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Abstract 

Background:  The coronavirus disease 2019 (COVID-19) has become a pandemic. Few studies have been conducted 
to investigate the spatio-temporal distribution of COVID-19 on nationwide city-level in China.

Objective:  To analyze and visualize the spatiotemporal distribution characteristics and clustering pattern of COVID-
19 cases from 362 cities of 31 provinces, municipalities and autonomous regions in mainland China.

Methods:  A spatiotemporal statistical analysis of COVID-19 cases was carried out by collecting the confirmed COVID-
19 cases in mainland China from January 10, 2020 to October 5, 2020. Methods including statistical charts, hotspot 
analysis, spatial autocorrelation, and Poisson space–time scan statistic were conducted.

Results:  The high incidence stage of China’s COVID-19 epidemic was from January 17 to February 9, 2020 with daily 
increase rate greater than 7.5%. The hot spot analysis suggested that the cities including Wuhan, Huangshi, Ezhou, 
Xiaogan, Jingzhou, Huanggang, Xianning, and Xiantao, were the hot spots with statistical significance. Spatial auto-
correlation analysis indicated a moderately correlated pattern of spatial clustering of COVID-19 cases across China in 
the early phase, with Moran’s I statistic reaching maximum value on January 31, at 0.235 (Z = 12.344, P = 0.001), but 
the spatial correlation gradually decreased later and showed a discrete trend to a random distribution. Considering 
both space and time, 19 statistically significant clusters were identified. 63.16% of the clusters occurred from January 
to February. Larger clusters were located in central and southern China. The most likely cluster (RR = 845.01, P < 0.01) 
included 6 cities in Hubei province with Wuhan as the centre. Overall, the clusters with larger coverage were in the 
early stage of the epidemic, while it changed to only gather in a specific city in the later period. The pattern and scope 
of clusters changed and reduced over time in China.

Conclusions:  Spatio-temporal cluster detection plays a vital role in the exploration of epidemic evolution and early 
warning of disease outbreaks and recurrences. This study can provide scientific reference for the allocation of medical 
resources and monitoring potential rebound of the COVID-19 epidemic in China.
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Introduction
In late December 2019, an outbreak of viral pneumonia 
caused by an unknown aetiology was firstly reported in 
Wuhan City, the capital of Hubei Province in China [1]. 
Most patients from the initial cluster had epidemiologi-
cal links to the Huanan Seafood Wholesale Market in 
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Wuhan, where there was sale of seafood and some live 
animals, suggesting a possible zoonotic origin [1, 2]. 
However, the definitive source of the virus is still unclear. 
The pneumonia was later identified to be caused by a 
pathogen-severe acute respiratory syndrome coronavi-
rus-2 (SARS-CoV-2), which was subsequently officially 
named the novel coronavirus disease 2019 (COVID-
19) by the World Health Organization (WHO) [2–4]. 
Phylogenetic analysis revealed that SARS-CoV-2 had a 
positive-sense single-stranded RNA and fell within the 
subgenus Sarbecovirus of the genus Beta-coronavirus, 
with 88–89% similarity to its two closest bat-derived rela-
tives, bat-SL-CoVZC45 and bat-SL-CoVZXC21 [2, 5–7]. 
However, SARS-CoV-2 is genetically distinct from SARS-
CoV with about 79% similarity, and Middle East res-
piratory syndrome coronavirus (MERS-CoV) with only 
approximately 50% similarity [6–8].

Evidence of infections in family clusters and medical 
workers has confirmed the occurrence of human-to-
human transmission [6–8]. Similar to the common flu, 
SARS-CoV-2 infection is mainly through contact trans-
mission and respiratory droplets [10]. The COVID-19 
outbreak spread rapidly in China and other countries. On 
January 30, 2020, the WHO declared that the COVID-19 
epidemic was a public health emergency of international 
concern [11]. And WHO claimed that COVID-19 was a 
pandemic with an estimated death rate between 1 and 5% 
on March 11, 2020[11]. As of October 5, 2020, more than 
35 million cases of COVID-19 have been reported in 
almost all countries and territories worldwide, resulting 
in approximately 1.04 million deaths [13]. In mainland 
China, until October 5, 2020, 85,482 cases of COVID-19 
were officially confirmed, including 4634 deaths [14].

