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ABSTRACT Genotype imputation is a statistical technique that is often used to increase the power and
resolution of genetic association studies. Imputation methods work by using haplotype patterns in
a reference panel to predict unobserved genotypes in a study dataset, and a number of approaches have
been proposed for choosing subsets of reference haplotypes that will maximize accuracy in a given study
population. These panel selection strategies become harder to apply and interpret as sequencing efforts
like the 1000 Genomes Project produce larger and more diverse reference sets, which led us to develop an
alternative framework. Our approach is built around a new approximation that uses local sequence similarity
to choose a custom reference panel for each study haplotype in each region of the genome. This
approximation makes it computationally efficient to use all available reference haplotypes, which allows us
to bypass the panel selection step and to improve accuracy at low-frequency variants by capturing
unexpected allele sharing among populations. Using data from HapMap 3, we show that our framework
produces accurate results in a wide range of human populations. We also use data from the Malaria Genetic
Epidemiology Network (MalariaGEN) to provide recommendations for imputation-based studies in Africa.
We demonstrate that our approximation improves efficiency in large, sequence-based reference panels,
and we discuss general computational strategies for modern reference datasets. Genome-wide association
studies will soon be able to harness the power of thousands of reference genomes, and our work provides
a practical way for investigators to use this rich information. New methodology from this study is
implemented in the IMPUTE2 software package.

KEYWORDS

GWAS
reference panel
haplotype
linkage
disequilibrium

human

Genotype imputation is a well-established statistical technique for
estimating unobserved genotypes in association studies (Browning
2008; Li et al. 2009; Marchini and Howie 2010). Imputation works
by copying haplotype segments from a densely genotyped reference
panel into individuals typed at a subset of the reference variants. In
this way, genotypes can be estimated and tested for association at
variants that were not assayed in a study. This approach can increase
the power of a given study (Guan and Stephens 2008; Li et al. 2010;
Marchini et al. 2007; Servin and Stephens 2007), find candidate sus-
ceptibility variants to guide fine-mapping (e.g. Liu et al. 2010), and

facilitate meta-analyses that combine studies genotyped on different
sets of variants (De Bakker et al. 2008; Zeggini and Ioannidis 2009).

Although the statistical methods for genotype imputation are now
highly developed and widely used, there are still open questions in the
field. Of these, one of the most pressing is how best to use rapidly
accumulating reference datasets from around the world to impute into
various human populations. Our goal in this paper is to develop
a framework for achieving accurate and efficient imputation with
current and future reference panels. We focus specifically on low-
frequency variation (defined here as polymorphisms with MAFs from
0.5 to 5%) because interrogating such variants is a major aim of
contemporary association studies (McCarthy et al. 2008; Stranger
et al. 2011).

In the first generation of genome-wide association studies
(GWAS), most imputation analyses used reference panels from Phase
2 of the International HapMap Project (The International HapMap
Consortium 2005), which contain a total of 210 unrelated individuals
with ancestry fromWest Africa, East Asia, and Europe. More recently,
Phase 3 of the HapMap Project (The International HapMap Consor-
tium 2010) increased the public reference set to over 1000 unrelated
individuals sampled from 11 locations, including parts of the world
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that were poorly represented by HapMap 2. The 1000 Genomes Pro-
ject (The 1000 Genomes Project Consortium 2010) is currently
extending this resource by applying whole-genome shotgun sequenc-
ing to an even larger number of individuals (�2500) sampled from
a finer geographic grid (�25 separate locations). Direct sequencing
can identify variants not represented on the genotyping arrays that
were used in the HapMap Project, so this reference set will include
many more polymorphic sites than did previous imputation reference
panels, with most of the new variants occurring at low population
frequencies. As high-throughput genotyping and sequencing technol-
ogies continue to mature and decrease in cost, the worldwide collec-
tion of reference data will continue to grow.

