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Integrated multi-omics analysis of the clinical relevance and potential regulatory 
mechanisms of splicing factors in hepatocellular carcinoma
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ABSTRACT
Splicing factors (SFs) have been increasingly documented to perturb the genome of cancers. 
However, little is known about the alterations of SFs in hepatocellular carcinoma (HCC). This study 
comprehensively delineated the genomic and epigenomic characteristics of 404 SFs in HCC based 
on the multi-omics data from the Cancer Genome Atlas database. The analysis revealed several 
clinically relevant SFs that could be effective biomarkers for monitoring the onset and prognosis 
of HCC (such as, HSPB1, DDX39A, and NELFE, which were the three most significant clinically 
relevant SFs). Functional enrichment analysis of these indicators showed the enrichment of 
pathways related to splicing and mRNA processes. Furthermore, the study found that SF copy 
number variation is common in HCC and could be a typical characteristic of hepato- 
carcinogenesis; the complex expression regulation of SFs was significantly affected by copy 
number variant and methylation. Several SFs with significant mutation patterns were identified 
(such as, RNF213, SF3B1, SPEN, NOVA1, and EEF1A1), and the potential regulatory network of SFs 
was constructed to identify their potential mechanisms for regulating clinically relevant alterna-
tive splicing events. Therefore, this study established a foundation to uncover the broad molecular 
spectrum of SFs for future functional and therapeutic studies of HCC.
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Introduction

Alternative splicing (AS) is the primary cause of 
transcript diversity, and global splicing abnormal-
ities have emerged as remarkable hallmarks of 
cancers [1–3]. These alternative splicing (AS) can 
be divided into seven classes: alternate acceptor 
(AA), alternate donor (AD), alternate promoter 
(AP), alternate terminator (AT), exon skip (ES), 
mutually exclusive exons (ME), and retained 
intron (RI). Intricate splicing events are orche-
strated by limited splicing factors (SFs).

The essential roles of SFs in cancers are self- 
evident and increasing evidence has found signifi-
cant links between the altered expression of SFs 
and tumorigenesis, cancer progression, and thera-
peutic resistance. For example, upregulated SF2/ 
ASF has been identified in various kinds of cancer, 
and SF2/ASF suppresses the tumor-suppressing 
activity of BIN1 isoforms by regulating the AS of 
BIN1 [4]. Furthermore, Jia et al. found that the 
overexpression of SRp20 promoted carcinogenesis 
and maintained tumor growth in nude mice [5]. 
Similarly, hnRNP A2/B1 overexpression was 
observed in glioblastomas and indicated a poor 
prognosis. Functionally, the knockdown of 
hnRNP A2/B1 inhibited tumor formation in glio-
blastoma cells [6]. These findings highlight the 
indispensable biological functions of SFs in tumor-
igenesis and tumor progression, which could pro-
vide novel insights into AS regulation and clinical 
cancer management.

Hepatocellular carcinoma (HCC) is the primary 
subtype of primary liver cancer, which ranks as 
the second most common cause of cancer-related 
death globally [7]. Although the treatment of HCC 
has greatly improved over the past few decades, 
the survival rate of HCC patients is still relatively 
low, and systemic treatments are limited [8]. 
Therefore, accurate prognostic assessment and stu-
dies of HCC mechanisms are important for the 
development of novel, effective treatments to 
improve the survival rate.

The phenomenon of turbulent AS was thought 
to be significantly correlated with the biological 
processes of HCC [9]. Differential AS is prevalent 
in HCC and was found to be closely associated 

with hallmarks of HCC [10]. However, despite the 
improved understanding of SFs’ function in HCC, 
the clinical relevance and molecular mechanisms 
of SFs in HCC have not been fully understood. By 
using ‘multi-omics’ data from the Cancer Genome 
Atlas (TCGA), this study characterized the SF 
expression profiles and their clinical significance 
for many HCC samples. Furthermore, systematic 
analyses of somatic mutations, copy number var-
iants (CNVs), and DNA methylation aimed to 
reveal the potential molecular mechanisms of SFs.

