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Summary

The A/Japan/57 influenza hemagglutinin (HA) peptide HA 128-145, when bound by human
histocompatibility leukocyte antigen-DRw11 cells, is recognized by the human CD4+ T cell
clone V1. A rabbit antiserum has been raised against HA 128-145 which recognizes not only
the free peptide, but also the HA 128-145/DRw11 complex on a solid matrix, in solution, or
on the surface of viable cells. The detection of these complexes on viable cells was shown to
be class II specific, DRw11 restricted, and commensurate with the level of DRw11 expression .
The identity of DRw11 as the cell surface molecule binding HA 128-145 was confirmed by
immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and tryptic peptide
mapping. Using this antiserum, HA 128-145/DRw11 complexes could be detected on the cell
surface as soon as 30 min after the peptide was added, and increased up to 24 h . Dissociation
kinetics showed these complexes were long-lived, with a half-life of approximately 14 h . This
anti-HA peptide antiserum represents the first direct means of studying antigenic peptide-human
leukocyte antigen class II complexes on the surface ofliving cells without the addition of a non-
amino acid moiety to the peptide. The properties of this antiserum thus provide the potential
to study naturally processed antigenic peptides as well as the mechanism of processing itself in
a physiologically relevant system .

T he immune response of CD4+ T cells is thought to be
triggered by immunogenic MHC class II molecule-

peptide complexes present on the surface of APC's (1-5) .
Previous reports have demonstrated in vitro association of
peptide antigen with purified class II molecules (5-10), and
proliferation of cloned T cells exposed to these complexes
(6, 11) .
While antigen-specific T cells have been useful for qualita-

tively demonstrating the presence of such complexes, the low
number of surface peptide-class II complexes needed to acti-
vate a T cell, and the all-or-none nature of the recognition
event have made such assays less useful for studying the ki-
netics and nature ofpeptide-class II binding (12-14). Studies
of APC antigen processing and class II loading have been
hampered by the inability to directly detect peptide bound
in the antigen-binding groove ofthese molecules on the sur-
face ofintact cells. Whole cell binding assays using radiolabelled
peptide antigen have been plagued by nonspecific uptake of
radiolabel into the cells . Those studies which promote meta-

bolic antigen-processing have suffered from unacceptably high
levels of nonspecific binding which have made it difficult to
separately study the complexes of peptide antigen bound to
surface class II molecules . Similar studies done under condi-
tions which block APC intracellular antigen uptake and pro-
cessing have demonstrated a high level of nonspecific cell surface
binding and only a low level of binding to class II molecules
(7, 15-20) .
A series of rather elegant studies using biotinylated pep-

tides and a fluorescent-avidin detection system has emerged
from the laboratory of J.B. Rothbard, Immunologic Phar-
maceutical Corporation (Palo Alto, CA) (12, 21, 22), allowing
valuable insights into the association of immunogenic pep-
tides with cell surface class II molecules . However, the in-
terpretation of these studies is complicated by the potential
ofthe biotin moiety to alter the conformation of the peptide
bearing the biotin, or to affect the binding of the peptide
to the class II molecule when attached to an amino acid in
the MHC-interacting region of the antigen.
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An antibody reagent which could detect unmodified
peptide-MHC class II complexes on the cell surface would
clearly be advantageous, and also has the potential to detect
naturally processed peptides derived from intact antigen. A
series of studies in the late 1970's and early 1980's initially
sought to raise such antisera (17, 23-26) . Although these
studies did raise several antisera capable of binding to free
peptide antigen, they were unsuccessful in obtaining binding
of peptide to class II after the antisera had boundthe peptide,
or in demonstrating antisera binding to antigen after antigen
uptake onto class II had occurred . Among the possibilities
suggested to explain this failure were the denaturation or
removal during antigen processing of epitopes on the pep-
tide that are recognized by the antisera, masking of the epi-
tope by the class II molecule, or alteration ofthe epitope upon
binding of peptide to class II (17, 23) .
The human, cytolytic, CD4-positive T cell clone, V1, has

been shown to recognize a fragment of hemagglutinin pro-
tein from the influenza strain A/Japan/57 (Brown, L.R., N.
Nygard, M.B. Graham, C. Bono, V.L . Braciale, J. Gorka,
B.D. Schwartz, and T.J . Braciale, manuscript submitted for
publication) . This hemagglutinin peptide includes the amino
acid residues 128-145, and is recognized by V1 only in the
context HLA of DRw11.
We report here the ability ofa rabbit antiserum raised against

this influenza hemagglutinin (HA)l peptide to directly de-
tect the complex recognized by the human T cell clone V1,
composed of an antigenic HA peptide without any artificial
linkage element and bound to HLA-DRw11 on the surface
of an APC.