There are numerous approaches for building imputation reference
panels from publicly available resources. Many published GWAS
simply used the HapMap 2 panel that most closely matched the
ancestry of the study population; e.g. CEU for European populations
and CHB+JPT for East Asian populations. This “best match” strategy
produced useful results in several studies, but it can yield suboptimal
accuracy with more diverse reference collections (The International
HapMap Consortium 2010) or in studies with no clear reference
matches (Huang et al. 2009a). A simple alternative is to use a “cosmo-
politan” reference set that includes all available haplotypes, each of
which is assigned an equal chance of being copied a priori. This
approach produces relatively accurate results in a variety of human
populations and has therefore been proposed as a good fallback choice
when the optimal panel composition is unclear (Guan and Stephens
2008; Huang et al. 2009a; Li et al. 2010). Another class of methods
tries to maximize accuracy by weighting reference panels through
cross-validation (Huang et al. 2009a) or ancestry estimation (Egyud
et al. 2009; Pasaniuc et al. 2010); the Pasaniuc et al. approach differs
from the others in that it uses local ancestry estimates to provide
customized reference weights for each study individual. As an alter-
native, Jostins et al. (2011) suggested balancing accuracy and compu-
tation by using reference panels that “approximately cluster” with the
study individuals on a plot of principal components (PC) that capture
genetic ancestry.

The standard way to impute genotypes in a GWAS is to apply one
of these panel selection schemes and then pass the indicated
haplotypes to an imputation method. Modern reference datasets pose
a couple of challenges to this paradigm. First, many panel selection
strategies become harder to execute or interpret as reference data are
sampled from more populations. For example, the systematic
HapMap 2 cross-validations from Huang et al. (2009a) would be more
difficult to implement with additional panels, and it is harder to make
clear demarcations on a plot of PCs [as recommended by Jostins et al.
(2011)] as more populations are included. More importantly, larger
reference panels increase the computational burden of imputation,
which may compel some investigators to use smaller panels at the
cost of imputation accuracy and association power. Methodological
developments like “pre-phasing” (which we address in the Discussion)
can alleviate this concern by speeding up imputation, but existing
methods still need substantial computing power to handle reference
sets with thousands of haplotypes.

Our work was motivated by the idea that growing reference
datasets need not make panel selection more difficult or force
tradeoffs between imputation speed and accuracy; in principle, larger
and more diverse reference collections could actually make it easier to
identify haplotype sharing with simple models, thereby making
imputation faster and more accurate. Kong et al. (2008) demonstrated
this point in a large sample from a founder population, where they
found that genotypes could be accurately phased and imputed using

simple identity-by-state (IBS) calculations to identify shared haplotype
segments. Howie et al. (2009) introduced a related idea for phasing
smaller samples from outbred populations, and we wanted to see
whether a similar approach could help impute genotypes from mod-
ern reference panels.

On the basis of our findings, we propose an imputation framework
with two basic components: (i) a cosmopolitan reference panel and (ii)
a new algorithmic approximation that maintains the accuracy of large,
diverse panels while controlling computational costs. We use
a cosmopolitan panel for its combination of simplicity and accuracy:
past studies have shown that such panels produce similar accuracy to
those chosen by more sophisticated schemes (Guan and Stephens
2008; Huang et al. 2009a; Li et al. 2010) and that they can improve
accuracy at low-frequency variants (Jostins et al. 2011; Marchini
and Howie 2010). Our approximation is based on the idea that,
within a limited genomic region, allelic consistency between study
and reference individuals can be used to quickly rule out unhelpful
reference haplotypes, thereby making imputation faster without sac-
rificing accuracy. In our framework, this approximation reduces
the full reference set to a custom panel for each study haplotype in
each part of the genome. The approximation is similar to the one
that drives the phasing algorithm of IMPUTE version 2 (IMPUTE2;
Howie et al. 2009), and we have implemented it in the same software
package.

