong cooperation). Results for scenarios 2–4 are
presented in Supplementary File 3. Supplementary file 4
contains b values of individuals from all the scenarios.

In both scenarios 1 and 5, individuals in a group with the
low b values differed substantially in their final body weight
(Fig. 3a). Individuals with the high b values, however,

Table 2 Parameters used in
simulation

Parameters Scenarios

Competition Neutral Coopera-
tion

1 2 3 4 5

Mean growth rate, μGR 10 g

Genetic variance for growth rate, σ2AGR
1 g2

Permanent environmental variance, σ2Ep;GR
0.4 g2

Temporary environmental variance, σ2Et;GR
0.6 g2

Cooperation effect, b −0.08 −0.05 0 0.05 0.08

Direct and indirect genetic and environmental variance,
σ2AD

¼ σ2AI
¼ σ2ED

¼ σ2EI

0.225 × 10−3

Phenotypic variance, σ2PGR
2 g2

*σ2PGR
is calculated excluding b, i.e., as σ2PGR

¼ σ2AGR
þ σ2Ep;GR

þ σ2Et;GR

**The scenarios only differ in the input values for the cooperation effect, while other values are equal for all
scenarios
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maintained a similar body weight through time (Fig. 3d),
which is in agreement with our hypothesis.

We also looked into groups that had individuals with
positive/negative combinations of b values. When the
initially larger individual had a negative b value, its body
weight increased over time, resulting in a larger size dif-
ference between the two group mates, unless the smaller
individual had a positive b value, which allowed it to catch
up (Fig. 3b). Similarly, the size difference decreased when
the larger individual had a positive b value, even when the
smaller individual had a negative b value (Fig. 3c). It was
also possible to get re-ranking of the individuals, i.e., the
smaller individual can become the larger one. This can
happen for example when the smaller individual has a high
positive b value, while the larger individual has a low
negative b value (Scenario 5, Fig. 3b).

Expressions (Appendix A) for the expectation of the
difference in the phenotypic values and the variance of this
difference at time point T, i.e. E(PT,i− PT,j|bij,bji) and V(PT,i

− PT,j|bij,bji), demonstrate that the phenotypic variance
within a group is directly related to the sum of b values
within the group. The expressions show that the expected
difference is zero if there is no initial difference at T= 0,
while the variance depends directly on the sum of bij and bji.
More details can be found in Appendix A.

Breeding values for b and variability

If a connection between competition and variability exists
not only on the phenotypic level but also on genetic level,
we should see less variation in body size among the off-
spring of sires that have positive direct breeding values (AD)
for b, as these individuals should be more resistant to
competition. This links our model to the definition of
inherited variability, where parents with low breeding
values for variability have offspring with lower phenotypic
variance. Figure 4a indeed shows that the correlation

between AD of sires for b and variability of body weight of
their offspring is negative, ranging from −0.55 (sd, ±0.07)
to −0.20 (sd, ±0.09) across scenarios. This suggests that
individuals that are genetically more resistant to competi-
tion are less variable. Moreover, offspring of sires with
positive indirect breeding values (AI) for b should be less
competitive. The group mates of these “social” individuals
should therefore show less variability compared to group
mates of individuals with negative indirect breeding values
for b. In other words, AI of a sire affects the variability of
phenotypes of the group mates of his offspring. As expec-
ted, Fig. 4b shows negative correlations between AI of sires
and variability of the group mates of their offspring. Figure
4a,b also shows a small negative correlation between AI of a
sire and variability of his offspring, and between AD of a sire
and variability of the group mates of its offspring. This
result suggests a second-order effect; for the direct effect,
for example, the AD of a sire first affects the trait values of
its own offspring, which subsequently affects the variability
of their groups mates in the next time period. For standard
errors of the correlations see Supplementary file 5.

Selection

Individual selection has often been used with great success
for improvement of livestock and aquaculture traits. How-
ever, this type of selection ignores the contribution of IGE
which may hamper the improvement of socially affected
traits. An alternative strategy is a group selection, which
takes indirect genetic effects into account (Griffing 1976).