This study focused on the genomic, epigenomic, 
and transcriptomic landscape of 404 SFs in 371 
HCC patients. Multiple data types, including RNA 
expression, CNVs, point mutations, and DNA 
methylation, were analyzed to explore their mole-
cular characteristics. It was hypothesized that sev-
eral clinically relevant SFs could be effective 
biomarkers for monitoring the onset and prog-
nosis of HCC. Thus, the study aimed to system-
atically analyze the splicing switch SFs to improve 
the clinical management and deepen the under-
standing of the molecular mechanisms of HCC. 
The present analyses provide a rich resource for 
understanding SF biology, with the potential to 
identify disease-specific therapeutic approaches 
and prognostic biomarkers for HCC, which are 
expected to improve patient survival.

Materials and Methods

Collection of splicing factors

A compendium of 404 SFs was obtained from 
a previous study [11]. These genes were collected 
from three sources, namely 1) spliceosome pro-
teins reported by Hegele et al. [12], 2) SFs and 
splicing-related proteins annotated by Barbosa- 
Morais et al. [13], and 3) the online database 
Spliceosome DB (http://spliceosomedb.ucsc. 
edu) [14].

mRNA expression analysis and prognosis 
evaluation

Transcriptome profiling quantification data from 
the TCGA-LIHC project were downloaded using 
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the TCGA biolinks package in R software. The 
downloaded date type was fragments per kilobase 
of exon per million fragments mapped (FPKM), 
and it was normalized to the transcripts per 
kilobase million (TPM) data type for differential 
expression analysis. Then, expression levels of SFs 
were converted into log2(TPM+1) for further ana-
lysis. The differential expression levels between 
tumor and normal tissues were analyzed using 
the Student’s t test, and |fold change| ≥ 2 and 
FDR < 0.05 were considered significant. 
A Pearson correlation analysis was used to study 
the co-expression of SFs.

After ruling out patients with an OS < 90 days, 
329 HCC patients with an OS ranging from 91– 
3675 days (median, 643 days) were included. 
Prognostic assessments of differentially expressed 
SFs were calculated by univariate Cox analysis. 
These HCC-specific SFs were the focus of study, 
as they may be involved in the initiation and 
progression of HCC and used as clinically applic-
able molecular biomarkers. These SFs were also 
submitted to multivariate Cox analysis to con-
struct prognostic signatures.

Evaluation of the correlation with clinical 
features

The value of these HCC-specific SFs in distin-
guishing patients into subtypes with distinct 
prognosis and molecular characteristics was 
also explored. Unsupervised clustering of the 
329 HCC patients was performed using the 
ConsensusClusterPlus package in R software 
[15]. K-means and Euclidean distances were 
used to distinguish subtypes. An 80% item 
resampling was selected with a maximum eval-
uated K of 12. The associations between clusters 
and clinical outcomes were assessed using the 
chi-squared test. Kaplan-Meier (K-M) survival 
analysis was used to explore the survival differ-
ence between subtypes.

Gene functional annotations

Bioinformatic functional annotations constitute 
a convenient and efficient way to assess the 

interconnections and biological characteristics 
of a panel of genes. The clusterProfiler package 
in R software was used to compare the biologi-
cal themes of prognostic SFs [16]. Gene func-
tional enrichment analysis results were 
displayed using the Goplot package in 
R software [17]. The protein-protein interaction 
(PPI) network was calculated via the STRING 
online database (https://string-db.org/), and 
Cytoscape software was used to identify hub 
genes visually.

Somatic mutation landscape of SFs in HCC

Somatic mutation data from TCGA were pro-
cessed via VarScan [18], and the mutation status 
of each SF was calculated and classified. The var-
iant classifications included the following: 5�UTR, 
silent, 3�UTR, missense mutation, 5�Flank, splice 
site, splice region, frame shift del, nonsense muta-
tion, RNA, intron, in frame del, frame shift ins, 
translation start site, 3�Flank, in frame ins, non-
stop mutation, and IGR. The somatic mutation 
landscape of SFs was displayed using the 
GenVisR package in R software.