We evaluate our framework by running extensive cross-validations
in HapMap 3 and in African data from the MalariaGEN Project
(Malaria Genomic Epidemiology Network 2008). With a more de-
tailed panel selection scheme as a benchmark, we find that our ap-
proach produces high imputation accuracy in all populations
considered, with the greatest benefits at low-frequency variants. We
also use simulated data to show that our approximation substantially
reduces the computational cost of adding haplotypes to a reference set.
We further demonstrate that an implementation of our framework is
faster and more accurate than another leading method (Beagle;
Browning and Browning 2009) when imputing from large, se-
quence-based reference panels. On the basis of our results, we discuss
general computational strategies for balancing efficiency and accuracy,
and we explain how our methodology can be combined with other
techniques for speeding up imputation.

We have tied together numerous threads from the literature to
create a coherent, efficient, and accurate framework for imputing
genotypes from modern reference datasets. Imputation-based GWAS
are beginning to harness the power of thousands of reference
genomes, and we expect that the practical solutions provided here
will help investigators make the most of these rich genetic resources.

MATERIALS AND METHODS
IMPUTE2 algorithm
We begin by describing the basic IMPUTE2 algorithm, which will be
retained in this work with some modifications. Full details of the
original algorithm are available in Howie et al. (2009). Although that
paper addressed the use of multiple reference panels typed on different
SNP sets (“Scenario B” in their terminology), for simplicity we will
focus on the situation where the reference haplotypes are all defined
on the same SNPs (“Scenario A”). Although we do not discuss Sce-
nario B in this paper, the ideas presented here are easily extended to
that setting.

IMPUTE2 uses a Markov chain Monte Carlo (MCMC) algorithm
that alternates between phasing typed SNPs and imputing untyped
SNPs. Each MCMC iteration includes two steps:
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1. Sample a new phase configuration for each study individual, using
information from other study individuals and reference panel hap-
lotypes at SNPs typed in the study.

2. Given the newly sampled haplotypes for all study individuals, treat
each haplotype as independent (conditional on the reference panel)
and analytically impute the alleles at untyped SNPs.

This MCMC algorithm is run for a number of iterations (typically
30, including 10 burn-in iterations), then the probabilities from Step 2
are averaged across iterations to produce marginal posterior genotype
probabilities at each untyped SNP.

The phasing and imputation calculations are driven by the hidden
Markov model (HMM) of Li and Stephens (2003). This model can be
used to update an individual's haplotypes by constructing them as
“imperfect mosaic” copies of a set of template haplotypes. In the
simplest case, the templates would include all reference+study haplo-
types (minus the pair being updated) in Step 1 and all reference
haplotypes in Step 2.

To reduce the computational burden of Step 1, Howie et al. (2009)
introduced an approximation that restricts each phasing update to
a set of k template haplotypes, which are chosen separately for each
individual at each iteration; the other templates are implicitly assigned
copying probabilities of zero. The k templates are chosen by comput-
ing Hamming distances between an individual's current sampled hap-
lotypes and each possible template haplotype. We refer to the k
templates with the smallest distances as “surrogate family members”
because they (ideally) share recent ancestry with the study individual.
[These haplotypes were called “informed conditioning states” in the
Howie et al. (2009) paper and early versions of the IMPUTE2 docu-
mentation. We now prefer the nomenclature used here because of the
approximation’s relationship to the “surrogate parent” phasing
method of Kong et al. (2008).]

Howie et al. (2009) used the surrogate family approximation to
speed up the phasing updates in IMPUTE2 (Step 1 of the MCMC
algorithm described above), but they used all available reference hap-
lotypes for the imputation updates (Step 2). To make computation
faster in large, ancestrally diverse reference panels, we now extend the
approximation to imputation updates.