To see how variability responds to selection, and whether
we can capture direct (AD) and indirect genetic effects (AI)
for b with existing selection methods, we performed three
types of selection: individual selection for body weight,
group selection for body weight, and group selection for
lower variance of body weight. In all three cases, selection
was done using observations from time point 10. With

Fig. 2 Variability of body
weight in a population and
correlation between group mates
across five scenarios i.e., five
average b values (b). Variability
is expressed as the average
within-group variance of body
weight of two group mates and
as overall phenotypic variance in
the whole population
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Scenario 1, = -0.08

Scenario 5, = +0.08

A B

DC

A B

DC

Fig. 3 Growth curves of two group mates (one larger than the other)
that have lowest sum of b’s (a); the initially larger individual has
negative b, the smaller one has positive b (b); the initially larger

individual has positive b, the smaller one has negative b (c); lowest
sum of b’s (d), for scenarios 1 and 5. Each panel shows one typical
replicate
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individual selection, the 11 % of the heaviest individuals
were selected as parents of the next generation. With group
selection for body weight, the individuals from the 11 % of
groups with the highest average body weight were selected.
With group selection for lower variance, the individuals
from the 11 % of groups with the lowest variance in body
weight were selected. We illustrate the effect of selection by
using base population with b=−0.08 (Scenario 1—strong
competition, Table 2). Selections were performed for 10
generations. Correlations between AD and AI, AD and AGR,
and AI and AGR, were all set to 0. See Appendix C for
further details. Figure 5 presents the results as averages over
100 replicates. For standard errors see Supplementary file 6.

Individual selection increased mean body weight (Fig.
5f), but also decreased AD (Fig. 5c) and AI (Fig. 5d), causing
an increase in variability in the population (Fig. 5a). In other
words, individual selection increased variability.

Both types of group selection increased AI (Fig. 5d),
suggesting that group selection at least partially exploited
genetic differences in indirect genetic effects on b. Varia-
bility of body weight decreased when group selection was
made on variance, but increased slightly when group
selection was for average body weight, however much less
compared to individual selection (Fig. 5a). This increase in
variability with group selection for average body weight
originated from a decrease in AD. With group selection on
variance, in contrast, AD increased (Fig. 5c). Group selec-
tion on the variance, therefore, captured direct and indirect
genetic effects on b better than group selection on the
average body weight. Group selection on the variance did
not change mean body weight, because the correlations
between AD and AGR, and AI and AGR were zero (Fig. 5f).
Group selection for average body weight, on the other hand,
increased mean body weight in magnitude similar to indi-
vidual selection (Fig. 5f).

Discussion

We have proposed a quantitative genetic model that inte-
grates competition and variability, and have shown through
simulation that our model mimics the observation in real
populations, where competition for resources increases
phenotypic variability among individuals. In our model an
improvement of the social environment through an increase
in b, which was modeled as a heritable trait in itself, resulted
in reduced variability.

Estimating b

The key parameter in our model is the regression coefficient
b, which comprises both direct and indirect genetic effects.
In other words, b is heritable and can respond to selection.
Application of our model requires methods to estimate b
and its genetic components. In the following, we discuss the
data requirements and propose models that could be used as
a first step to estimate the average b and its direct and
indirect genetic variance.

Our b connects the difference in trait values between the
group mate and the focal individual at the previous time
point to the target phenotype of the focal individual at the
current time point. Estimating b, therefore, requires data on
group-structured populations, where competition occurs
within groups, and repeated observations on the phenotypes
of the group members (i.e., time-series data).

First, to estimate the overall average level of competition,
one could fit single fixed b for all groups, using the model

yt;i ¼ Ptþ1;i � Pt;i ¼ μþ b Pt;j � Pt;i

� �þ et;i:

In genetic analysis of outbred populations, interest is in
the genetic (co)variances of growth and the direct and
indirect effects on b (AGR, AD, and AI in Eqs. 2 & 3). In
animal and plant breeding, for example, knowledge of those
parameters would indicate prospects for genetic selection
against competition and variability. In outbred populations,

Fig. 4 a Correlation (r) between direct (AD) and indirect (AI) breeding
value of a sire and variance of body weight of his offspring (VarPoff)
for each of the five scenarios, i.e., average b values (b). b Correlation

(r) between direct (AD) and indirect (AI) breeding value of a sire and
variance of body weight of the group mates of its offspring (VarPgm),
for each of the five scenarios, i.e., average b values b