In terms of the ongoing global COVID-19 pandemic, a 
large number of epidemiological, ecological and statisti-
cal models have been employed to observe the changes, 
investigate the distribution, and assess the tendency of 
this epidemic [15, 16]. However, most of these studies 
focused on epidemiological and clinical characteristics, 
transmission indicators, and population distribution 
of COVID-19 [17, 18]. Relatively, studies evaluating the 
spatial and temporal spread of the COVID-19 pandemic 
are fewer, especially in developing country like China 
that suffered serious influence from the disease with lim-
ited medical resources [10, 19]. To date, several studies 
in China involving spatiotemporal distribution analysis 
have only discussed the temporal and spatial informa-
tion of cases from the regional or provincial level, limited 
attentions have been paid to the nationwide city-level 
spatiotemporal spread of COVID-19 [10, 19, 20].

Spatiotemporal distribution analysis can reflect the 
temporal and spatial evolution of the COVID-19, identify 
significant clusters of the disease, explore the potential 

variation rules, and determine whether the observed 
space–time patterns of the epidemic are due to chance 
or randomly distributed [10, 12]. Besides, comprehen-
sive spatiotemporal information of the cases is useful 
and imperative to further detect active and emerging 
clusters of COVID-19, which can inform decision mak-
ers and related stakeholders where and when to improve 
targeted response measures to mitigate further transmis-
sion [12, 21]. Thus, it has been suggested that conduct-
ing space–time investigation can prioritize locations for 
targeted prevention and control measures, rapid testing, 
and healthcare resources allocation [12, 22]. For these 
reasons, it is very important to research spatiotemporal 
clusters and hot spots of COVID-19 cases, especially at 
the city level in mainland China. This idea has been the 
main motivation for this research. In the present study, 
hotspot analysis, spatial autocorrelation, and Poisson 
space–time scan statistic were used to describe the spati-
otemporal pattern and measure the spatial association of 
the COVID-19 epidemic in 362 cities in mainland China.

Materials and methods
Data
This study belongs to spatial epidemiology, which aims 
to describe the spatiotemporal distribution of COVID-
19 cases in the Chinese population. The COVID-19 cases 
and location data were collected from official websites of 
the National Health Commission of China and provin-
cial Health Commissions [23]. In the present study, only 
the confirmed COVID-19 cases from January 10, 2020 
to October 5, 2020 were considered, excluding asymp-
tomatic infection cases. The COVID-19 cases in China 
were reported according to “COVID-19 Diagnosis and 
Treatment Plan” [24], and the diagnosed COVID-19 
cases are confirmed by one of the following etiological or 
serological evidence: Real-time fluorescent Reverse Tran-
scription-Polymerase Chain Reaction (RT-PCR) detec-
tion is positive for the COVID-19 nucleic acid; the results 
of viral gene sequencing are highly homologous with 
COVID-19 virus; COVID-19 IgM antibody and IgG anti-
body tests are positive; COVID-19 IgG antibody changes 
from negative to positive or the IgG antibody titer in 
the recovery phase is 4 times or more higher than that 
in the acute phase. The latter two items have been appli-
cable since March 3, 2020. A total of 85,482 cases were 
collected from 31 provinces, municipalities and autono-
mous regions (Fig.  1). This study area covered 362 cit-
ies in mainland China, which included 4 municipalities, 
292 prefecture-level cities, 7 districts, 30 autonomous 
prefectures, 3 leagues, and 26 provincial county-level 
cities(Additional file  1). In the spatial statistical analy-
sis and spatio-temporal scanning analysis, 18 cases of 
unknown specific city information in the Xinjiang Uygur 
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Autonomous Region were excluded. The permanent pop-
ulation of each city at the end of 2019 used in the time–
space scanning analysis was derived from the national 
economic and social development statistical bulletin of 
each city in 2019. The geographic information, including 
latitude and longitude, was collected from the National 
Geomatics Center of China [25].

