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Introduction
Genome-wide microarray is a technology to measure the expres-
sion level of a large number (20,000–50,000) of genes and to 
discover those that are differentially expressed and associated 
with clinical outcomes. From an analysis of microarray data, we 
may identify a specific set of gene signatures whose expression 
levels are associated with a particular clinical outcome of inter-
est. These signatures can comprise tens to hundreds of genes,  
a range that is appropriate for technical validation using Nano
String nCounter Gene Expression Assay.

nCounter Gene Expression Assay (Nanostring Techno
logies, Seattle, WA, USA) is a robust and highly reproducible 
method for detecting the expression of up to 800  genes in 
a single reaction with high sensitivity and linearity across a 

broad range of expression levels. The nCounter assay is based 
on direct digital detection of mRNA molecules of interest 
using target-specific, color-coded probe pairs, so that the 
expression level of each gene is measured by counts. Due to its 
high reproducibility, nCounter assay is chosen as a good tech-
nical validation platform for the findings made from genome-
wide microarray assays.

Numerous statistical methods have been proposed for 
genome-wide microarray projects. These methods, mostly 
developed for microarray data comprising many thousands 
of genes, may be specific to the platform or the number of 
genes so that they may not be appropriate for the analysis of 
nCounter data. The important analysis processes for micro
array data are (i) data preprocess, (ii) discovery of the genes 
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that are associated with different types of clinical outcomes, 
and (iii) prediction model fitting and validation. One impor-
tant aspect in the analysis of microarray data is to adjust the 
false positivity for multiplicity of the genes. Furthermore, 
some of these methods utilize the fact that a large portion of 
the genes are not associated with the clinical outcome under 
investigation.

In this article, we review these statistical methods devel-
oped for high-throughput microarray projects and discuss the 
issues that can be raised when applying them to nCounter  
projects. We take a real nCounter data set to demonstrate 
these issues. The clinical outcome can be any type of variable, 
such as binary (eg, benign versus malignant and response ver-
sus nonresponse), continuous (eg, blood pressure), and time 
to event (eg, time to progression and overall survival) vari-
ables. Different types of outcome variables require different 
statistical methods. In this article, we focus on time-to-event 
endpoint, which is popular in cancer research.

An Example nCounter Data
Lee et al.1 designed an nCounter probe set (Nanostring Tech-
nologies) consisting of 800 candidate prognostic genes and 
48  internal reference genes identified from a WG-DASL 
microarray study, as well as some known cancer genes, kinase 
genes, and G protein–coupled receptor genes, and profiled 428 
patients with stage II gastric cancer. This study was under-
taken to identify high-risk gastric cancer patients for tumor 
recurrence after surgery. The primary endpoint was disease-
free survival (DFS), defined as time from surgery to the date 
of documented tumor recurrence or death.

Study Design
Usually, microarray experiments are conducted by multiple 
batches, and the expression data of genes are different across 
different batches. There are various publications on statistical 
methods to remove the batch effect, but most of them just try 
to make the distribution of gene expression data equal or simi-
lar among different batches, eg, Lee et al.2 and the references 
therein. The batch effects have so complicated impact among 
different genes in the chips, so that these attempts are not 
very successful in removing batch effects. Furthermore, the 
effort to make the gene expression profile similar among dif-
ferent batches just removes the real difference between patient 
groups we want to detect, so that we often fail to discover 
prognostic or predictive genes with a batch effect adjustment. 
Owzar et al.3 showed that known data normalization methods 
do not appropriately remove batch effect either.

If we cannot avoid batch effect and it cannot be removed 
in data analysis, it is critical that the batch allocation do not 
compound with any known predictors or the clinical outcome 
under investigation. Suppose that we want to discover the 
genes that are differentially expressed between two disease 
types. In this case, if the two disease types are assigned to 
different batches, then the main effect (the difference between 

two disease types) and batch effect are completely compounded 
and any effort to remove the batch effect will remove the main 
effect. To avoid this issue, we propose to randomly assign the 
patients among different batches while stratifying for the pre-
dictors (and clinical outcome also if possible). In the example 
study, we stratified the batch allocation with respect to tumor 
size and year of surgery.