To decide which reference haplotypes to copy at a particular point
in an IMPUTE2 run, we add an extra step between Steps 1 and 2.
After individual i has sampled a new haplotype pair in Step 1, we
calculate the Hamming distance from each of these haplotypes to each
of the reference haplotypes, using only the overlapping SNPs. Then,
separately for each of individual i 's haplotypes, we perform Step 2
(haploid imputation of untyped alleles) using only the khap nearest
reference haplotypes as templates. This procedure is not guaranteed to
identify khap unique haplotypes as multiple haplotypes near the khap
cutoff may have the same Hamming distance. In these situations, we
select a random subset of the boundary haplotypes to produce a ref-
erence panel with khap states. Intuitively, our approach corresponds to
imputing each study haplotype from a “custom” reference panel con-
taining close genealogical neighbors. We generally choose larger val-
ues for khap than for k because phasing updates require evaluation of
k2/2 HMM states per individual per SNP, whereas imputation updates
require evaluation of only khap states.

HapMap 3 cross-validation experiments
To assess the accuracy of genotype imputation from reference panels
of diverse ancestry, we performed leave-one-out cross-validations in
data from HapMap Phase 3. The HapMap 3 paper (The International
HapMap Consortium 2010) includes a number of similar compari-

sons, which use a series of carefully controlled experiments to show
how population ancestry in the reference and study data affects im-
putation accuracy. By contrast, our main goal is to validate a general
strategy for using ancestrally diverse reference data. One way to view
this distinction is that their experiments provide information about
the kinds of reference data one might want to collect to improve
imputation accuracy in a given population, whereas our experiments
illustrate a strategy for getting good results from whichever data are
available. To the extent that we consider how reference panels of
different ancestries affect imputation accuracy, the main point is to
guide intuition about why the overall strategy works.

All of our experiments were based on phased haplotypes from
HapMap 3, release 2, in NCBI Build 36 coordinates. HapMap 3 in-
cludes samples from 11 analysis panels, which are listed in Table 1.
After some minor processing (which is described in the Table 1 legend),
there was a total of 1011 unrelated individuals from 10 panels in this
dataset. Recent work on the HapMap data has revealed a small number
of close relatives among these putative unrelateds (Pemberton et al.
2010). We conducted the analyses for this study before those relation-
ships were revealed, but we do not anticipate that removing the related
individuals would have a major effect on our results or conclusions.

The HapMap 3 samples were genotyped on both the Affymetrix
SNP 6.0 platform and the Illumina 1M Human platform. For our
cross-validations, we masked the SNPs not typed on the Affymetrix
platform in one individual at a time, then imputed the masked
genotypes from the haplotypes of other HapMap 3 individuals; details
about which individuals were included in the reference panel are
provided below. We also masked the phase of the observed genotypes
in the individual being imputed. For these experiments, we used all of
the HapMap 3 SNPs on chromosome 20, which led to 16,606 non-
Affymetrix SNPs being imputed from 19,650 Affymetrix SNPs. We
also repeated the experiments after reversing the roles of the SNP
platforms, with results shown in File S3.

Once every individual in a panel had been masked and imputed,
we assessed accuracy at each SNP as the squared Pearson correlation
(R2) between the masked genotypes, which take values in {0,1,2}, and
the imputed allele dosages (also known as posterior mean genotypes),
which take values in [0,2]. The allele dosage is defined for each geno-
type G as

P2
x¼0PrðG ¼ xÞ � x, where Pr (G = x) is a marginal pos-

terior probability generated by an imputation method. Once the
correlation R2 had been measured for every masked SNP, we calcu-
lated the mean R2 across SNPs and reported this as a scalar summary
of imputation accuracy in that cross-validation experiment. In rare
situations, the correlation at a SNP was undefined because the impu-
tation produced identical allele dosages for all individuals. In these
cases, we set R2 = 0 to capture the intuition that there would be no
power to detect an effect at such SNPs. We note that the HapMap 3
samples were phased together in continental groups, which implies
that the absolute accuracies in this experiment may be slightly opti-
mistic. However, our main focus is on the relative accuracy of different
reference panel configurations, so the non-independence of cross-
validation samples is not a meaningful shortcoming.