Methods
The analysis process was divided into three steps. First, 
MS Excel 2013 (Microsoft Inc., Redmond, CA, USA) was 
used to collate the original data and explore the temporal 
distribution of COVID-19 cases in China by drawing sta-
tistical graphs. Second, hot spot analysis was adopted to 
explore the spatial distribution characteristics of COVID-
19 cases in China. Finally, the global autocorrelation 
analysis at different time points and Poisson space–time 
scan statistic were applied to explore the spatiotemporal 
patterns of COVID-19 cases. ArcGIS Desktop software 
(version 10.3.1, Environmental Systems Research Insti-
tute, Inc, USA) provided tools for hot spot analysis and 
global autocorrelation analysis. The analysis of space–
time clustering was performed using SatScan version 

9.4.4 software (Kulldorff and Information Management 
Services Inc., Boston, MA, USA).

Hot spot analysis
A feature with a high value tends to attract attention, but 
it may not be a statistically significant hot spot. Hot spot 
analysis based on Getis–Ord Gi* statistics can identify 
statistically significant spatial clusters of high values (hot 
spots) and low values (cold spots) through the resultant 
Gi* z-scores and P-values, which can especially be condu-
cive to the discovery of high-incidence area of COVID-19 
disease [26, 27]. Gi* values are assumed to be indepen-
dently normal and identically distributed, in order to 
control the overall probability of Type I error for multi-
ple tests, Bonferroni correction was used to test the sig-
nificance of Gi* values. If Gi* z score ≥ 3.63, it indicates 
that the area is a statistically significant high-value spa-
tial cluster, that is, a disease "hot spot area"; while Gi* z 
score ≤ -3.63 means that the area is a statistically signifi-
cant low-value spatial cluster. The Getis–Ord Gi* statistic 
is calculated as the following formula

Fig. 1  Distribution of research areas
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Where xj is the attribute value for city j, and n is the 
total number of cities; wij is the spatial weight between 
city i and j. The first-order queen contiguity spatial weight 
was used, that is, as long as there was a common edge or 
the same point between two cities, they were considered 
to be adjacent, the weight was 1, otherwise the weight 
was 0. This spatial weight is suitable for modeling some 
type of infectious disease data [28].

Spatial autocorrelation
To explore the spatial association variation over time, 
global spatial autocorrelation was applied for daily new 
cases at different time points. Moran’s I statistic was cho-
sen as the index of spatial autocorrelation and it has a 
value range of [− 1,1]. If the value is 0, it means that there 
is no correlation in different regions, and the incidence is 
spatially random or independent. Positive Moran’s I value 
represents the incidence of disease in adjacent areas is 
similar, which means a positive correlation. The closer to 
1, the stronger the spatial aggregation. Moran’s I < 0 indi-
cates negative spatial correlation. The smaller the value, 
the greater the spatial difference among spatial units. 
Moran’s I statistics is given as.

Where i, j are city indexes, and xj is the number of 
newly confirmed COVID-19 cases in city j. wij is the 
spatial relationship between city i and j, which was also 
shown by the first-order queen contiguity spatial weight. 
n represents the number of all space units, namely, the 
number of cities. x is average cases of all cities.

Poisson space–time scan statistic
The space–time scanning statistic, proposed by Kulldorff 
[29], is widely used to search and detect significant clus-
ters of diseases in both space and time, by using dynami-
cally cylindrical moving windows in different time and 
geographic areas. A space–time cluster can be identified 
when more cases are observed in the scanning window 
than expected. The scanning time was set in days and 
the scanning area was in cities. To avoid extremely large 
clusters, we tried 10, 20, 25, and 30% of the population at 
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risk respectively as spatial scanning windows. And it was 
found that the number of cities covered by some clusters 
exceeded 10–15% of the total number of geographic cit-
ies (> 55 cities) when setting 20%-30% of the population 
at risk as maximum scanning window size [30], which 
was not appropriated or conducive to disease surveil-
lance. Therefore, in the case of comprehensively weighing 
the accuracy of the clusters and the actual operability of 
disease surveillance, the maximum spatial scanning area 
was set to 10% of the population at-risk, and the maxi-
mum scanning time scale was set to 50% of the overall 
research duration, and the number of Monte Carlo itera-
tions was set to 999. Poisson probability model was used 
in spatio-temporal scan analysis. According to the prin-
ciple of Poisson distribution, log-likelihood ratios (LLR) 
of different windows were calculated and were tested by 
Monte Carlo method to evaluate the statistical signifi-
cance of space–time cluster. If P < 0.05, the relative risk 
of the cases within the scanning window could be con-
sidered to be statistically significant compared with those 
outside the window. The area with the largest LLR value 
was regarded as the main cluster, and the remaining areas 
with statistically significant LLR values were treated as 
the secondary clusters. And the spatio-temporal scan 
results were visualized using ArcGIS 10.3.1.