Due to various reasons, the overall gene expression level 
among different chips may vary even within each batch. So, we 
need some control genes to normalize the overall expression 
levels across different chips. Some control genes are provided 
by the manufacturer, but we can also add some more together 
with candidate prognostic genes. In our example project, 
NanoString provided 26 prognostic genes and the project team 
identified 48 control genes from a DASL study conducted 
prior to the nCounter project. The criteria used when select-
ing the 48 genes from the DASL study were (i) the variance 
of the expression level is small, (ii) the mean expression level 
is similar to those of the 26 prognostic genes selected for this 
NanoString project, and (iii) the expression level is not associ-
ated with the clinical outcome, DFS. Microarray data from 
genome-wide platforms are normalized using the whole data 
set. This is one of the reasons why these high-throughput plat-
forms are not appropriate for clinical use. However, nCounter 
chips are very reproducible, so that control genes within each 
chip provide very good normalization.

Data Analysis
Data preprocessing. In the example project, we excluded 

six samples with positive control normalization factor out-
side a range of 0.3–3. Positive control normalization factor 
was calculated as a ratio of the sum of expression levels of 
six positive controls in each sample to the average of sum of 
the six positive controls across all samples. We considered a 
sample having low quality if too many endogenous genes were 
expressed lower than the eight negative control genes. More 
specifically, we excluded 20 samples because, for each of them, 
the number of genes with expression levels larger than the 
maximum of the eight negative controls was smaller than 360 
( = 0.45 × 800 endogenous genes). Consequently, 402 samples, 
of the 428, were used for further statistical analysis.

By most high-throughput microarray platforms, gene 
expression level is measured as a positive continuous variable, 
so that the logarithm transformation has been popularly used 
to convert the distribution of data into a normal distribution. 
For nCounter chips, however, it is measured as counts, so that a 
Poisson distribution may be more appropriate. It is well known 
that the square root transformation converts data with a Poisson 
distribution to those with a normal distribution. Supplemen-
tary Figure 1 reports histograms of raw data, log-transformed 
(with base 2) data, and square root–transformed data for the 
48 control genes. We also checked the distribution of endo
genous genes, but decided not to report the results from them 
because their expression levels might depend on the clinical 
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outcome of the patients and violate the independent and iden-
tically distributed assumption. From the histograms, we do 
not observe that square root transformation works better than 
the log transformation but that the latter seems even to out-
perform, slightly, the former. So, we decided to use the log 
transformation for further analysis of this data set. Definitely, 
the raw data have skewed distributions.

Variations in the technology and experimental condi-
tions, rather than from biological differences between subjects, 
result in different amount of expression among different chips. 
Normalization is to adjust microarray data for these spuri-
ous effects. One of most popular normalization methods for 
genome-wide microarray data is the quantile normalization,4 
which makes the quantiles of the gene expression data among m 
genes identical across n subjects. As in the quantile normaliza-
tion, most normalization methods for microarray data require 
the whole microarray data to normalize the expression data of 
each chip. This prohibits the high-throughput microarray chips 
from being used as a commercial platform. On the contrary, 
nCounter data are normalized using the control genes within 
each chip, so that we do not need the expression data from 
other chips for normalization.

Gene discovery. We want to identify the genes whose 
expression levels are associated with a survival outcome under 
investigation. With m candidate genes, we will conduct m uni-
variate tests to associate each gene with the clinical outcome. 
For gene j  ( = 1,…, m), the null hypothesis Hj means that its 
expression level is not associated with the clinical outcome and 
the alternative hypothesis H  means that they have some asso-
ciation. This discovery procedure involves m hypothesis tests. 
Suppose that, among the m tests, null hypotheses are true for 
m0 genes and alternative hypotheses are true for m1( = m – m0) 
genes. Furthermore, suppose that, of the m0 null hypotheses 
of unassociated genes, A0 are accepted (true negative) and R0 
are rejected (false rejection, false discovery, or false positive). 
Among the m1 alternative hypotheses of associated genes,  
A1 are rejected (false negative) and R1 are accepted (true rejec-
tion, true discovery, or true positive).

Family-wise error rate. The family-wise error rate 
(FWER) is defined as P(A0 . 0|m0 = m), ie, the probability 
to select any genes when none of them are associated with the 
clinical outcome.