� �
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the following mixed model may serve as starting point to
estimate genetic variance components (ignoring non-genetic
terms for simplicity),

yt;i ¼
μt þ bΔyt�1;ij þ ZaGR þ ZD;Δyt�1;ijaD þ ZI;Δyt�1;ijaI þ e

where matrices and vectors are in bold and scalars are in
italic. y is a vector of phenotypic observations, with
elements yt,i= Pt,i− Pt−1,i, μt is an overall mean that may
be specific to each time point. The term bΔyt�1;ij accounts
for the average competition in the population, and Δyt−1,ij is

a vector of phenotypic differences between the group-mate
and the focal individual at the previous time point, with
elements Δyt−1,ij= Pt−1,j−Pt−1,i. The ZaGR are the ordinary
(random) additive genetic effects on growth rate. The
ZD;Δyt�1;ijaD accounts for the direct genetic effects in b,
where aD is a vector of random direct genetic effects on b,
and ZD;Δyt�1;ij an incidence matrix for direct effects, with
elements Pt−1,j−Pt−1,i in the row and column for focal
individual i. The ZI;Δyt�1;ijaI accounts for the indirect genetic
effects in b, where aI is a vector of random indirect genetic
effects on b, and ZI;Δyt�1;ij is an incidence matrix for indirect
effects, with elements Pt−1,j−Pt−1,i in the row for the focal

Fig. 5 Effect of three types of selection on average within-group variance (a), average b (b) (b), average direct breeding value for b (c), average
indirect breeding value for b (d), average breeding value for growth (e), and average body weight (f), in the population
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individual i and column for its group mate j. Hence, direct
and indirect effects on b are so-called random regressions.
Note that the above expression merely serves as starting
point, and will have to be extended with non-genetic
random effects, such random group effects and permanent
individual effects (Ep,GR,i in Eq. 2). Moreover, there may be
issues with the identifiability of the genetic variance
components, which will depend on the family relationships
within and between groups (e.g., Appendix of Bijma et al.
2007b).

When time series data are not available, which may often
be the case, another approach could offer a solution.
Quantitative genetic models for inherited variability can be
used to estimate genetic variance in variability from records
on within-family variance. Figure 4a shows that variability
of sire offspring is correlated with the direct breeding value
for b of the sire. Figure 4b shows that variability of the
group mates of the offspring is correlated with the indirect
breeding value for b of the sire. Therefore, it may be pos-
sible to capture direct and indirect effects on b by fitting
linear mixed models to the within-family variance, and to
the variance of the group mates of a family, with sire as
random effect. This analysis requires an appropriate family
and group structure, but not time series data. More research
is needed to see how breeding values for inherited varia-
bility correlate with direct and indirect effects on b, and how
those effects can be fully captured.

Evidence for genetic variation in b

To the best of our knowledge, there are no estimates of b
available in the literature. However, some indications for
variation in b may come from estimates of ψ (psi) in so-
called trait-based models of IGE (Moore et al. 1997). When
data are available on multiple discrete genotypes, such as
inbred lines, fixed b values could be estimated for each
genotype, similar to the approach of Bleakley and Brodie
(2009), who estimated ψ in guppies (Eq. 1).

This empirical study involved five inbred strains of
guppies that differed genetically in their antipredator
behavior. One individual from each (focal) strain was paired
with three individuals from a different, unrelated strain i.e.
social strain. In that way, each focal genotype was tested
against different social environments. The results of the
study show that the level of ψ differed between the focal
strains and in some cases also depended on the social strain,
suggesting genetic variation in ψ. In a similar experimental
design, where the focal genotype was held constant while
social groups varied, the social group effects were estimated
for chemical signaling in D. melanogaster (Kent et al. 2008)
and sexual display traits in D. serrata (Chenoweth et al.
2010), and both studies estimated and found variation in ψ.

Implications for animal and plant breeding

Phenotypic uniformity is an important trait in animal
breeding. In the pig industry, for example, it is desirable to
deliver animals within a preferred range to the slaughter
house, while deliveries outside that range result in penalties
for the farmer (Hennessy 2005; Mulder et al. 2008). In
aquaculture, fish that deviate too much from the average
size are usually not sold, which reduces revenues. In addi-
tion, large size differences in fish populations stimulate
competition, which reduces welfare and health of the ani-
mals. Better understanding of inherited variability, there-
fore, is interesting from an economic and animal welfare
point of view. In plants, variability may also emerge as a
commercially important trait, as some studies suggest that
higher uniformity is related to higher productivity (Zhang
et al. 1999; Denison et al. 2003).