Integrative analysis of SF expression regulators

The relationships between the expression levels 
of SFs and their somatic mutations, CNV, and 
DNA methylation were calculated. These multi- 
omics data were also downloaded from TCGA. 
The average methylation value for all CpG sites 
associated with a gene was used as the genes’ 
methylation level. The methylation and expres-
sion data were integrated to identify methyla-
tion levels that resulted in changes to the 
expression profiles.

The average number of copies of overlapping 
whole genome fragments was estimated and used 
for analysis. The average truncation of the geno-
mic identification of significant targets in cancer 
(GISTIC) algorithm was used to classify genes, and 
the Wilcoxon rank sum test was used to compare 
the CNV states of tumor samples versus those of 
normal samples.
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Splicing regulatory analysis

Due to the indispensable role of SFs in regulating 
the process of splicing, the potential relationships 
between AS events and SFs in HCC were also 
explored. In the SpliceSeq database (https://bioin 
formatics.mdanderson.org/TCGASpliceSeq), RNA 
splicing patterns in HCC patients were calculated 
and stored as a value called ‘Percent Spliced In’ 
(PSI) [19]. AS data were downloaded from the 
SpliceSeq database with stringent filters (samples 
with PSI value ≥ 80%, standard deviation of PSI 
value ≥ 0.05). Then, missing data were replenished 
using the k-nearest neighbor method provided by 
the impute package in R software. Differences in 
AS events between HCC and nontumor tissues 
were calculated using the Wilcoxon test and char-
acterized by fold change and p-value. AS events 
with a fold change > 2 or < 0.5 and a p-value < 
0.05 were identified as significant. Further univari-
ate Cox regression analysis was performed to esti-
mate the relationships between the PSI values of 
differentially expressed AS events and the OS of 
HCC patients.

To explore the regulation of SFs on prognostic 
AS events, the expression data of SFs were inte-
grated with prognosis associated AS events. The 
Pearson correlation analysis was then conducted 
to estimate the potential regulatory relationships 
between the expression level of SFs and the PSI 
value of splicing events. Then, Cytoscape software 
(version 3.6.1) was used to generate the regulation 
network.

Results

The present study explored the clinical rele-
vance of SFs and their potential to act as diag-
nostic and/or prognostic biomarkers. By using 
multi-omics data from TCGA, this work char-
acterized the SF expression profiles and their 
clinical significance for many HCC samples. 
Furthermore, systematic analyses of somatic 
mutations, CNVs, and DNA methylation 
revealed the potential molecular mechanisms 
of SFs. HCC patients are at high risk and 
require reliable prognostic biomarkers. 
Therefore, reliable prognostic SFs might 

provide a novel prospective on splicing and 
thus benefit HCC patients with additional sys-
temic therapy.

Expression landscape and clinical relevance of 
SFs

Differential gene expression analysis was con-
ducted to observe the global expression of 404 
SFs in 374 HCC patients with 50 adjacent nontu-
mor samples. Notably, 65 SFs were found to be 
upregulated in HCC, and no SFs were significantly 
downregulated according to the threshold 
(Figure 1a). These results suggested the global 
overexpression of SFs in the initiation of HCC. 
To further explore the potential prognostic value 
of SFs, a univariate Cox analysis was performed. 
Interestingly, 47 of the 65 differentially expressed 
SFs were significantly negatively correlated with 
patients’ survival (Figure 1b).

Using the above measures, several clinically 
relevant SFs were determined to hold potential 
for clinical applications. Given the overall upregu-
lation of SFs in HCC and its clinical significance, 
the potential molecular function of these SFs was 
systematically assessed to determine whether these 
SFs had a close relationship. Correlation analysis 
revealed that the set of SFs was significantly cor-
related with each other by expression levels 
(Figure 2a and Figure S1). Furthermore, the PPI 
network also hinted that SFs were closely con-
nected to each other (Figure 2b).