In order to test the association between the expres-
sion level of gene j ( = 1,...,m) with the survival outcome, 
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Figure 1.  Kaplan–Meier plot for high-risk (red) and low-risk (green) groups classified by different CV methods. The P-value is calculated from 100 
permutations.
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we propose to use the partial score test statistic of a uni-
variate Cox5 proportional hazards model. Let Uj denote 
the corresponding P-value, which is also called a mar-
ginal P-value. A single-step procedure (SSP) uses a com-
mon critical value c for all P-values to select each gene if 
Uj ,  c. For an exact control of the FWER at α, critical 
value c should satisfy

	

1 2 0

01, ,

( or or, ,or | )

( min | )
m

jj m

P U c U c U c H

P U c H

α

=

= < < <

= <
…

…

	 (1)

where
H0: genes are not associated with the survival outcome or 

equivalently 0 1
m
j jH H== ∩ , is the complete null hypothesis and 

the relevant alternative hypothesis is H Ha j
m

j= =∪ 1 . In order 
to control the FWER below a prespecified level α, Bonferroni 
test uses c = α/m. The Bonferroni procedure is always conserva-
tive, especially with correlated test statistics. Different genes 
coexpress, so that the expression data among different genes 
are expected to be correlated and the m test statistics use the 
same survival data, so that the m test statistics tend to be cor-
related. In order to accurately control the FWER, Westfall and 
Young6 propose to approximate the probability (1) by gener-
ating the distribution of U  =  minj  =  1,...,m Uj under H0 using 
permutations.

Since it is impossible to analytically derive the null dis-
tribution of the m P-values while maintaining the depen-
dence structure and distributional characteristics of the 
gene expression measures, we approximate it by using per-
mutations with the subjects, not genes, as sampling units. 
In each permutation, we randomly match the random vec-
tors of m gene expression levels with the survival outcomes. 
This type of resampling has been widely used in multiple 
testing to avoid the specification of the true distribution 
for the gene expression data.7–10 Note that the number of 
possible permutations B can be very large even with a small 
number of patients, B = n! if there are no ties among sur-
vival data points.

For a P-value pj observed from the original data, we define an  
FWER-adjusted P-value for gene j as the minimum FWER for 
which Hj will be rejected, ie, 1, , 0

ˆ (min | ).j j m j jp P U p H=′ ′= <…  
In what follows, this probability is estimated from the permu-
tation distribution:

Algorithm 1: Single-step procedure

A.	 Compute the P-values p1,…, pm from the original data.
B.	 For the b-th permutation of the original data (b = 1,..., B), 

compute the P-values ( ) ( )
1 , ,b b

mu u…  and u ub j m m
b= =min , ,

( )
1 … .

C.	 Estimate the adjusted P-values by

	
1

1

ˆ ( ) for 1, , .
B

j b j
b

p B I u p j m−

=
= ≥ =∑ …

D.	 Reject all hypotheses Hj ( j = 1,…, m) such that ˆ
jp α< .

Alternatively, the cutoff value cα can be determined with 
steps (C) and (D) replaced as follows:

Algorithm 1′

C.	 Sort u1,...,ub
 to obtain the order statistics u(1) #⋅⋅⋅# u(b) 

and compute the critical value cα = u([B(1–α)+1]), where [a] 
is the largest integer no greater than a. If there exist ties, 
cα = w(k), where k is the smallest integer such that u(k) $ 
u([B(1–α)+1]).

D.	 Reject all hypotheses Hj ( j = 1,..., m) for which pj , cα.

Below is a step-down analog suggested by Dudoit et al.7,8 
originally proposed by Westfall and Young6,11 (see Algorithms 
2.8 and 4.1 in their book).

Algorithm 2: Step-down procedure

A.	 Compute the P-values p1,..., pm from the original data.
A1.	 Sort p1,..., pm to obtain the ordered statistics p pr rm1

≥ ≥ , 
where H Hr rm1

, ,…  are the corresponding hypotheses.
B.	 For the b-th permutation of the original data 

(b  =  1,...,B), compute the P-values u ur
b

r
b

m1

( ) ( ), ,… , and 
u ub j j j m r

b
j, , ,

( )min= ′= ′…  for j = 1,…, m.
C.	 Estimate the adjusted P-values by p B I u pr b jb

B
jj

= ≥−
=∑1

1
( ),  

for j = 1,…, m.
C1.	 Enforce monotonicity by setting   p p pr r rj j j

←
−

max( , )
1

 for 
j = 2,..., m.

D.	 Reject all hypotheses H j mrj
( , , )= 1 …  for which prj

<α .

It can be shown that an SSP, controlling the FWER 
weakly as in equation (1), also controls the FWER strongly 
under the condition of subset pivotality (see p. 42 in Westfall 
and Young11).