There is substantial evidence of a genetic basis of
variability, which has been obtained through selection
experiments and by quantifying genetic variation in varia-
bility (reviewed by Hill and Mulder 2010). Recently,
methods have been developed to detect QTLs that control
variability, so-called vQTLs (Rönnegård and Valdar 2011;
Rönnegård and Valdar 2012), and these have been found in
studies of litter size in pigs (Sell-Kubiak et al. 2015), several
morphological traits and days to flowering in maize (Ordas
et al. 2008), and locomotor behavior in fruit flies (Ayroles
et al. 2015). Furthermore, several mechanisms, resulting in
vQTL effects have been proposed (Rönnegård and Valdar
2011; Rönnegård and Valdar 2012), including: epistatic
gene interaction, gene-by-environmental interaction, multi-
allelic additive effects underlying a QTL and scale of
measurement for the observed phenotype. However, until
now, variability has been studied only in relation to direct
genetic effects of the focal individual. Here we considered
an alternative mechanism that gives rise to genetic variation
in variability, which does not only involve the genotype of
the focal individual, but also a genetic effect of the social
partner, and hence adds another layer to the complexity of
inherited variability. The genetic contribution of the social
partner is ignored in current QG models for inherited
variability, which may reduce accuracy of estimated
breeding values and response to selection. When traits are
affected by social interactions, selection strategies that
accounts for both direct and indirect genetic effects can
result in higher response (for example, Griffing 1976; Muir
1996; Bijma et al. 2007b). Our findings suggest that future
breeding programs aiming to reduce variability may also
need to consider increasing b.
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Implications for evolutionary biology

In evolutionary biology, the study of canalization focuses
on the absence or suppression of phenotypic variation.
Hence, breeding for uniformity can be seen as an analog of
the evolution of canalization. Results of our model suggest
that canalization may have a social genetic component.
Evolution of canalization, therefore, could also be studied in
the light of the regression coefficient b. A better under-
standing of the genetic mechanisms affecting variation may
also increase our understanding of the potential for evolu-
tionary change (Flatt 2005). For example, traits may show
less variability in some populations than in others, which is
often attributed to low genetic variation. With canalization,
however, phenotypic variation may be low while the
underlying genetic variation is high, which can hinder
phenotypic evolution (Flatt 2005).

Mulder et al. (2016) showed that within-nest variability
of fledging weight in a natural population of Great Tit
(Parus major) has a genetic component and is under sta-
bilizing selection. In that study, phenotypic variability was
considered either a trait of the individual, or a trait of its
parents, and it was discussed how this view would change
the interpretation of the genetic parameters. Here we
focused at connecting differences in phenotypic variability
between individuals to the level of competition, which may
be useful for future studies on variability in natural
populations.

Kin-selection theory predicts that individuals should
interact differentially with kin vs. non-kin, because this
increases their inclusive fitness (Hamilton 1964b). Together
with results of our model, this prediction suggests that
related individuals should show less variability. In other
words, groups consisting of relatives should have higher b
than groups of unrelated individuals. Hence, our findings
suggest that canalization may partly evolve by kin-
selection.

Conclusion

We presented a quantitative genetic model in which direct
and indirect genetic effects lead to inherited variability of
trait values on the phenotypic level. The b from our model
can respond to selection, and changes in b resulted in
changes in variability, indicating the co-evolution of social
interactions and inherited variability. Selection results
showed that the effect of IGEs on b is ignored in classical
mass selection, but can be partly captured by group selec-
tion on the mean or the variance. The latter also resulted in a
decrease of variability. These findings suggest that we may
have been overlooking an entire level of genetic variation in
variability, the one due to IGEs. Genetic improvement of

social effects, therefore, may be a promising route to reduce
variability.
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The data are available from the Dryad Digital Repository:
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Appendix A

In this appendix, explicit expressions for the expectation
and the variance of the difference between the phenotypic
values for individual i and j at time point T are derived, i.e.
E(PT,i−PT,j|bij,bji) and V(PT,i−PT,j|bij,bji) respectively. By
deriving these formula, given the parameters bij and bji, it is
possible to study the effect of these parameter values on the
expectation and variance of the phenotypic difference. The
derived formulae show that the expected difference is 0 if
there is no initial difference at T= 0 (i.e. ΔP0= 0), whereas
the variance depends directly on the sum of bij and bji.