Materials and Methods
Synthetic Peptides.

	

All peptides used in this study were synthe-
sized on an Applied Biosystems (Foster City, CA) automated solid
phase peptide synthesizer. The photoprobe peptide was also made
on the Applied Biosystems instrument by incorporating the pho-
toreactive group 4-benzoylbenzoic acid on the e-amine of the
N-terminal lysine according to the method of Gorka et al . (27) .
The sequences of all peptides used are given in Fig. 1.

Cell Lines and Clones.

	

The Tcell clone VI was generated and
maintained as previously described (28) . It is specific for the hemag-
glutinin peptide encompassing amino acid residues 128-145 (HA
128-145) from influenza strain A/Japan/57 when presented in the
context ofHLA-DRw11(Brown, L.R., N. Nygard, M.B. Graham,
C. Bono, V.L . Braciale, J. Gorka, B.D. Schwartz, andT.J . Braciale,
manuscript submitted for publication) . EBVtransformed B lym-
phoblastoid cell lines (B-LCL's) GM3104 (DRI/DRI), GM3161
(DR2/DR2), GM3098 (DR3/DR3), and GM3164 (DR4/DR4)
were obtained from the Mutant Cell Repository (Coriell Institute
for Medical Research, Camden, NJ). TheB-LCL Swei (DRw11/
DRw11) was originally obtained from Dr. John Hansen (Fred
Hutchinson Cancer Research Center, Seattle, WA), and has been
maintained in our laboratory for the past 12 yr. TB-LCL (DR2/
DRw11) was transformed from normal B cells autologous to clone
V1 . SJO, a B-LCL prepared from a patient with the class II-negative
phenotype, bare lymphocyte syndrome was the generous gift of

1 Abbreviations used in this paper: B-LCL, B lymphoblastoid cell line ; HA,
influenza hemagglutinin; PP, photoprobe peptide .
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Dr . Jack Gorski (Milwaukee Blood Center, Milwaukee, WI). The
murine L cell transfectants bearing DRw11, DRw52, DQw7, or
DPw4 were the generous gift of Dr. Robert Karr (VA Medical
Center, Iowa City, IA).
T Cell S'Cr Release Cytotoxicity Assay.

	

The "Cr-release cyto-
toxicity assay was performed as previously described (28) .

ceHA Peptide Antiserum.

	

ceHAP rabbit antiserum was prepared
as in references 29 and 30 with the following modifications. 5 mg
of HA 128-145 photoprobe peptide (HA 128-145 PP, Fig. 1) was
mixed with 4.5 mg of BSA or KLH and exposed to 362 nm UV
light at a distance of 2 cm for 3 h at which time >65% of HA
128-145 PP was conjugated to the protein. 350 Ag ofpeptide-protein
conjugate in 200 Al PBS was emulsified in 500 Al CFA, and used
to immunize rabbits by s.c. injection at three sites . The rabbits were
boosted at 2 and 4 wk by injection of 350 Pg of peptide-protein
conjugate in 500 Al IFA, and were bled 1 wk thereafter. Negative
control antiserum was prepared in an identical fashion with irrele-
vant DN10 peptide (Fig . 1) .

Mouse Monoclonal Antibodies.