The SSP and step-down procedure can be useful for gene 
discovery using nCounter data while controlling the FWER 
accurately. Jung et al.12 proposed an FWER control procedure 
to associate a survival outcome with gene expression data using 
a rank test statistic. We apply this procedure to the example 
study. Table  1 lists the genes that are selected by the SSP. 

Table 1. Genes with a FWER-adjusted P-value smaller than 0.05 by 
the SSP using B = 10,000 permutations.

Gene ID P-value

Marginal Adjusted

gene54 0.0000 0.0486

gene65 0.0000 0.0002

gene115 0.0000 0.0052

gene119 0.0001 0.0370

gene120 0.0000 0.0038

gene129 0.0000 0.0214

gene480 0.0000 0.0002

gene492 0.0001 0.0484

gene526 0.0000 0.0010

http://www.la-press.com
http://www.la-press.com/cancer-informatics-journal-j10


Design and analysis of nCounter projects

39Cancer Informatics 2014:13(S7)

We just use serial numbers for gene ID to limit the scope of 
this paper to statistical issues. We use a slightly different data 
set from that of Lee et al.1 so that we decided not to give the 
real gene names here. Readers may refer to Lee et al.1 for the 
biological findings from this project. We obtained a very simi-
lar result from step-down procedure.

Jung et al.13 and Jung and Young14 proposed sample size 
formulas to discover genes that are differentially expressed 
between two patient groups and Jung15 proposed one to 
discover genes that are associated with a survival endpoint. 
These methods can be used to estimate the number of patients 
required for nCounter projects for gene discovery while con-
trolling the FWER.

False discovery rate. Let R = R0 + R1 denote the total num-
ber of rejections (or discoveries). Then R0/R denotes the propor-
tion of false discoveries among the total discoveries. Benjamini 
and Hochberg16 define the false discovery rate (FDR) as

	
FDR = 





E
R
R

0 .

This expression is undefined if Pr(R = 0) . 0. Storey17 
claims that Pr(R . 0) ≈ 1, with a large m as in high-throughput 
microarray project cases. In nCounter data, however, m is not 
that large. But this condition may still hold because most of 
the genes in the chips are prognostic.

Benjamini and Hochberg16 propose a multi-step proce-
dure to control the FDR at a specified level. However, this is 
known to be conservative, and the conservativeness increases 
in m0 (see, eg, Storey et al.18).

Suppose that, in the j-th testing, we reject the null hypo
thesis Hj if the P-value pj is smaller than or equal to α ∈ (0, 1). 
Assuming independence of the m P-values, we have

	

0
1

1

( true, rejected)

Pr( true)Pr( rejected| ) ( ),

m

j j
j

m

j j j p
j

R I H H

H H H o m

=

=

=

= +

∑

∑

which equals m0α, where m–1op(m) → 0  in probability as  
m →∞.17

Ignoring the error term, we have

	
FDR( )

( )
,α

α
α

=
m
R

0 	 (2)

where R I pj
m

j( ) ( )α α= ∑ ≤=1 . Given α, estimation of FDR by 
equation (2) requires estimation of m0. This approximation is 
valid only when m is large and the expression data among m 
genes are independent or weakly correlated.

For the estimation of m0, Storey17 assumes that the his-
togram of m P-values is a mixture of m0 P-values that are cor-
responding to the true null hypotheses and following U(0, 1)  
distribution, and m1 P-values that are corresponding to the  

alternative hypotheses and expected to be close to 0.  
Consequently, for a chosen constant λ ∈ (0, 1), which has a 
value that is not near 0, none (or only few, if any) of the latter 
m1 P-values will fall above λ, so that the number of P-values 
above λ, ∑ >=j

m
jI p1 ( ),λ  can be approximated by the expected 

frequency among the m0 P-values above λ from U(0, 1) distri-
bution, ie, m0/(1 − λ). Hence, given λ, m0 is estimated by

	
1

0

( )
ˆ ( ) .

1

m
j jI p

m
λ

λ
λ

=∑ >
=

−

By combining this m0 estimator with equation (2), 
Storey17 obtains

	
 10

1

( )ˆ ( )( )FDR .
( ) (1 ) ( )

m
j j

m
j j

I pm
R I p

α λα λ
α

α λ α
=

=

∑ >×
= =
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For an observed P-value pj, Storey17 defines the q-value, 
the minimum FDR level at which we reject Hj, as

	
q j a pj

=
≥

inf ( ).FDR α

This formula is reduced to

	 q pj j= FDR( )

if FDR(α) is strictly increasing in α, see Theorem 2 of 
Storey.19 We reject Hj (or, discover gene j) if qj is smaller than 
or equal to the prespecified FDR level.