The log-likelihood ratio of the scan window is.

Where µZ is the expected number of events in the 
time–space window Z under stochastic  assumption; µG 
is the total expected number of theoretical events in the 
whole study time–space range, µG =

∑

µZ , while nG is 
the actual total number of events in the study time–space 
range.nZ is the actual number of patients observed in the 
time–space window Z. Relative risk (RR) was applied to 
assess the degree of risk of epidemic in each cluster.

Results
Dynamic trend of COVID‑19 cases
As shown in Fig.  2, the overall growth trend of early 
COVID-19 cases in China was similar to the epidemic 
situation in Hubei province. After the outbreak of 
COVID-19 in China at the end of 2019, the number of 
the cases first started with an explosive rapid increase, 
then the growth rate began to decrease at the end of 
February and remained stable after March. Specifi-
cally, from January 17 to February 9, 2020, the number 

LLR =
LZ

LG
=

(

nZ
µZ

)nZ
(

nG−nZ
µG−µZ

)nG−nZ

(

nG
µG

)nG

RR =
nZ/µZ

(nG − nZ)/(µG − µZ)



Page 5 of 14Ma et al. BMC Infect Dis          (2021) 21:816 	

of cumulative confirmed cases increased rapidly with 
the daily increase rate greater than 7.5%. After Febru-
ary 22, the daily increase rate dropped to less than 1%. 
Since March 6, the number of new cases per day has 
been less than 100 with sporadic distribution in vari-
ous regions across the country, except for April 12 and 
July 28–30. Around mid-March, though the import of 
overseas cases caused a small increase in the number 
of cases due to the global epidemic, the COVID-19 
cases in China were basically under control as the epi-
demic in Hubei was curbed. As of October 5, 2020, a 
total of 85,482 COVID-19 confirmed cases reported in 
Mainland China, and 79.71% of the COVID-19 cases 
came from Hubei Province. The epidemic curve based 
on the diagnosis date (Fig.  3) shows that the number 
of COVID-19 patients in China and Wuhan Province 
reached the first epidemic peak from February 3 to Feb-
ruary 7, and reached the second peak from February 12 
to February 13. As of March 5, the daily new confirmed 
cases in China were less than 100, and there were no 
more new cases by mid-March in Hubei.

Figure  4 presents the progress of the COVID-19 epi-
demic in Henan (adjacent to Hubei province), Hebei 
(separated from Hubei by one province), and Tianjin 
(two provinces apart from Hubei). All three regions 
reported confirmed cases at the end of January, 2020. 
The increase rate of cases in Henan, a neighboring prov-
ince of Hubei, was much higher than that in Hebei and 

Tianjin, suggesting that the spread of the epidemic might 
be related to the spatial location.

Spatial epidemic characteristics of COVID‑19
As of October 5, COVID-19 patients were distributed in 
31 provinces and 328 cities (328/362, 90.61%) in Main-
land China, of which cases in Hubei Province accounted 
for 79.71% (68,139/85,482), and 1841 cases in Guang-
dong Province (2.15%), 1282 cases (1.50%) in Zhejiang 
Province, and 1281 cases (1.50%) in Henan Province. 
The cases in Hubei were mainly from Wuhan City 
(50,344/68,139, 73.88%), while the cases in Guangdong 
Province mainly distributed in Guangzhou and Shenz-
hen (1207/1841, 65.56%) cities. Henan patients mainly 
came from Xinyang, Zhengzhou, Nanyang, and Zhu-
madian (733/1281, 57.22%). Gi* Cluster Map illustrated 
that the hot spots for the distribution of COVID-19 cases 
involved 8 cities in Hubei, including Wuhan, Huangshi, 
Ezhou, Xiaogan, Jingzhou, Huanggang, Xianning, and 
Xiantao (Fig. 5).

