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ABSTRACT We report the draft genome sequence of Variovorax boronicumulans
strain c24, which was isolated from a soil-inoculated chemostat culture amended
with phenol as a sole carbon and energy source. The genome data will provide in-
sights into phenol and other xenobiotic compound degradation mechanisms for
bioremediation applications.

The genus Variovorax belongs to the Betaproteobacteria and lives in soil and water
and on plants (1, 2). A chemostat culture was amended with phenol as the sole

carbon and energy source and trichloroethene (TCE)-contaminated aquifer soil as the
inoculum (3). Strain c24 was isolated and purified aerobically from the chemostat
culture using a plating method with MP medium (4) containing 0.5 mM phenol
(MP0.5phe). The purity of strain c24 was confirmed by sequencing PCR-amplified 16S
rRNA genes (3). Strain c24 is one of the strains exhibiting the highest affinity for TCE (3).

Genomic DNA of strain c24 cultivated in MP0.5phe medium was extracted by
phenol-chloroform extraction (5) and fragmented using a Covaris M220 instrument
according to the manufacturer’s protocol for a 550-bp fragment. A genomic library was
constructed using a TruSeq DNA PCR-free library preparation kit (Illumina) according to
the manufacturer’s instructions and sequenced on the Illumina MiSeq platform to
generate 302-bp paired-end reads. The raw reads were cleaned up for quality using
Trimmomatic v0.36 (6) by trimming adapter sequences, the 1 or 2 bases off the ends of
the reads, low-quality ends with a quality score of less than 15, and reads of less than
150 bp. High-quality sequence fragments (1,071,488 paired-end reads, total of
491.7 Mb, and 70.5-fold coverage of the genome) were then assembled using SPAdes
v.3.13.0 (7) with a default set of k-mer sizes and options (– careful, – only-assembler, and
– cov-cutoff 20), and the contigs smaller than 200 bp were removed.

The draft genome sequence of strain c24 consists of 29 contigs with a total length
of 6,973,636 bp, an N50 value of 1,080,070 bp, and a G�C content of 68.2%. Average
nucleotide identity (ANI) analysis of the strain c24 whole genome using JSpeciesWS (8)
showed the highest ANI value (96.8%) with the whole genome of Variovorax boroni-
cumulans strain J1 (GenBank accession no. CP023284), suggesting that strain c24
belongs to V. boronicumulans. The numbers of protein-coding genes (CDS) and tRNA
genes in the genome were predicted to be 6,493 and 63, respectively, by DFAST-core
v1.2.0 (9). Sequencing coverages of the contigs were calculated by mapping high-
quality reads to all contigs using the Burrows-Wheeler Aligner MEM algorithm (BWA-
MEM) v0.7.12-r1039 (10) with default settings and analysis using QualiMap v2.2.1 (11).
As a result, Contig20 (GenBank accession no. BKDI01000020.1), occupied by an rRNA
gene operon (90%), shows 168.6-fold coverage, which is 2.4 times higher than the
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average coverage of the other contigs (69.9-fold). No other rRNA operons were found
on extant contigs. This suggested that strain c24 contained two rRNA gene operons.

Strain c24 contained a multicomponent phenol hydroxylase (12–15), with ortho-
cleavage metabolic pathways for catechol via catechol 1,2-dioxygenase (16). From the
results of annotation, genes related to degradation of aromatic compounds (e.g.,
naphthalene, several kinds of benzoate compounds, functionally unknown monooxy-
genase, and dioxygenase) and heavy metal (e.g., Cu, Ag, Ni, As, and Co) transport
systems were found.

Data availability. The complete genome sequence of Variovorax boronicumulans

strain c24 has been deposited in DDBJ/ENA/GenBank under the accession no.
BKDI00000000, and the raw sequencing reads have been deposited under the acces-
sion no. DRR189179.
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