The independence assumption among m test statistics is 
loosened to independence only among m0 test statistics cor-
responding to the null hypotheses by Storey and Tibshirani,20 
and to weak independence among all m test statistics by 
Storey19 and Storey et al.18 These approaches are implemented 
in the statistical package called SAM.21

It is questionable if we can use this FDR procedure for 
gene discovery using nCounter data. This procedure is valid only 
when the number of genes is very large and a large portion of 
them are null genes. This is not the case for most nCounter data, 
so that the FDR control methods by Storey and his colleagues 
do not seem be appropriate for nCounter data analysis.

Jung22 proposes a sample size calculation method for 
microarray projects to discover genes by controlling the 
FDR. Jung and Jang23 evaluate the performance of the FDR 
control methods by Benjamini and Hochberg16 and Storey 
and Tibshirani21 for gene discovery using microarray data and 
show that neither maintains the FDR accurately.

Prediction and Validation
In this section, we discuss how to develop a statistical model 
to predict the survival time using gene expression data and 
validate the developed prediction model. Suppose that we 
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have n subjects. For subject i( = 1,..., n), we have a correspond-
ing measure of time to event Ti, such as tumor recurrence or 
death. The event time may be censored due to loss to follow-up 
or study termination. Therefore, we observe Xi = min(Ti, Ci) 
with an event indicator δi = I(T # Ci), where Ci is the cen-
soring time that is independent of Ti given the gene expres-
sion data. Let Zij denote the expression measurement for gene 
j( = 1,…, m) of subject i.

The goal in survival prediction is to build a model with 
input from Z  =  (Z1,..., Zm) to predict T or its distribution. 
Using this model, the survival distributions of future subjects 
can be predicted from their gene expression measures. These 
models can be built via proportional hazards regression model 
by Cox.5 The hazard function at time t for a subject i with gene 
expression values Zi = (Zi1,..., Zip)T is given by

	 λ λ βi
T

it t Z( ) ( ) ( )= 0 exp 	 (3)

where λ0(t) is an unspecified baseline hazard function and  
β = (β1,..., βp)T is a set of unknown regression parameters. 
Usually in high-throughput genome-wide microarray studies, 
the number of genes under study (or candidate genes), m, is 
much larger than the number of prognostic genes, p, and the 
sample size (or number of subjects) n. So, a challenge of pre-
diction problem using high-dimensional genomic data is to fit 
the regression model (3) while identifying a small number (p) 
of genes that are associated with subject’s survival trait under 
consideration. In nCounter projects, the number of genes is 
much smaller than those in genome-wide microarray stud-
ies but is still large compared to the number of subjects or 
too large to fit a full regression model including all m genes. 
Therefore, the standard regression analysis method does not 
work for the selection of prognostic genes. Penalized meth-
ods have been widely investigated to overcome the large-m-
small-n problem, including ridge regression,24 lasso,25 and 
elastic net.26 These methods require intensive computations. 
A fitted prediction model should be validated using an inde-
pendent test set or a cross-validation (CV) method using the 
original data. Pang and Jung27 proposed a sample size proce-
dure to design a microarray project for prediction and valida-
tion. This method can be applied to the design of an nCounter 
project with minor modifications.

Prediction. A prediction model is fitted from the train-
ing set. Before applying a prediction method to microarray 
data, we standardize the expression data of each gene by sub-
tracting the sample mean and dividing by sample standard 
deviation. The prediction methods discussed above select a 
covariate for prediction model by the size of its regression 
coefficient (βj) rather than by its significance (or P-value). 
The size of each regression coefficient, however, depends on 
the scale of the corresponding covariate (individual gene’s 
expression data in this case). Hence, we need to standardize 
the expression data across the genes before applying a predic-
tion procedure.

In order to lower the computational burden of prediction 
in genome-wide microarray data case, we decrease the num-
ber of candidate genes by selecting a feasible number (usually 
between hundreds to a few thousands) of genes using univari-
ate Cox regression method with λ(t|Zj) = λ0j(t)exp(βjZj) for 
gene j(  =  1,..., m). For nCounter data case, however, we do 
not need this selection process before conducting a prediction 
algorithm as the number of genes is much smaller in this case 
and most genes (excluding some control genes) are strong can-
didates known to be prognostic for different types of cancer 
diseases.