Biomedical functions of clinically relevant SFs in 
HCC

To demonstrate the functional landscape of clini-
cally relevant SFs, several computational biome-
dical algorithms were conducted to excavate their 
potential molecular characteristics. Not surpris-
ingly, the ‘spliceosome’ was the most significant 
KEGG pathway. The ‘mRNA surveillance path-
way,’ ‘RNA degradation,’ and ‘RNA transport’ 
pathways were also enriched by these SFs 
(Figure 2c). But interestingly, the most significant 
KEGG pathway for all differentially expressed 
genes is also ‘spliceosome’ (Figure S2). 
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Regarding the GO category, these genes were 
categorized into the following categories: 

biological process (BP), cellular component 
(CC), and molecular function (MF). For BP, 

Figure 1. Clinical value assessments of splicing factors (SFs). (a) Heatmap of differentially expressed SFs. (b) Bubble plots display the 
prognostic value of differentially expressed SFs.

Figure 2. Interactions and relationships among clinically relevant splicing factors (SFs). (a) The protein-protein interaction network 
revealed the close interrelationship among SFs. (b) Heatmap of the correlation coefficients of these SFs. (c) Enrichment pathways of 
clinically relevant SFs.
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Figure 3. Gene ontology terms for clinically relevant splicing factors (SFs). (a) Biological process; (b) Cellular component; (c) 
Molecular function.
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‘mRNA splicing,’ ‘RNA splicing,’ and ‘RNA spli-
cing, via transesterification reactions with bulged 
adenosine as nucleophile’ were the three most 
significant terms (Figure 3a). For CC, ‘spliceoso-
mal complex,’ ‘spliceosomal snRNP complex,’ and 
‘small nuclear ribonucleoprotein complex’ ranked 
in the top three of the significant terms 
(Figure 3b). The top three MFs were ‘ribonucleo-
protein complex binding,’ ‘snRNA binding,’ and 
‘ATP-dependent RNA helicase activity’ 
(Figure 3c).

SF clusters associated with prognosis and 
molecular characteristics

The expression profiles of SFs varied consider-
ably from person to person and partly reflected 
the prognosis. The consensus unsupervised clus-
ter suggested that patients were subdivided into 
three groups: C1 (80, 24.3%), C2 (91, 27.7%) and 
C3 (158, 48.0%; Figure 4a). Additionally, the con-
sensus matrix heatmap indicated that the three 
subtypes had significant interconnectivity. 

K-M plots indicated that the patients in each 
subgroup were associated with distinct patterns 
of OS (Figure 4b). C2 had the best prognosis 
relative to C3, while C1 had the least favorable 
outcome. The heatmap showed that C2 had the 
lowest SF expression levels relative to C3, while 
C1 had the highest SF expression levels 
(Figure 5). The distribution of different TNM 
stages, histological grades, and TP53 mutations 
between clusters were different. For example, 
tumors classified as C1 were in an advanced 
TNM stage and had more frequent TP53 muta-
tions (Figure 6).

Prognosis prediction value of SFs

Prognosis prediction is important in clinical work. 
Therefore, the prognostic biomarkers were 
screened using univariate and multivariate Cox 
regression analysis. Then, 47 clinically relevant 
SFs were submitted to the multivariate Cox 
regression analysis, and a prognostic signature 
based on 19 SFs was developed. The formula was 

Figure 4. Splicing factors clusters associated with distinct prognosis. (a) Consensus matrix heatmap defined three clusters of samples 
for which consensus values range from 0 (in white, samples never clustered together) to 1 (dark blue, samples always clustered 
together). (b) Kaplan-Meier survival analysis of patients within different clusters on overall survival.
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Figure 5. Heatmap of splicing factors clusters. Heatmap of the 329 HCC patients ordered by cluster, with annotations associated with 
each cluster.