Spatiotemporal Pattern of COVID‑19
Visualization of spatiotemporal changes of COVID‑19 cases
In order to analyze the temporal and spatial changes of 
the COVID-19 epidemic in detail, we retrospectively 
visualized the geographical distribution of the COVID-
19 cases in China on January 24, February 7, February 
21, and October 5, respectively (Fig.  6). On January 24, 
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197 (54.42%) cities in China did not report confirmed 
cases of COVID-19, and 152 (41.99%) cities had 1–10 
cases. The city with the highest incidence was Wuhan, 
with 572 cases, followed by Huanggang City and Chong-
qing City, with 64 cases and 57 cases respectively. On 
February 7, the epidemic spread rapidly from Wuhan to 
other regions, covering 89.50% (324/362) of the cities, 
especially the cities in Hubei and the surrounding prov-
inces. Over time, on February 21, the number of patients 
in central and eastern cities in China increased to vary-
ing degrees with small changes in western cities, and no 
confirmed COVID-19 cases were reported in 37 cities. 
Patients were still mainly distributed in Wuhan, Xiaogan 
and Huanggang in Hubei Province. As of October 5, the 
number of patients in most cities remained basically sta-
ble. As shown in Fig. 6, only some cities, such as Urumqi, 
Mudanjiang, Shanghai, Beijing, and Guangzhou, had 
their maps darkened, that is, the increase in COVID-19 
cases was a little obvious in these regions. There were still 
34 cities without reported cases. As a supplement, we 
also paid attention to the incidence rate, and explored the 
spatio-temporal changes of the incidence of COVID-19 
in mainland China, which showed similar spatio-tempo-
ral characteristics (Additional file 2).

In Hubei province as displayed in Fig. 7, the COVID-19 
cases were only detected in Wuhan at first, and gradually 
spread to 70.59% (12/17) cities in the province on January 
24. On February 7, the epidemic covered the whole prov-
ince and the number of cases began to increase sharply. 
As of February 21, the number of cases had increased to 
about 2.5 times the number of cases on February 7. Then 
until October 5, the number of cases in other regions did 
not vary much, except for Wuhan that was still increasing 
to a certain extent.

Dynamics changes of spatial autocorrelation of new 
COVID‑19 cases over time
The global spatial autocorrelation of daily new COVID-
19 cases showed that the spatial correlation increased 
in the early period and gradually decreased later with a 
discrete trend to a random distribution. Specifically, as 
shown in Fig. 8, Moran’s I statistic continued to rise after 
the outbreak, reaching its maximum value on January 
31, at 0.235 (Z = 12.344, P = 0.001), suggesting a moder-
ate spatial aggregation pattern. Then Moran’s I statistics 
declined, except for a slight rise around April 17 and 
June 12 (P < 0.05). It suggested that from mid-January to 
mid-February, mid-April and mid-June, the daily new 

Fig. 5  Gi* Cluster Map of COVID-19 cases in mainland China
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Fig. 6  Spatio-temporal distribution of cumulative confirmed COVID-19 cases in mainland China

Fig. 7  Spatiotemporal distribution of the cumulative confirmed COVID-19 cases in Hubei Province
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COVID-19 cases in China were spatially non-random 
distribution with statistically significant positive correla-
tion to varying degrees. Subsequently, Moran’s I statistic 
dropped and kept at around 0, indicating a decline in 
clustering, and the COVID-19 cases was gradually dis-
tributed randomly in space, but there was no statistical 
significance (P > 0.05).

Significant emerging clusters of COVID‑19 cases
Table  1 summarizes 20 spatiotemporal clusters of 
COVID-19 cases in mainland China from January 10 
to October 5, 2020, at city-level, of which 19 were iden-
tified with statistical significance. Most of them (12, 
63.16%) occurred from January to February. Clusters 
lasted from 1 to 34  days. Cluster 1 was the most likely 

Fig. 8  The trends of Moran’s I statistic and corresponding P-values

Table 1  Emerging space–time cluster of COVID-19 in mainland China from January 10 to October 5, 2020, at city-level