	

The hybridoma producing the
anti-DR framework antibody L243 was obtained from the Amer-
ican Type Culture Collection (Rockville, MD). The L243 was
affinity-purified using protein A-Sepharose, and used at a concen-
tration of 0.4 mg/ml for whole cell lysate immunoprecipitation .
FITC-conjugated L243 was purchased from Becton Dickinson &
Co. (Mountain View, CA) for use in FACS analysis . OKDR (anti-
DR framework mAb) was purchased from Ortho Diagnostic
Systems (Raritan, NJ). SFR3-DR5 (31), an anti-DRw11 mAb was
the gift of Dr. Susan Radka (Oncogene, Seattle, WA). Control
antibodies used included MKD6 (BD #1360), a murine anti-IA d
mAb, and G2CL, a murine anti H-2Kk mAb (BD #9051), both
obtained from Becton Dickinson and Co. A511, a murine mono-
clonal IgG2a antibody made in our laboratory, was also used in
some experiments as a negative control .
DRw11 Class II Purification .

	

DRw11 haplotype HLA class II
protein was affinity-purified fromSwei cellsby the method ofTurke-
witz et al . (32) using L243 mAb.

allA Peptide Antiserum Enzyme-Linked Immunosorbent Assay.
Nunc #439454 microtiter plate wells (Nunc, Inc., Naperville, IL)
were coated with peptide or protein overnight at 4°Cand washed
with PBS/1% BSA. Where indicated, the wells containing plate-
bound protein were then incubated with 2 Rg peptide in 100 Al
PBS for 3 h at room temperature and rewashed in PBS/1% BSA.
100 Al of rabbit serum diluted 1/100 in PBS/1% BSA were added
to each well, the incubation continued for 45 min at room temper-
ature, and the wells then washed. The second antibody added was
100 Al ofa 1/1000 dilution ofalkaline phosphatase-conjugated goat
anti-rabbit IgG (Sigma Chemical Co., St . Louis, MO) followed
by a 45 min incubation at room temperature . After washing, the
ELISA was developed by addition to each plate well of 100 JAI of
a 1 mg/ml substrate, p-nitrophenyl disodium phosphate, (Sigma
#104-105 ; Sigma Chemical Co.) . Following a 1 h room tempera-
ture incubation, the OD was read at 410 nm on a Dynatech MR700
ELISA plate reader.

Fluorescence-Activated Cell Sorter Assay with ceHAR

	

106 indi-
cated cells were incubated for 24 h at 37°C in 7% C02 at-
mosphere in 1 ml culture medium containing 5% dialyzed FCS
and 21 AM of the indicated peptide . The cells were washed twice
in PBS/1% FCS and resuspended at 5 x 107/ml in wash buffer.
Equal aliquots of peptide-pulsed cells were incubated for 20 min
at 4°C with 100 AI of 1/100 dilution of preimmune rabbit serum
or immune rabbit otHA peptide antiserum, or the indicated mAb
in PBS/1% FCS. After incubation the cell aliquots were washed
in PBS/1% FCS, and then incubated in 100 Al of FITC-conjugated



goat anti-rabbit IgG (Fisher Biotech #OB1400; Fisher Scientific,
St . Louis, MO) for rabbit sera, 100 j .al of FITC-conjugated goat
anti-mouse IgG (Fisher Biotech #OB1420-FITC) for unconjugated
murine mAb, or no secondary reagent for FITC-conjugated mAb.
After rewashing twice at 4°C in PBS/1% FCS, cells were fixed
in 200 Fx1 1% formaldehyde and stored at 4°C until FRCS analysis.
Cell pellets were brought up in 200 /.Al saline and run on a FACS®
Analyzer (Becton Dickinson and Co.), counting 10,000 cells/plot.