We repeated this experiment for each of the 10 HapMap 3 panels
in Table 1 under various conditions. To understand the benefits and
drawbacks of different reference panel compositions, we sequentially
added HapMap 3 panels to the reference set and re-imputed after each
addition. Adding the panels in all possible orders is combinatorically
daunting and of dubious interpretive value, and we preferred to have
an objective ordering, so we added panels in order of increasing
pairwise FST to the cross-validation panel. We calculated FST between
each pair of panels as the average across all HapMap 3 SNPs on the
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autosomes. The panel orderings induced by this criterion are shown in
File S1. We also considered different orderings – e.g. adding panels as
dictated by a greedy algorithm based on cross-validation accuracy –
but these did not change our qualitative results (data not shown).

Up to this point, we have described 10 separate cross-validation
experiments for each HapMap 3 panel: a cross-validation within the
panel of interest, followed by 9 additional experiments with succes-
sively more inclusive reference panels. We also wanted to assess the
sensitivity of the inference to the khap parameter in IMPUTE2, so we
repeated each of these experiments across a grid of khap values: 15, 30,
60, 90, 120, 150, 200, 250, 300, 350, 400, 500, 600, 700, 800, 900, 1000,
1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, and 2020 (which
is the total number of HapMap 3 haplotypes, 2022, minus the two
haplotypes of the masked individual). By definition, khap cannot ex-
ceed the number of haplotypes in the reference panel, so each refer-
ence configuration used only the values that were consistent with its
panel size. Each configuration also used a special khap value that was
set to the total number of reference haplotypes in that experiment,
since this value seldom fell on a grid point.

We performed these experiments with IMPUTE version 2.1.2
under the following settings: k = 80 (tuning parameter for phasing
updates), iter = 30 (total number of MCMC iterations), burnin = 10
(number of iter to discard as burn-in), hap_spec_fam (flag to make the
program choose a custom reference panel for each study haplotype),
and Ne = 20000. The Ne parameter represents the effective size of the
population being analyzed, and it is used to scale the recombination
rates in the imputation HMM. It may seem odd that we use a single
Ne value in populations that clearly have different effective sizes, but
our pilot experiments showed that IMPUTE2 is largely insensitive to
this parameter and that 20000 is a good universal value (data not
shown). The approximations underlying the k and khap parameters
are modeled on local genealogies with limited recombination, so we
split chromosome 20 into nonoverlapping 5-Mb chunks for analysis,
with a 250-kb buffer region on each side to prevent edge effects (this is
a default setting in IMPUTE2).

It is useful to run a separate imputation method as an external
benchmark. We chose to compare against Beagle (Browning and
Browning 2009) because past results showed that it could be compet-
itive on a dataset of this scale (Browning and Browning 2009; Howie
et al. 2009; Jostins et al. 2011). Beagle has already been compared with

IMPUTE2 in a large, well-matched reference panel of European an-
cestry (Howie et al. 2009), so to simplify the presentation we applied it
only to the cosmopolitan HapMap 3 reference panels. We used Beagle
version 3.0.2 with default settings for all experiments presented here.
To facilitate parallel computation, we ran Beagle on the same 5-Mb
chromosome chunks (with buffers) that were used by IMPUTE2.

We also attempted to use a “coalescent-based” method for choos-
ing custom reference panels (Pasaniuc et al. 2010), but we could not
get it to produce accurate results on our data; see File S6 for details.
We omitted another leading imputation method, MaCH (Li et al.
2010), because it was not computationally feasible with the full Hap-
Map 3 panel at the time of these experiments. Both IMPUTE2 and
MaCH have recently been made more efficient through “pre-phasing”
of GWAS genotypes (the MaCH implementation is called “mini-
mac”). While we did not evaluate these approaches here, we have
found that pre-phasing is complementary to our khap approximation
in preliminary experiments, as we explain in the Discussion. All else
being equal, we would expect minimac to achieve similar accuracy to
IMPUTE2 since both methods are based on the Li and Stephens
(2003) model of DNA sequence variation, although further work
may be needed to compare these methods in various contexts.