The model used throughout the paper for individuals i
and j is

Pt;i ¼ Pt�1;i þ μGR þ AGR;i þ Ep;GR;i þ Et;GR;i þ bi;j Pt�1;j � Pt�1;i
� �

Pt;j ¼ Pt�1;j þ μGR þ AGR;j þ Ep;GR;j þ Et;GR;j þ bj;i Pt�1;i � Pt�1;j
� �

Let ΔPt= Pt,i− Pt,j, ΔAGR= AGR,i−AGR,j, ΔEp,GR= Ep,

GR,i− Ep,GR,j and ΔEt,GR= Et,GR,i− Et,GR,j. Then we have the
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recursive formula:

ΔPtþ1 ¼ 1� bij þ bji
� �� �

ΔPt þ ΔAGR þ ΔEp;GR þ ΔEt;GR;

which can be written in explicit form for time T (in our
simulations T= 10):

ΔPT ¼ λTΔP0 þ
XT�1

t¼0

λt ΔAGR þ ΔEp;GR

� �þXT�1

t¼0

λtΔEt;GR

where λ= 1−(bij+ bji).
Noting that the first sum is a geometric series multiplied

by a constant the formula can be simplified:

ΔPT ¼ λTΔP0 þ λT � 1
λ� 1

ΔAGR þ ΔEp;GR

� �þXT�1

t¼0

λtΔEt;GR

Thus, the expected difference given the parameters bij
and bji is:

EðΔPT jbij; bjiÞ ¼ λTΔP0 þ λT�1
λ�1 E ΔAGR þ ΔEp;GR

� �
þPT�1

t¼0
λtEðΔEt;GRÞ

¼ λTΔP0 þ λT�1
λ�1 E ΔAGR þ ΔEp;GR

� �
þ λT�1

λ�1 EðΔEt;GRÞ

and is equal to 0 for ΔP0= 0.
The variance of the difference in phenotypes given the

parameters bij and bji is:

V ΔPT jbij; bji
� � ¼ λT�1

λ�1

� �2
V ΔAGR þ ΔEp;GR

� �
þPT�1

t¼0
λtð Þ2V ΔEt;GR

� �
¼ λT�1

λ�1

� �2
V ΔAGR þ ΔEp;GR

� �
þ λ2T�1

λ�1 V ΔEt;GR

� �
For the special case bij þ bji ¼ 0, V(ΔPT|bij,bji)= T2 × V

(ΔAGR+ΔEp,GR)+ T × V(ΔEt,GR).

Furthermore, λ
T�1
λ�1 <T and λ2T�1

λ�1 <T for λ < 1, and for λ > 1

we have λT�1
λ�1 >T and λ2T�1

λ�1 >T . Recall that λ= 1− (bij+ bji).
Thus, the variance of the phenotypic difference will be
smaller than the variance for a model without social inter-
action effects (i.e., Pt,i= Pt−1,i+ μGR+ AGR,i+ Ep,GR,i+ Et,

GR,i) if bij þ bji>0, and larger if bij þ bji<0.

Matrix version of the model

In the following part of the appendix, it is shown how the
model can be written in matrix form and the variance of the

individual phenotypes (given bij and bji) can be derived.
Hence, an advantage of writing the model in matrix form is
that we can derive an expression for the variance of the
individual phenotypes, whereas in the previous derivations
the variance of the phenotypic difference was derived.
Furthermore, by studying the eigenvalues of the matrices in
the model, the sensitivity to stochastic environmental effects
can be assessed. The matrix notation can also be a tool to
simplify computations in simulation studies.

An important result derived below is that the
phenotypic values at the final time point T are sensitive
to the simulated environmental variables (error terms) if
bij+ bji < 0.

Equation 2 can be written in matrix form for the two
individuals i and j simultaneously as:

Ptþ1 ¼ BPt þ Δþ εt

Pt ¼
Pt;i

Pt;j

� �

B ¼ 1� bij bij
bji 1� bji

� �

Δ ¼ μGR þ AGR;i þ Ep;GR;i

μGR þ AGR;j þ Ep;GR;j

� �

εt ¼
Et;GR;i

Et;GR;j

� �

with expectation and variance for Δ and εt

E Δð Þ ¼ μGR

μGR

� �
;V Δð Þ ¼ σ2AGR

þ σ2Ep;GR

� �
I

E εtð Þ ¼ 0

0

� �
;V εtð Þ ¼ σ2εI

In the formula for V(Δ), the two individuals are assumed
to be unrelated.