Immunoprecipitations ofRadiolabeled HA (128-145)PP-Pulsed Swei
Cell Lysates. 70 x 106 Swei cells were incubated in 35 ml culture
medium containing 5% FCS and 250 Ag "'I-labeled HA 128-145
photoprobe peptide. The peptide was labeled by the iodobead
method (Pierce Scientific, Rockford, IL) to a specific activity of
18 .7 uCi/Ag. After incubation for 24 h at 37°C, the cells were
washed twice in cold PBS and exposed to 350 tun wavelength UV
light at 4°C for 1 h. The cells were washed two more times in
cold PBS and lysed in 1 ml cold PBS containing 1% NP-40, 50
ug/ml N-tosyl-L-phenylalanine chloromethyl ketone (TPCK),
50 Ag/ml Nap-tosyl-L-lysine chloromethyl ketone (TLCK), and
200 Ag/ml PMSF. The lysate was centrifuged at 13,250 RPM for
15 min, and pre-cleared with 100 tt,l packed protein ASepharose
(Pharmacia, Uppsala, Sweden) for 30 min at 4°C with agitation.
After centrifugation, the supernatant was divided into equal ali-
quots, and 50 Fd of NRS, ciHAP, MKD6, OKDR, or L243 were
added. Overnight incubation at 4°C was followed by addition of
100 ul packed protein A-Sepharose for 30 min at 4°C with agita-
tion every 5 min. After centrifugation the pellets were washed three
times with cold 0.25% NP-40, then boiled for 2 min in 165 141
2% mercaptoethanol SDS elution buffer and run on an 11% SDS-
PAGE gel. After fixation and drying, the gel was subjected to au-
toradiography.

Trypsin Digestion andPeptide Mapping.

	

The proteins to be com-
pared were eluted from an excised piece of gel, subjected to trypsin
digestion, and peptide mapped as previously described (33) .

Results

Irrelevant Peptide

DN10 LRSVGDGETVEFDVVEGEKGEC

Figure l .

	

Sequences of peptides used in the study. (Top) native peptide
sequence from hemagglutinin residues 128-145 of influenza strain
A/Japan/57 . (Secondfrom top) altered nonphotoprobe hemagglutinin pep-
tide (HA 128-145) showing tyrosine substitution at position 129 . (Second
from bottom) altered photoprobe peptide (HA 128-145 PP) showing pho-
toreactive 4-benzoylbenzoic acid side chain on N-terminus lysine. (Bottom)
irrelevant peptide DN10 .
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recognizes a specific 18-amino acid fragment (residues 128-
145) ofHA from influenza strain A/Japan/57, when presented
on HLA-DRw11 APC's (Brown, L.R., N. Nygard, M.B.
Graham, C. Bono, V.L. Braciale, J. Gorka, B.D . Schwartz,
andT.J . Braciale, manuscript submitted for publication) . We
modified this peptide by substituting tyrosine for valine at
position 129 to allow I'll-radioiodination in some experi-
ments, and for other experiments by adding a photoreactive
side chain residue, 4-benzoylbenzoic acid to the e-amine of
the N-terminal lysine (Fig. 1) . The recognition by clone Vl
ofthe altered synthetic HA peptide (HA 128-145) was found
to be identical to that of the native unmodified HA peptide
when presented on DRw11 APC's (Fig. 2) . In addition, the
HA 128-145 photoprobe peptide (PP) (Fig. 1) was recognized
equally well by clone V1 when presented on HLA-DRw11
cells (data not shown) .

Rabbit Antiserum oiHAPRecognizes Both Free HA Peptide
andHA Peptide Bound to DRw11. When assayed by ELISA,
rabbit antisera otHAP raised againstHA 128-145 PP coupled
to BSA or KLH did not react with the irrelevant peptide
DN10 nor with affinity-purified DRw11 class II molecules
alone (Fig . 3, A and B) . However, the antisera did react with
plate-bound HA 128-145 at a titer >1:200,000, (Fig. 3 A)
as well as with complexes formed when plate-bound, affinity-
purified HLADRw11 molecules were first exposed to soluble
HA 128-145 (Fig. 3 B) . In contrast, these antisera did not
recognize plate-bound DRw11 molecules were first exposed
to soluble HA 128-145 (Fig . 3 B) . In contrast, these antisera
did not recognize plate-bound DRw11 molecules exposed to

0

V1 Lysis with
Altered HA Peptide

- Native
- Altered (Y for V)

E:T=5 :1

0 .1 1 10
F gtml Peptide

Figure 2 .

	

A comparison of VI T cell recognition of DRw11 positive
target cells pulsed either with native or with altered nonphotoprobe HA
128-145. Recognition is measured on the ordinate as percent specific lysis
over background of s'Cr-labeled, peptide-pulsed APC's exposed to Vl at
indicated effector to target (E/T) ratios. Concentrations of HA peptide
used in APC antigen-loading incubation are given on the abscissa.