For genome-wide microarray data with a large m, Sohn 
et al.28 propose a gradient lasso procedure which maximizes 
the penalized partial likelihood5 to fit prediction models 
for time-to-event endpoint. They show that the procedure is 
guaranteed to converge to the optimum under mild regular-
ity conditions with efficient computations. In this section, we 
focus on this prediction method.

Suppose that a multivariate Cox regression model is fit-
ted from the training data using the chosen p(,,m) genes as 
covariates to predict the survival outcome of subjects in the 
test set. Let 1

ˆ ˆ( , , )pβ β…  denote the regression estimates of the 
prediction model fitted from the training set and (Z1,..., Zp)  
the expression data of the corresponding genes. We call 

1 1
ˆ ˆ

pS Z Zβ β= + +…  a risk score, a large value representing a 
short survival time.

Validation. The first step of validation is to standardize 
the gene expression data of the test set (also called validation 
set) using the sample means and sample standard deviations 
calculated from the training set. Using the risk score fitted from 
the training set and its median as a cutoff value, we partition 
the subjects in the test set into a high-risk group and a low-risk 
group. We may choose a different cutoff value depending on 
how large the high-risk patient group we want. We may not 
even dichotomize the risk score. If we want to use the continu-
ous risk score for clinical applications, then we may validate 
the prediction model by regressing the survival time on the raw 
(continuous) risk score as a single covariate using the test set.

Assessing the accuracy of a fitted prediction model based 
on the same data set that was used to develop the model can 
result in an overly optimistic performance assessment of the 
model for future samples, which is called overfitting bias.29 
To remove this bias, validation combined with a resampling 
method, such as bootstrapping, CV, and permutation, can be 
employed. We describe below some resampling techniques 
that are popularly used for validation.

•	 Hold-out or split sample method
�The hold-out method or split sample method is the sim-
plest of all the resampling methods considered in this 
paper. It randomly partitions the whole data set into a 
training set of proportion P and a test set of proportion 
1 − P. Since we do not reuse the training set for test, no 
overfitting bias is involved in this validation method.
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•	 k-fold CV
�The k-fold CV method randomly divides the data set into 
k partitions that are close to equal in size. At each of the 
k-th iteration, k − 1 partitions will be used as the training 
set and the remaining partition will be used as the test set. 
The most commonly used methods are 5-fold and 10-fold 
CVs. A twofold CV is essentially a 50% hold-out method 
with the role of the training set being switched with that 
of the test set. By reusing the training set for testing,  
a twofold CV has a higher validation efficiency than a 
50% hold-out method while they have a similar predic-
tion efficiency (as the sample size for prediction is identi-
cal between the two methods).

•	 Leave-one-out-cross-validation
�Leave-one-out-cross-validation (LOOCV) is a special 
case of k-fold CV with k = n, the sample size of the whole 
data set. At each of the n iterations, the whole data set 
is used as the training except the one sample which is 
left out as test set. Since it requires the largest number  
of iterations, it is the most computationally expensive 
resampling method introduced here.
�    As mentioned above, we partition the subjects in the 
test set into high- and low-risk groups using the median 
risk score estimated from the training set as a cutoff value 
for their risk scores. Since the gene expression data are 
standardized, we expect about 50–50 allocation between 
the two risk groups. In order to validate the fitted predic-
tion model (or the risk score) from the training set, we 
compare the survival distributions of the training set sub-
jects between the two risk groups using the log-rank test.30 
With a two-sided type I error rate α, we conclude the vali-
dation of the fitted prediction model by the hold-out resa-
mpling method if the absolute value of the standardized 
log-rank test statistic is larger than the 100(1 – α/2)-th 
percentile of the standard normal distribution.
�    Overfitting bias can be an issue when the data points 
used for prediction are reused for validation. So, among 
the above resampling methods to split the whole data of 
size n into training and test sets, only the hold-out method 
is free of overfitting bias since the resulting training and 
validation sets are mutually exclusive and the data points 
used to fit a prediction model are never reused for valida-
tion. All other methods (ie, CV methods) use each data 
point for testing as well as training. For example, in k-fold 
CV method, each data point is used k – 1 times for train-
ing and once for testing. In order to remove the overfitting 
bias of the CV methods, we use a permutation method as 
follows.