At time T (with T= 10 in our simulations) we then have

PT ¼ BTP0 þ
XT�1

k¼0

BkΔþ
XT�1

k¼0

Bkεk

In the simulations, the initial phenotypes were set to zero,
i.e. P0= 0. Hence, the first term can be ignored and we can
focus on the second and third terms, i.e. the sums, in the
above formula.

Let B= ΓΛΓ−1 be the spectral decomposition of B, with
eigenvalues λ1 = 1 and λ2 ¼ 1� ðbij þ bjiÞ.

One can note that the phenotypes at time T, i.e., PT, will
be sensitive to the simulated environmental variables (error
terms) if bij+ bji < 0 because the dominating eigenvalue will
then be greater than 1.
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Furthermore, the first sum in the above formula is a
geometric series and can be written as:

XT�1

k¼0

BkΔ ¼ Γ
T 0

0 λT2�1
λ2�1

 !
Γ�1Δ

with expectation

E
XT�1

k¼0

BkΔ

 !
¼ Γ

T 0

0 λT2�1
λ2�1

 !
Γ�1EðΔÞ:

The variance of the sum is

V
XT�1

k¼0

BkΔ

 !
¼ Γ

T 0

0 λT2�1
λ2�1

 !
Γ�1 Γ�1
� �′ T 0

0 λT2�1
λ2�1

 !
Γ′VðΔÞ:

The variance of the second sum is

V
XT�1

k¼0

Bkεk

 !
¼
XT�1

k¼0

Bk Bk
� �′

VðεkÞ

with

V εkð Þ ¼ Iσ2ε

and

XT�1

k¼0

Bk Bk
� �′¼ Γ

A11T A12
λT2�1
λ2�1

A21
λT2�1
λ2�1 A22

λ2T2 �1
λ22�1

0
@

1
AΓ′;

where Akl is the element on row k and column l in the matrix
A= Γ−1(Γ−1).′

Thus,

V
XT�1

k¼0

Bkεk

 !
¼ Γ

A11T A12
λT2�1
λ2�1

A21
λT2�1
λ2�1 A22

λ2T2 �1
λ22�1

0
@

1
AΓ′σ2ε

with A11 ¼ A22 ¼ 2ðb2ijþb2jiÞ
ðbijþbjiÞ2

and A12 ¼ A21 ¼ bji�bij

bijþbjið Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb2ij þ b2jiÞ

q
.

Using the matrix of eigenvectors

Γ ¼

ffiffi
1
2

q
bijffiffiffiffiffiffiffiffiffiffi
b2ijþb2ji

p
ffiffi
1
2

q
�bjiffiffiffiffiffiffiffiffiffiffi
b2ijþb2ji

p
0
BB@

1
CCA

and its inverse

Γ�1 ¼
bjiffiffiffiffiffiffiffiffiffiffi
b2ijþb2ji

p bijffiffiffiffiffiffiffiffiffiffi
b2ijþb2ji

p
ffiffi
1
2

q
�

ffiffi
1
2

q
0
B@

1
CA�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb2ij þ b2jiÞ

q
bij þ bji

Using the relationship V PT ;i � PT ;j

� � ¼
1 �1ð ÞVðPTÞ 1

�1

� �
and applying several steps of

straight-forward derivations, the same expression for the
variance of the phenotypic difference is derived as above

V PT ;i � PT ;jjbij; bji
� � ¼ 2D1 σ2AGR

þ σ2Ep;GR

� �
þ 2D2σ

2
ε

with D1 ¼ λT2�1
λ2�1

� �2
and D2 ¼ λ2T2 �1

λ22�1
for bij þ bji≠0, while for

bij þ bji ¼ 0 we have D1= T2 and D2= T. Hence, we have

derived the variance for the difference between phenotypes
of two group members, i.e. V(PT,i−PT,j|bij,bji). Furthermore,
the above derivations give an explicit expression for the
variances (and covariances) of the individual phenotypes for

the two group members, i.e., V
PT ;i

PT ;j

� �
jbij; bji

� �
. Using

this expression one can assess how the variances (and
covariances) at time T depend on the values of bij and bji.