Figure 6. The relationship between molecular characteristics and subtypes. (a)TNM stage; (b) Histological grade; (c) TP53 mutation; 
(d) CTNNB1 mutation; P-values are from chi-square tests.
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as follows: prognostic signature = ALYREF*0.525 
+ CD2BP2*(−0.444) + CPSF6*0.771 + DDX39A* 
(−0.451) + DHX34*0.544 + DHX57*(−0.896) + 
FAM50A*0.476 + ILF3*(−1.151) + LSM2*0.428 
+ LUC7L3*0.44 + NELFE*(−0.625) + 
PABPC1*0.506 + PPM1G*1.019 + PUF60* 
(−0.55) + RBMX*(−0.823) + SF3B4* 0.727 
+ SNRPA*0.572 + SNRPD2*(−0.769) + 
THOC5*0.701. The gene name represents its 
expression in this patient and each fixed-value 

represents the regression coefficient (namely beta 
value). Each patient obtained a risk score based on 
the formula. Patients were then separated into 
high-risk and low-risk groups based on the med-
ian risk score and optimum value. Patients in the 
high-risk group suffered poor OS compared with 
patients in the low-risk group (median separation: 
hazard ratio [HR] = 3.208, 95% confidence inter-
val [CI]: 2.209–4.660, p < 0.001, Figure 7a). Scatter 
plots also revealed that the survival status of HCC 

Figure 7. Survival prediction performance of the prognostic signature. (a)Kaplan-Meier curves generated based on median separa-
tion. Risk group separation based on median separation (b). Survival status of patients in different risk groups based on median 
separation (c). Receiver operating characteristic curves displayed the predicted performance in 1000 (d), 2000 (e) and 3000 days (f) .
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patients was significantly correlated with risk 
score (Figure 7b–c). The time-dependent ROC 
curves revealed a moderate prognostic value. The 
AUC of ROC curves were 0.737, 0.766, and 0.752 
in 1000 days, 2000 days, and 3000 days, respec-
tively (Figure 7d–f). Additionally, the protein 
levels for these 19 genes included in the prognos-
tic signature were evaluated by immunohisto-
chemical (IHC) from Human Protein Atlas. 
There is an overexpressed trend for all 18 genes 
(the protein of THOC5 is not detected by Human 
Protein Atlas project) in liver cancer tissues 
(Figure S3).

Somatic mutation landscape of SFs in HCC

Among the SFs in HCC, 23 oncogenes were iden-
tified that consistently were more frequently 
mutated in HCC tissues than in the nontumor 
tissues (Figure 8). The top five most frequently 
mutated genes were RNF213, SF3B1, SPEN, 
NOVA1, and EEF1A1 (11%).

Epigenetic regulation of SF expression

Given the important role of CNV alterations in the 
regulation of gene expression [20], the CNV pro-
files of SFs were systematically analyzed through 
TCGA . The top 10 SFs most frequently involved 
in a CNV event in HCC samples were CLK2 (235/ 
379, 62.0%), PRCC (233/379, 61.5%), INTS3 (231/ 
379, 60.9%), ILF2 (231/379, 60.9%), CELF3 (222/ 
379, 58.6%), CCAR2 (221/379, 58.3%), SNRPE 
(221/379, 58.3%), ZC3H11A (221/379, 58.3%), 
DHX9 (218/379, 57.5%), and INTS7 (218/379, 
57.5%). Statistically significant differences in 
CNV were observed between tumor and nontu-
mor tissues.