•	 From a resampling of the original data {(Xi, δi), (Zi1,…, Zip):  
i = 1,..., n} calculate the two-sample log-rank P-value p0 
comparing the survival distributions between high- and 
low-risk groups of test set.

•	 Generate the b-th (b = 1,..., B) permutation data by shuf-
fling the survival data {(Xi, δi): i = 1,..., n} and randomly 

matching them with the nCounter data {(zi1,..., zim): 
i = 1,..., n}.

•	 At the b-th permutation, apply the prediction–validation 
procedures, which are used for the original data, to the 
permuted data, and calculate the log-rank P-value pb.

•	 Repeat the permutations B times and estimate an unbi-
ased P-value for validation by

	
P-value = ≤−

=
∑B I p pb
b

B
1

0
1

( ).

For a prespecified type I error rate α, we conclude a posi-
tive validation of the prediction if P-value , α.

With survival data as clinical outcomes, we may not be 
able to develop a prediction model if there are too few events 
in the training set and the log-rank test to compare the survival 
distributions between high- and low-risk groups of test set may 
not have enough power if there are too few events in the test 
set. So, it is critical that the whole data set have enough number 
of events for a reasonable prediction–validation procedure. In 
order to increase the power of a chosen prediction–validation 
procedure, we propose to randomly allocate the subjects with 
events evenly among different partitions in resampling.

We applied the 5-fold CV, 10-fold CV, and LOOCV 
methods to the example data. Figure  1 depicts the Kaplan–
Meier curves of the high- and low-risk groups by these CV 
methods. The two Kaplan–Meier curves of DFS split more in 
the order of 5-fold CV, 10-fold CV, and LOOCV. But this 
does not imply more significant validation of the fitted pre-
diction models as the amount of overfitting bias increases in 
this order too. For each CV procedure, an unbiased P-value 
was estimated from B = 100 permutations to compare the DFS 
between two risk groups. Note that the two risk groups clas-
sified by the fitted prediction models have significantly differ-
ent DFS distributions by each of these CV methods. However, 
we could not compare the significance among the three CV 
methods because of the strong prediction power of the example 
data and the limited number of permutations in these analy-
ses. We could not increase the number of permutations due to 
computational burden. Jung and Pang31 show that the 5-fold 
and 10-fold CV methods use the whole data more efficiently 
among different resampling methods.

Since the data set was shown to be valid to predict the 
DFS of future patients, we fitted a prediction model using the 
whole data set of n = 402. Table 2 lists the 10 genes that were 
included in the final prediction model from the whole data set, 
their regression estimates, marginal univariate Cox P-values, 
FWER-adjusted P-values approximated from 10,000 permu-
tations, and the number of times to be included in the pre-
diction models during the prediction–validation steps of each 
CV method. We observe that genes 65, 115, 480, and 526 are 
highly significant with large regression coefficients in absolute 
value and always included in the prediction models from the 
training sets during the 10-fold CV and LOOCV. As expected, 
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many genes overlap between Tables 1 and 2. But, a significant 
gene identified from gene discovery using a univariate analysis 
may not be included in the prediction model because of co-
expression among genes.

Discussion
We have reviewed some useful design and analysis methods 
developed for high-throughput microarray projects. Unlike the 
most high throughput microarray platforms, nCounter chips 
include relatively small number of genes, most of which are 
potentially prognostic, and the expression level of each gene is a 
count variable, rather than a continuous variable. We have dis-
cussed some issues raised when applying the methods developed 
for high-throughput microarray projects to nCounter projects 
and proposed modifications required to address the issues. We 
also have introduced sample size calculation methods that can 
be used when designing nCounter projects for gene discov-
ery and prediction of clinical outcomes. Some modifications 
we may need to make when analyzing nCounter data using 
the existing analysis methods developed for genome-wide 
microarray data are:

•	 We have to check the distribution of expression of the 
control genes to determine if we need another transfor-
mation than logarithm, such as square root transforma-
tion which is known to be appropriate counting data.

•	 For gene discovery, the existing FDR methods are 
not appropriate for nCounter data and use the FWER 
method with permutations.

•	 We do not need a gene screening before prediction model 
fitting.

We illustrated these procedures using an example 
nCounter study. These methods can be used for studies with 
pathway panel arrays which are provided by NanoString and 
usually containing a few hundred genes too.
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