Native and Modified Forms ofHA 128-145 Are Both Recog-
nized by V1. The human CD4+ cytolytic T cell clone Vl

HA Peptides
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Figure 3 .

	

Rabbit antisera recognition of HA 128-145 by ELISA . (A)
Rabbit sera (First antibody) were incubated with the indicated plate-bound
peptide. (B) Indicated peptides were incubated over the various plate-bound
proteins, then incubated with rabbit serum (First antibody). (C) SDS-PAGE
Coomassie stain of the affinity-purified DRw11 class II preparation used
in Fig . 3 B, demonstrating the relstive purity of the class II protein prepa-
ration . Molwt positions are indicated on the left . HAP : altered A/Japan/57
influenza hemagglutinin peptide, residues 128-145 . DN10: irrelevant, non-
HLA, non-influenza peptide. NRS : normal preimmune rabbit serum.
aiDN10: rabbit antiserum prepared against DN10 peptide conjugated to
KLH. allAPl: immune rabbit anti-HAP antiserum prepared against HA
128-145 peptide conjugated to BSA. otHAP2 : rabbit antiserum prepared
against HA 128-145 peptide conjugated to KLH . CL.II : DRw11 haplo-
type HLA class II molecules, affinity-purified from Swei cells using mAb
L243 . Each dot in Fig . 3 A and B represents an individual ELISA well
OD reading shown on the ordinate.

an irrelevant peptide, nor plate-bound BSA incubated with
HA 128-145 . These results indicate that HA 128-145 bound
to the plate-bound DRw11 molecules, and that the antisera
were recognizing HA 128-145 complexed to DRw11. Be-
cause the antisera raised against the BSA and KLH-conjugated
HA 128-145 yielded similar results, only the experiments using
antiserum raised against HA 128-145 conjugated to BSA
(denoted ciHAP1 in Fig. 3 and aHAP in subsequent figures)
are presented .
ciHAP Detects HA 128-145 Uptake Onto Intact DRw11-

Expressing B Cells by FACS. To determine if ciHAP could
detect HA 128-145 on the surface of a DRw11-expressing
APC, cell flow cytometry (FACS) analysis was done (Fig .
4 A) . The homozygous DRw11 BLCL Swei was incubated
with no peptide (Fig . 4 A, panel b) or with HA 128-145 (Fig .
4 A, panel c) for 24 h, was reacted with allAP, stained with
FITC-conjugated goat anti-rabbit immunoglobulin, and ana-
lyzed by FACS. A class II negative, bare lymphocyte syndrome
BLCL, SJO, was similarly treated (Fig. 4 A, panel a) . A
significant fluorescence shift was seen with otHAP for the
HA peptide-pulsed, class II-positive Swei cells (Fig. 4 A,panel
c) but not for the HA peptide-pulsed SJO cells, nor for the
Swei cells not exposed to HA peptide . In addition otHAP
did not react with Swei cells which had been exposed to the
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(A) HA 128-145 is specifically expressed on DRw11 positive
BLCLs after 37°C incubation. Thick lines indicate initial staining in normal
preimmune rabbit serum (NRS) . Thin lines indicate initial staining in rabbit
anti-HAP antiserum ((MAP) . (a) SJO (class II negative) ; (b) Swei; (Drw11,
wll) without HA peptide ; (c), (d), 0, (g), and (h) Swei (Drw11wll) ;
TBLCL (DRw11,2) ; 3104 (DR1,l) ; 3161 (DR2,2) ; 3098 (DR3,3) ; and
3164 (DR4,4) lymphoblastoid cell lines, respectively, incubated with HA
peptide . Staining with cON10 resulted in FACS patterns indistinguish-
able from those obtained with NRS. (B) (t) Swei, and V) TBLCL, without
HA peptide, stained with control mAb A511 (thin line) or for DRw11
expression with the anti-DRw11 mAb SFR3-DR5 (thick line) .

irrelevant DN10 peptide (data not shown) . These results sug-
gest that HA peptide uptake is specific for class II-expressing
cells, and that oeHAP can detect the peptide on such whole,
living cells directly by FACS assay.
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Figure 5 .