The correlation of SFs and DNA methylation, 
an epigenetic modification that actively partici-
pates in controlling gene expression, were calcu-
lated [21]. Significant correlations were observed 
with DNA methylation for 15 SFs in HCC 
(Pearson coefficient < −0.3 and p < 0.05; Figure 
S4). The most 5 methylated SFs were FAM50B, 
SRSF12, SRSF8, HSPA1B, DDX39A. But of note, 
many anti-correlation seems to be false positive 

Figure 8. Landscape of mutations of splicing factors (SFs) in hepatocellular carcinoma. The most frequent mutated SFs in 
hepatocellular carcinoma.
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even though methylation and gene expression 
shows a negative correlation.

Potential interaction mechanisms of SFs

A total of 928 differentially expressed AS events 
were screened out based on the study’s criteria. 
Then, survival analysis screened out 177 prognos-
tic predictors (Figure 9). Subsequently, 45 survi-
val-related SFs (green dots) were significantly 
correlated with 110 survival-related AS events, 
among which 17 were markedly related with favor-
able survival in patients (blue dots). Furthermore, 
93 were markedly related with worse clinical out-
come (red dots; Figure 10). Interestingly, the risk-
iest AS events (red dots) were positively correlated 
(red lines) with SF expression levels (green dots), 
while most protective AS events (blue dots) were 
negatively correlated (blue lines) with SF expres-
sion levels (blue dots).

Discussion

SFs orchestrate intricate and essential mechanisms 
in tumorigenesis and progression. Conventional 
experiments have focused on a single SF to capture 
the downstream mechanism, which is limited by 

technology. Next generation sequencing technol-
ogy allows the global alterations of SFs in HCC to 
be surveyed from the perspective of multi-omics. 
Thus, the molecular perspective landscape of SFs 
and their potential regulatory mechanisms was 
systematically analyzed in the present study. Due 
to the large sample size, broad coverage of multi- 
omics data, and integral clinical information pro-
vided by TCGA, future functional and therapeutic 
studies of HCC from the perspective of SF pertur-
bation can be performed.

This study focused on the genomic, epige-
nomic, and transcriptomic landscape of 404 
SFs in 371 HCC patients. Multiple data types, 
including RNA expression, CNVs, point muta-
tions, and DNA methylation, were analyzed to 
explore their molecular characteristics. 
Considering that a predominant task of the 
present study was to explore the clinical rele-
vance of SFs and their potential to act as diag-
nostic and/or prognostic biomarkers, 47 
individual SFs that were not only aberrantly 
expressed at the onset of HCC but also exerted 
significant prognostic value were identified. 
Intriguingly, these SFs were all upregulated in 
HCC tissues when compared with noncancer-
ous tissues. Furthermore, the overexpression of 

Figure 9. The most clinically relevant alternative splicing events in hepatocellular carcinoma.
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these differentially expressed SFs indicated 
decreased survival. These results suggested that 
the unusually overexpressed SFs might be the 
carcinogenic factors in HCC. HSPB1, DDX39A, 
and NELFE were the three most significant 
clinically relevant SFs. HSPB1, also called 
Hsp27, is overexpressed in many kinds of can-
cers [22]. Previously, researchers have proposed 
that Hsp27 is upregulated and confers aggres-
siveness in HCC to facilitate HCC malignancy 
[23–25]. Similarly, DDX39A is upregulated in 
HCC and promotes HCC growth and metastasis 
[26,27]. Recently, Dang et al. reported NELFE 
as an oncogenic protein that induces 
a transcriptome perturbation by selectively reg-
ulating MYC signaling [28]. These relevant 
published studies and the rigorous screening 
process herein could help cancer researchers 
identify clinically applicable biomarkers.

Further functional enrichment and correlation 
analyses revealed that these SFs were in mutual 
close contact. Not surprisingly, these SFs actively 
participated in the processing of spliceosomes, 
which confirmed the biological, functional roles 
of clinically relevant SFs in the AS process. This 
study’s findings also indicated that patients with 

higher SF expression profiles suffered poor prog-
nosis. This may have been due to the more 
frequent splicing process in highly invasive 
tumors. HCC patients are at high risk and 
require reliable prognostic biomarkers. Thus, 
reliable prognostic SFs might provide a novel 
prospective on splicing and benefit HCC 
patients with additional systemic therapy. 
Significant research on gene expression-based 
prognostic signatures has led to the effective 
clinical management of HCC [29,30], but survi-
val estimation research on SFs is limited. From 
the perspective of the splicing process, the clin-
ical prognostic signature mediated by individual 
SFs was excellent for monitoring survival and 
provided a novel indicator for monitoring the 
status of splicing alterations.