RR Relative Risk, LLR Log-likelihood ratio

Cluster Duration(days) Center Radius # of cities Observed Expected RR LLR P

1 Jan 27–Feb 29 Wuhan 102.46 6 57,505 207.52 845.01 292,260.15  < 0.01

2 Jan 25–Feb 13 Shangluo 408.41 33 5674 595.26 10.14 7869.28  < 0.01

3 Jan 25–Feb 14 Hengyang 366.96 27 3663 576.47 6.59 3743.56  < 0.01

4 Jul 17–Aug 13 Urumqi 0.00 1 811 22.08 37.08 2137.36  < 0.01

5 Jan 27–Feb 9 Quzhou 322.25 26 1632 339.54 4.88 1279.59  < 0.01

6 Apr 4–Apr 17 Mudanjiang 0.00 1 368 7.92 46.68 1053.46  < 0.01

7 Jan 26–Feb 8 Shenzhen 110.91 6 844 149.54 5.69 769.00  < 0.01

8 Feb 20 Jining 0.00 1 201 1.88 107.21 740.27  < 0.01

9 Jun 13–Jun 27 Beijing 0.00 1 304 72.65 4.20 204.09  < 0.01

10 Apr 10–Apr 12 Hulunbeir 0.00 1 62 1.71 36.29 162.36  < 0.01

11 Jan 24–Feb 8 Ziyang 266.53 16 705 351.38 2.01 138.03  < 0.01

12 Feb 3–Feb 27 Tibetan Autonomous Prefecture of Garze 0.00 1 72 6.74 10.69 105.29  < 0.01

13 Jul 24–Aug 2 Dalian 0.00 1 84 15.73 5.34 72.48  < 0.01

14 Apr 7 Taiyuan 0.00 1 25 1.00 24.92 56.39  < 0.01

15 Mar 5–Mar 6 Lanzhou 0.00 1 28 1.71 16.43 52.07  < 0.01

16 Jan 26–Feb 14 Yinchuan 87.90 2 59 16.52 3.57 32.63  < 0.01

17 Jan 28–Jan 30 Sipsongpanna 0.00 1 11 0.80 13.72 18.61  < 0.01

18 Jan 28–Feb 1 Chuxiong Yi Autonomous Prefecture 150.77 4 43 14.97 2.87 17.36 0.02

19 Jan 26–Jan 31 Weihai 0.00 1 20 3.83 5.23 16.90 0.03

20 Feb 11 Qiannan Buyi and Miao Autonomous Prefec-
ture

0.00 1 9 0.74 12.16 14.22 0.29
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cluster (RR = 845.01, P < 0.01), including 6 cities in 
Hubei province with Wuhan as the center. Cluster 2 was 
located in 33 cities in central China. It had 9.14 times 
more increased risk of COVID-19 (RR = 10.14, P < 0.01) 
compared to other places outside the cluster. Cluster 3 
contained 27 cities located south of Wuhan city in south-
central China. The population within cluster 3 were at 
5.59 times greater risk of COVID-19 (RR = 6.59, P < 0.01) 
than regions outside the cluster. Cluster 4 showed that 
the 811 cases in Urumqi from Jul 17 to Aug 13 were clus-
tered (RR = 37.08, P < 0.01). More characteristic of each 
cluster is shown in Table 1. Figure 9 depicts the relative 
risk of each city and the location of the clusters. Larger 
clusters were located in central and southern China. 
Wuhan exhibited the highest RR of 178.51, which was 
also the largest RR of the entire analysis process. Out of 
362 cities, 34 cities reported a relative risk of 0, while 22 
cites had a relative risk greater than 1 (higher observed 
than expected cases), and 15 cities showed a relative risk 
greater than 3.

Discussion
This city-level modeling study analyzed and visual-
ized the spatio-temporal distribution characteristics of 
COVID-19 in mainland China from perspectives of time, 
space, and space–time, respectively, to explore the high-
risk hot spots and systematically discuss the space–time 
aggregation pattern of COVID-19 at the city level across 
the country, which could provide scientific reference for 
the allocation of medical resources in areas with differ-
ent epidemic levels. Also, this study could support the 
healthcare facilities in monitoring and early warning of 
COVID-19 or other epidemics of the same type, as well 
as alerting to the potential rebound of the epidemic in a 
certain area.