	

(A) SDS-PAGE gel autoradiograph of immunoprecipitates of Swei whole cell lysates pulsed with 1251-labeled HA 128-145 PP (photoprobe
peptide), and UVexposed before immunoprecipitation with normal rabbit serum (NRS), immune rabbit anti-hemagglutinin peptide antiserum (aHAP),
or anti-DR mAb OKDR and protein A-Sepharose. Bands corresponding to the a and /3 chain proteins of DR class II are indicated. (B) SDS-PAGE
autoradiograph of immunoprecipitates of whole cell lysates from 3H-leucine labelled Swei cells precipitated with NRS or ciHAP followed by protein
A-Sepharose after HA 128-145 PP incubation and UV exposure (+HA 128-145 PP), or with MKD6 or L243 without HAP incubation (no peptide) .
The positions of the indicated mol wt markers are shown on the left . The closed arrow heads mark the a chain protein bands of class II, and the
open arrow heads the ,B chain protein bands . (C and D) HPLC of tryptic digests from bands in Fig. 5 B corresponding to a and /3 chain class II
proteins, respectively, seen on SDS-PAGE of L243 and oeHAP immunoprecipitates.
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The Surface Expression ofHA 128-145 on Antigen-Presenting
Cells is DRwil-Restricted Homozygous BLCLs bearing DR1,
DR2, DR3, or DR4, and one heterozygous (DR2,w11) BLCL
(TBLCL) were incubated sequentially with non-photoprobe
HA 128-145, with ciHAP, and with FITC-goat anti-rabbit
antiserum . The marked fluorescence shift observed with Swei
cells (Fig . 4 A, panel c) was not seen with SJO, nor with
any of the other homozygous HLA class II-expressing lines
studied (Fig. 4 A, panels e-h), indicating allelic specificity in
the formation of the DRw11-HA 128-145 complex . The
DR2,w11-positive TBLCL showed approximately half the flu-
orescence obtained with Swei cells when both were stained
with ciHAP (Fig. 4 A, panels d and c) and with the anti-
DRw11 mAb SFR3-DR5 for DR expression (Fig . 4 B, and
Brown, L.R., N . Nygard, M.B . Graham, C . Bono, V.L .
Braciale, J . Gorka, B.D . Schwartz, and T.J . Braciale, manu-
script submitted for publication) . This result indicates that
otHAP detected quantitative differences of DRw11/HA 128-
145 complexes commensurate with the level of DRw11 sur-
face expression . The DRw11 dependence for detection ofHA
128-145 was further demonstrated by the binding of ceHAP
to DRw11-bearing L cell transfectants which had been in-
cubated with HA 128-145, but by the absence of ciHAP
binding to the parental L cells which had been similarly ex-
posed (data not shown) .
ciHAP Immunoprecipitates DRw11-HA Complexes from

DRw11 Cells Incubated with HA 128-145 PP. The previous
results strongly suggested that otHAP was detecting HA 128-
145/DRw11 complexes on the surface of Swei cells. To fur-
ther demonstrate this association an immunoprecipitation ex-
periment was performed. Swei cells were incubated with
1251-labeled HA 128-145 PP for 24 h at 37°C. The cells were
washed, exposed to UV light to form covalent class II-
photoprobe linkages, and were then detergent-lysed. HA 128-
145 PP-conjugated molecular complexes were immunopre-
cipitated from whole cell lysates with ciHAP or anti-DR mAb
OKDR and Sepharose-linked protein A, and were then ana-
lyzed on SDS-PAGE under reducing conditions (Fig . 5 A).
Although we had initially expected HA 128-145 PP to be
associated with a number of cell components, autoradiographs
demonstrated only two bands at -36 kD and 28 kD, corre-
sponding to the expected approximate sizes of the -2.3 kD
HA 128-145 photoprobe peptide bound to DRw11 a
(N34kD) and (3 (N26 kD) chains . The OKDR niAb immu-
noprecipitated two bands of identical size from the same Swei
lysates . The absence of any other bands immunoprecipitated
by otHAP from the DRw11-bearing cell lysate argues against
the existence of any long-lived cell surface complexes formed
between HA 128-145 and non-class II molecules.
To further confirm the identity of these bands as DRw11