SF mutations can induce a transcriptome-wide 
alteration of the splicing process, which leads to 
transcriptional disorders that are beneficial to can-
cers [11]. This study observed the mutation land-
scape of SFs and found that many SFs possessed 
a high frequency of mutation. RNF213, SF3B1, and 
SPEN were the three genes that had the most 
frequent mutations. RNF213 and SF3B1 have also 
been identified as driver genes in HCC based on 

Figure 10. The interaction network of splicing factors. Correlation network between expression of survival AS factors and PSI values 
of AS genes generated using Cytoscape. Green dots were survival associated splicing factors. Blue/Red dots were favorable/adverse 
AS events. Red/blue lines represent positive/negative correlations between substances.
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recent comprehensive genomic characterization 
analyses [31,32], while the roles of SPEN in HCC 
have not been fully explored. These genes have not 
been extensively studied and could have great pro-
mise in future studies.

CNV is an essential regulator of gene expression 
levels and has been actively explored in cancer 
research [33]. Notably, the present systematic 
investigation showed common, frequent CNV 
events of SFs in HCC samples when compared 
with nontumor tissues; the expression levels of 
clinically relevant SFs had significant relationships 
with their CNV status. DNA methylation is 
a common epigenetic mechanism that regulates 
gene expression [34]. Thus, these findings sug-
gested that the expression of SFs may be regulated 
by CNV and DNA methylation.

The clinical significance and potential biological 
functions of AS events in cancers is one of the 
hotspots in cancer research [35–37]. Cancer- 
specific splicing misregulation has been increas-
ingly considered as a hallmark of tumorigenesis 
and tumor invasion [38]. Furthermore, splicing 
regulatory mechanisms are some of the most 
important regulatory mechanisms of SFs. The spli-
cing regulation network construction showed the 
potential relationships between clinically relevant 
SFs and splicing events. These findings also pro-
vided another insight into the biogenesis and pro-
gression mechanisms of HCC. This study built on 
a previously published tool and focused on seven 
types of AS events, including AA, AT, AP, AT, ES, 
ME, and RI [19,39]. The splicing-related network 
showed a clear trend that most prognostic AS 
events were positively correlated with SF expres-
sion, while poor prognosis AS events were nega-
tively correlated with SF expression. SNRPA, 
SNRPB, and SNRPD1 ranked at the core of the 
network and regulated the most AS events.

The advantages of high-throughput sequencing 
technology were utilized by this study to rapidly 
generate high-quality multi-omics maps for differ-
ent types of tumor samples. The study provided 
a cost-effective and systematic framework for 
assessing molecular characteristics to better under-
stand the clinical significance and molecular char-
acteristics of SFs.

Conclusion

By using multi-omics data from TCGA, this study 
found significant links between the altered expres-
sion of SFs and tumorigenesis, cancer progression, 
and therapeutic resistance. The potential regulatory 
network of SFs was constructed to identify their 
potential mechanisms in regulating clinically rele-
vant AS events. Therefore, this study established 
a foundation to uncover the broad molecular spec-
trum of SFs for future functional and therapeutic 
studies of HCC. In the future, an in-depth investiga-
tion should be performed to validate these findings.

Highlights

(1) The study comprehensively delineated the 
genomic and epigenomic characteristics of 
404 SFs in HCC.

(2) The potential regulatory network of SFs was 
constructed to identify their potential regu-
latory mechanisms.

(3) A cost-effective and systematic framework 
was provided to understand SFs’ 
significance.
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