In terms of time alone, the high incidence duration 
of China’s COVID-19 epidemic was from January 17 to 
February 9, 2020, as the daily increase rate was greater 
than 7.5%, which was a signal of the epidemic and out-
break. The first wave of COVID-19 outbreak in China 
lasted for about 20 days [31]. A study pointed out that the 
number of daily new cases reached a peak between Feb-
ruary 3 and 9 with a spike on February 12, 2020, show-
ing time clustering, which was consistent to our result 

Fig. 9  Spatial relative risk distribution of COVID-19 in different cities from January 10 to October 5, 2020
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[32]. In response to the epidemic, almost all countries 
implemented different lockdown policies to alleviate the 
spreading of the disease [16, 33]. Due to the large popula-
tion and active socio-economic vitality, China was facing 
greater pressure from the COVID-19 outbreak. There-
fore, on January 26, 2020, 30 provinces in China initi-
ated the first-level response to public health emergencies 
[34]. China launched an unprecedented strict lockdown 
policy including the prohibition of unnecessary commer-
cial activities in daily lives, urging people to stay at home 
to prevent any kind of people gathering, and establishing 
restrictions on public transportation [31]. Around mid-
March, the COVID-19 epidemic in China was basically 
under control. These rigorous prevention and control 
measures were proven to take into effect in restricting 
COVID-19 spreading speed and mitigating the burden of 
both medical resources and costs [21, 31, 35].

From a spatial perspective, the hot spot analysis based 
on the number of cases suggested that the cities includ-
ing Wuhan, Huangshi, Ezhou, Xiaogan, Jingzhou, Huang-
gang, Xianning, and Xiantao, were the hot spots with 
statistical significance in the distribution of COVID-19 
cases in China, which was similar to the results of cluster 
1 in the spatio-temporal scan statistic. Gi* Cluster Map 
based on incidence rate showed the similar hot spots, 
which can be a supplementary verification to the existing 
results (Additional file  2). Almost all hotspots were cit-
ies adjacent to Wuhan, which might be attributed to their 
frequent cross-regional social and economic activities 
and connections with Wuhan. After the outbreak, more 
than 5 million people emigrated from Wuhan before the 
city blockade [10]. A study suggested that most of the 
early cases had a history of travel or residence in Wuhan, 
then became the main source of infection in other cities 
[36]. Studies showed that the progress of the COVID-19 
epidemic was related to population migration [9], espe-
cially the population movement from Hubei, and the 
reported cases in various regions were positively cor-
related with the population migration index [37]. With 
the identification of hot spots, prevention and control 
measures such as publicity, education, monitoring, and 
training should be carried out in high-risk areas [38]. 
Spatial autocorrelation analysis indicated a moderately 
correlated pattern of spatial clustering of COVID-19 
cases across China in the early stage. However, the spa-
tial correlation gradually decreased in the later period 
and showed a discrete and random trend. This result was 
similar to one study, which revealed that the COVID-19 
cases were positively correlated in space before Febru-
ary 3 in China, and gradually decreased, then distributed 
randomly after February 11 [39]. To a certain extent, 
the reduction of spatial correlation also implied that the 

series of critical actions taken by China for suppressing 
the outbreak were effective [32, 40].

From the spatiotemporal perspective, based on space–
time scan statistic, we found most clusters happened in 
January and February and were located in central and 
southern China. Cluster 1 was discovered at the end 
of January, which was also the one where the epidemic 
lasted the longest. With the discovery of cluster 1, China 
began to implement school closures, travel restrictions, 
community-level lockdown, and contact tracing around 
late January [41]. Cluster 2, 3, 5, 7, 11 and 16 were also 
occurred in the early phase and ended in mid-Febru-
ary. Most of them were located around cluster 1, and 
the communication activities with cluster 1 were highly 
active. The cluster 15 that occurred in Lanzhou in early 
March and the Cluster 6, 10 and 14 that occurred around 
mid-April were cities with large international airports, 
which were caused by a surge in imported cases from 
abroad. Therefore, starting from March, China shifted 
the focus of measures to the testing and quarantine of 
inbound passengers to maintain control of the disease 
[39]. Cluster 9 broke out locally in Beijing in June. As 
the capital, Beijing has developed to one of the centres of 
transportation and economy in China and even around 
the world. Many studies showed that frequent economic 
and trade activities could supply a way for new viruses to 
spread over long distances, which might increase the risk 
of infectious disease outbreaks [42, 43]. Cluster 13 was 
formed by the continuous importation of overseas cases 
from the end of July to the beginning of August. Cluster 
4 was the aggregation of Xinjiang local cases from July 
17 to August 13. There had no emerging spatiotemporal 
clusters were detected in September. Overall, the clusters 
with larger coverage were in the early phase of the epi-
demic, while it changed to only gather in a specific city 
in the later period. The scope of the cluster was shrink-
ing, implying that China’s strict prevention and control 
measures on population movement played a role and had 
practical implications.