Appendix B

Larger group size

We presented a model for interaction between 2 individuals.
To accommodate interactions among more individuals, Eq.
2 could be extended as follows

Pt;i � Pt�1;i ¼ μGR þ AGR;i þ Ep;GR;i þ Et;GR;i

þPn
j¼1

bij Pt�1;j � Pt�1;i
� � ð5Þ

so that the effect of a difference in trait value between a
group mate j and focal individual i is summed over the n
group mates.

Appendix C

Simulation description

Population structure

Monte Carlo simulations were conducted using the R soft-
ware (R Development Core Team 2011). We first simulated
a base population of 100 sires and 10,000 dams, all unre-
lated. Each animal was assigned a breeding value for
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growth rate and direct and indirect breeding value for b,
drawn from a multivariate normal distribution. Next, we
created the offspring population by mating each sire with
100 randomly chosen dams. Each sire had 100 offspring.
The total number of individuals in the offspring population
was 10,000. The breeding values for growth rate and direct
and indirect breeding values for b in the offspring popula-
tion were simulated as the average breeding value of sire
and dam, plus a Mendelian sampling term drawn from

N
0
0
0

2
4
3
5

0
@ ; 1

2

σ2AGR
0 0

0 σ2AD
0

0 0 σ2AI

2
4

3
5
1
A. Each offspring was also

given the permanent and temporary environmental effect on
body weight, as well as direct and indirect environmental
effects on b. These were sampled from

N

0
0
0
0

2
664
3
775;

0
BB@

σ2Ep;GR
0 0 0

0 σ2Et;GR
0 0

0 0 σ2ED
0

0 0 0 σ2EI

2
6664

3
7775
1
CCCA. All genetic and

environmental covariances were set to zero. Individuals
from offspring population were randomly assigned to
groups of 2 members, creating 5000 groups in total. Finally,
growth curves of individuals were simulated by creating
phenotypes for 10 time points using Eq. 2. Therefore, each
individual had repeated observations.

For the selection part, we used a simulated population of
individuals (offspring population) as explained in previous
paragraph to be the base population. Three types of selec-
tions were performed, individual and 2 group selections,
using phenotypes from the last time point i.e. time point 10.
Individual selection was made on body weight, by selecting
11% of best individuals. First group selection was made on
average body weight of the pair making up a group, while
second group selection was performed on the squared dif-
ference in body weight within a pair, i.e., the variance
among the two group mates. In both group selections 11%
of best groups were selected. Selections were performed for
10 generations. To maintain the same number of individuals
through selection (10,000), sex ratio and mating was per-
formed differently in the selection generations compared to
the base. Sex was randomly assigned to 1100 selected
individuals in 1 male: 10 females probability, and 1 male
was mated with 10 randomly chosen females. The genetic
and environmental values of offspring, group assignment
and phenotype construction was done in the same manner
as described in the previous paragraph.

Parameters

Table 2 contains parameters used in the simulation. In
farmed aquaculture species, for example Nile tilapia, fish
weights around 10 g (g) when it is first stocked into the

pond, and between 100 and 200 g at the end of the growth
period. To connect our results somewhat to aquaculture
species, we have set 10 g as a mean starting weight and
assumed that in every time period individuals gain on
average 10 g. Therefore, mean growth rate, (μGR) was 10 g.
The genetic standard deviation of growth rate (σAGR

) was
10% of μGR, which was 1 g, therefore σ2AGR

was 1 g2.
The range of b values was from −0.08 to 0.08. Standard

deviation of b was set as 60% of b= −0.05. Therefore,
standard deviations of genetic and environmental compo-
nents of b were calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2AD
þ σ2AI

þ σ2ED
þ σ2EI

q
¼ 0:6b, and since all variances

were assumed equal, each of them had value of 0.225 × 10
−3 (Table 2).

Repeatability was set to 0.7 and heritability of growth
rate to 0.5, in absence of social interactions (b= 0).
Phenotypic variance was calculated as σ2P=σ2AGR

=h2 and was

equal to 2 g2, permanent environmental effect on growth
(σ2Ep;GR

) as 0.2σ2P= 0.4 g2 and temporary environmental

effect (σ2Et;GR
) as 0.3σ2P= 0.6 g2 (Table 2).

Five simulated scenarios were based on 5 different
values of b (Table 2). For the selection part, only a base
population was used with b of −0.08 to test the effect of
selection on variability.
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