be and 0 chains, 3H-leucine labeled Swei cells were incubated
in the presence or absence of HA 128-145 PP and were then
UVlight exposed. After cell lysis the 3H-leucine labeled pro-
teins photoconjugated to HA 128-145 PP were immunopre-
cipitated by otHAP from lysates of the cells incubated with
HA 128-145 PP, and 3H-leucine labeled ci and a chains of
class II were immunoprecipitated by anti-DR mAb L243 from
lysates of the cells not incubated with HA 128-145 PP. After
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SDS-PAGE (Fig . 5 B), the corresponding bands (arrow heads)
were excised, eluted, and subjected to trypsin digestion. Com-
parative tryptic peptide analysis indicated that the HA 128-
145 PP-conjugated proteins were indeed the DRw11 a and
(3 chains (Fig . 5 C and D).

DRwll-Binding ofHA 128-145 Inhibits L243 Binding

	

FACS
analysis of Swei cells incubated in the absence or presence
of HA 128-145 before staining with FITC-conjugated L243
indicated that preincubation with HA 128-145 inhibited rec-
ognition of DRw11 by L243 and then protein A-Sepharose
(Fig . 6 A) . This finding was confirmed by immunoprecipita-
tion . When the lysate of Swei cells photoconjugated with
1251-labeled HA 128-145 PP was reacted with L243, (Fig. 6
B) no bands were seen, despite the presence of bands with

Figure 6 .

	

(A) FACS analysis of Swei cells with (+HAP) and without
(-HAP) preincubation in HA 128-145 stained with control mAb G2CL
or with aDR mAb L243 . (B) Autoradiogram of SDS-PAGE analysis of
whole cell lysates from Swei cells photoconjugated with 125 1-HA 128-145
photoprobe and immunoprecipitated with NRS, otHAP, anti-murine I-Ad
mAb MKD6, and anti-HLADR mAb L243 followed by protein A-Seph-
arose . Mol wt markers are in the first lane.



allAP (Fig . 6 B), and with OKDR (Fig. 5 A). These results
indicated that the epitope recognized by L243 is either lo-
cated near the DRw11 antigen-binding site or is conforma-
tionally altered when HA 128-145 is bound.
The observation that uHAP was capable ofdirectly recog-

nizing HA 128-145/DRwll complexes on the surface of living
APC's indicated that ciHAP presented the most direct means
to date of studying antigen-class 11 interaction in a human
T cell/antigen/APC system and allowed functional studies
of MHC-peptide interaction with viable APCs.

Kinetics of Association of HA 128-145 with HLA-DRw11.
Swei cells were incubated with HA 128-145 for increasing
time periods, then stained with FITC-goat anti-rabbit IgG,
and analyzed by FACS . HA 128-145/DRw11 complexes were
detectable within 30 min and increased for approximately 20-
24 h with a 50% saturation time of 5 1/2 h (Fig. 7) . No
further increase was seen at 48 h .
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Figure 7 .

	

Association plot ofthe percent of maximum increase in mean
fluorescence above background occurring on Swei cells pulsed with HA
128-145 for progressively longer time periods prior to oiHAP staining and
FACS analysis.

Dissociation

0 2 4 6 8 10 12 14 16 18 20 22 24
Hours of Incubation

Figure 8.

	

Dissociation plot of the decay in percent mean fluorescence
increase above background when Swei cells are pulsed with HA 124-145
for 24 h, washed, and then incubated for progressively longer time periods
without HA peptide prior to oeHAP staining and FACS analysis .
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Kinetics of Disappearance of HA 128-145/DRw11 Com-
plexes. Swei cells were incubated with HA 128-145 for 24
h, placed in HA peptide-free media for increasing time periods,
and then assayed by FACS for cell surface HA peptide. A
prolonged half-life of approximately 14 h was seen for the
surface HA 128-145/DRwll complexes (Fig. 8), indicating
that the complexes are relatively long-lived .