The spatio-temporal distribution characteristics of dis-
eases are related to the course of the epidemic, which pre-
sents obvious clustering during the epidemic period [12]. 
Therefore, the clustering detection in time and space is 
crucially important in the exploration and early warning 
of disease outbreak and recurrence. To our knowledge, 
this research was the first to analyze the spatial and tem-
poral distribution characteristics of COVID-19 on the 
city level from a national perspective in mainland China, 
which could play a pivotal role in assessing the level of 
epidemics in different cities, optimizing the allocation of 
medical resources, evaluating the effects of prevention 
and control interventions, and assisting in making health-
care decisions. For instance, this study could effectively 
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provide public health officials and decision-makers with 
information on the spatiotemporal spread of COVID -19 
disease in time, and keep them well-informed on when 
and where to improve the allocation of resources and 
testing sites, and to implement stricter quarantine and 
travel bans. Based on this study, further monitoring the 
spatial clustering pattern of COVID-19 and detecting the 
emergence of new clusters or the enhancement of exist-
ing clusters can, from city level, recognize potential epi-
demic rebounds and achieve early prevention and control 
of clusters.

Although our findings give a helpful insight into the 
spatio-temporal distribution characteristics of COVID-
19 in China, this study has some limitations. Firstly, our 
research was based on confirmed cases, and the sus-
pected cases and cases diagnosed as positive but asymp-
tomatic were not included according to the definition, so 
the true magnitude of the COVID-19 epidemic needed to 
be interpreted dialectically. Secondly, the latest number 
of permanent residents in 2019 was used in the space–
time scan analysis, which might differ with the local pop-
ulation in 2020, so the research results might be biased. 
Thirdly, this study utilized COVID-19 case data as of 
October 5, 2020, and did not further collect COVID-19 
cases in winter. Studies showed that the spreading and 
transmission rate of COVID-19 could significantly posi-
tively associate with temperature [21, 31, 44], so there 
might be emerging clusters that reappear in winter. How-
ever, a study held the opposite view that mean tempera-
ture and relative humidity were inversely associated with 
COVID-19 growth curve in Africa [45]. Another study 
suggested there was no evidence that COVID-19 cases 
decreased in warm temperatures [46]. Therefore, it is still 
necessary to further investigate whether there are new 
clusters in China during the winter. Besides, in space–
time scan statistics, confidence interval for the relative 
risk of detected clusters was not included, since the esti-
mation method is still an open challenge, but is an inter-
esting research worthy of in-depth exploration in future. 
Additionally, for the current study, due to the lack of a 
unified open sharing platform to realize data acquisition 
and sharing at city level, we spent a lot of energy and time 
in the data collation. Thus, barriers to data openness and 
sharing will be a bottleneck that needs to be resolved for 
monitoring an epidemic and exploring further research 
and formulating policies to respond to infectious disease 
in the future [41].

Conclusion
This study provides an overview of the spatiotemporal 
clustering pattern and hot spots of COVID-19 cases in 
China at the city level. Overall, the clusters with larger 

coverage emerged in the early phase of the epidemic, 
while they changed to only gather in a specific city in 
the later period, which showed the pattern and scope 
of clusters changed and reduced over time. The strict 
prevention and control strategies adopted by Chinese 
government were effective to cope with the COVID-19 
epidemic. However, persistent efforts need to be made 
to prevent the rebound of the epidemic, especially in 
the context of the global pandemic. Analyzing spatial 
and temporal distribution characteristics of COVID-19 
cases for different cities across the country is useful to 
assess the level of epidemics and evaluate the effects of 
prevention and control measures in different regions. 
The research method can be further used to monitor 
the changes in spatial clustering pattern of COVID-19 
cases and detect the emergence of new clusters, and 
then provide useful clues for healthcare facilities to 
quickly respond to the highly changeable and conta-
gious epidemics.
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