Discussion
The immunogenic complex composed of the hemagglu-

tinin peptide HA 128-145 and HLADRw11 is recognized
by the cytotoxic CD4+ T cell clone V1 . The experiments
presented here provide direct biochemical evidence that the
same cell surface immunogenic complex can be detected by
an antiserum produced against the peptide . This antiserum
thus provides the first direct means of studying MHC class
II-peptide complexes in which the peptide has not been
modified by the addition of any non-amino acid moiety. The
absence of any such non-amino acid moiety on the peptide
eliminates the possibilities that the affinity ofthe peptide for
class II or the recognition of the complex by a T cell will
in any way be altered .

Antibody recognition of cell surface complexes ofHA 128-
145/DRw11 complexes was validated by demonstrating an-
tibody binding to DRw11 positive B-LCL's exposed to HA
128-145, but not to DRw11 negative cells similarly exposed.
Antibody also bound to DRw11 positive L cell transfectants
incubated with HA 128-145, but not to parental untrans-
fected L cells nor to L cells bearing a different class II mole-
cule that were similarly incubated with peptide. In addition,
the number ofcomplexes detected was always commensurate
with the level of DR expression .
The complex could also be detected in lysates ofcells both

when the peptide was unmodified, and after the DRw11 a
and ß chain peptide interactions had been stabilized by pho-
toconjugation with a photoreactive moiety attached to the
peptide. The identity of the DRw11 molecule bound to the
peptide under these conditions was confirmed through im-
munoprecipitation of the complexes by both ceHAP and the
anti-DR mAb OKDR, by mobility on SDS-polyacrylamide
gels, and by tryptic peptide mapping.
Our ability to detect unmodified peptide-class II complexes

on the cell surface with anti-peptide antibody successfully
for the first time most likely depends on at least three
parameters which are optimized in our system . First, Swei
cells have between 5 x 105 and 106 DRw11 surface mole-
cules/cell (J. Pollack, Washington University, St . Louis, MO,
unpublished observations), presenting a large number ofpoten-
tial binding sites for the HA peptide. Second, dose-response
curves suggest a high affinity between HA 128-145 and
DRw11. Third, an epitope on HA 128-145 recognized by
the ctHAP antiserum remains available to the antiserum when
the peptide is bound in the DRw11 antigen-binding cleft .
It is possible that in other systems these conditions were not
coincident .
The ability of ctHAP to recognize the HLADRw11/HA

128-145 complex without the addition of non-amino acid



moieties to the peptide allows delineation of the kinetics of
formation and disappearance of complexes without concerns
that the kinetics may be affected by the presence of a foreign
element . In addition, because detection does not depend on
the presence of a foreign element, the antiserum detection
system for the first time presents the potential for following
the kinetics of complex formation during intracellular up-
take and antigen processing.

Initial kinetic characterization has been accomplished using
the HA 128-145 peptide and detection of cell surface com-
plexes by FACS. The association curve of HA 128-145/DRw11
complexes (Fig . 7) shows an appearance of the complex by
30 min that is consistent with previous reports (34, 35) . The
continued complex accumulation to 24 h is longer than that
previously reported by Ceppellini et al. (34) for living APC's
and is consistent with the report of Busch et al . (12, 22),
who showed a lack of surface peptide,-class II saturation after
16 h of APC antigen incubation using a biotinylated HA
307-319 peptide on DR1-expressing cells. Studies of peptide
saturation using solubilized, purified class II protein have also
demonstrated a slow accumulation of the complex peaking
at extended intervals of from 6 to 50 h (7, 8, 34) . The very
rapid plateau in binding of radiolabeled peptide on whole
B-LCL's reported by Ceppellini et al. (34) may be a reflection
of cell peptide internalization with the inability of the radio-
label assay to separate surface from internal peptide uptake .
The dissociation plot of Fig. 8 indicates that the cell sur-

face complex of HA 128-145 and DRw11 class II is very stable .
The stability of these complexes has been shown previously
with purified class 11 molecules (5, 8, 12, 22, 36), but the
half-life of these complexes on intact cells has not been as
well characterized (12, 13, 22, 34, 36) .
The precise epitope(s) recognized by the ciHAP antiserum

when the HA 128-145 peptide is bound in the DRw11 cleft
has not yet been identified, and this identification may have
implications for recognition of the naturally processed pep-
tide . While the size of the naturally processed peptide bound
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