MalariaGEN cross-validation experiments
To evaluate strategies for reference panel construction in African
populations, we performed cross-validation experiments in genotypes
that were kindly provided by the Malaria Genetic Epidemiology
Network (MalariaGEN; Malaria Genomic Epidemiology Network
2008). The data we used were collected by MalariaGEN investigators
for genome-wide association studies of human resistance or suscepti-
bility to severe malaria. The individuals in these datasets were
recruited at medical centers in the Gambia and Ghana; we henceforth
refer to these samples by the tags GMB and GHN, respectively, with
the understanding that they may not represent the full spectrum of
genetic diversity in the countries of origin. Further details about the
study recruitment are available at www.malariagen.net.

Each dataset consists of trios (658 from GMB and 608 from GHN)
that were ascertained via proband children diagnosed with malaria in
hospitals. The members of each trio were genotyped on the Illumina
650Y array, with the genotypes subjected to standard quality control
procedures and phased by Beagle with trio information. MalariaGEN

n Table 1 HapMap 3 panels used for cross-validation

Panel ID Panel Description
Number of Unrelated

Individualsa

ASW African ancestry in Southwest USA 63
CEU Utah residents with Northern and Western European

ancestry from the CEPH collection
117

CHBb Han Chinese in Beijing, China 84
CHD Chinese in Metropolitan Denver, Colorado 85
GIH Gujarati Indians in Houston, Texas 88
JPTb Japanese in Tokyo, Japan 86
LWK Luhya in Webuye, Kenya 90
MKK Maasai in Kinyawa, Kenya 143
MXL Mexican ancestry in Los Angeles, California 52
TSI Toscani in Italia 88
YRI Yoruba in Ibadan, Nigeria 115

All panels 1011
a
In panels that included trios (ASW, CEU, MXL, MKK, and YRI), we retained the trio parents as “unrelated” individuals. In panels that included parent-child duos
(ASW, CEU, MXL, and YRI), we retained the observed duo parent and the inferred transmitted haplotype from the unobserved duo parent, yielding three
“unrelated” haplotypes per duo; we then paired the inferred transmitted haplotypes at random to create diploid pseudo-individuals.

b
We combined the CHB and JPT panels into a single CHB+JPT panel with 170 individuals for all of the analyses in this paper.
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carried out the genotyping and data processing, then provided us with
inferred haplotypes for the trio parents (1316 GMB individuals and
1216 GHN individuals) in NCBI Build 36 coordinates.

As in the HapMap 3 comparisons, our main goal in designing
a cross-validation experiment was to provide guidance on how to use
existing and future imputation reference panels. We chose to focus on
the GMB panel because genotype imputation has previously been
evaluated in a Gambian GWAS (Jallow et al. 2009) and because the
1000 Genomes Project is planning to sequence a set of individuals
from the Gambia.

To mimic the planned 1000 Genomes Gambian dataset, we
randomly allocated 100 GMB individuals to a reference panel. We
also formed a reference panel from 100 randomly chosen GHN
individuals. Ghana is located between Nigeria (the source of the
HapMap YRI panel) and the Gambia on the Atlantic coast of Africa,
so this panel contains reference haplotypes sampled nearer to the
location of interest than those in the HapMap data.

We used the remaining 1216 GMB individuals as a validation set to
model imputation into a Gambian GWAS. We imputed the GMB
genotypes from a series of reference panels: all 2022 HapMap 3 (HM3)
haplotypes; 200 GMB haplotypes (GMB); 200 GMB haplotypes plus
200 GHN haplotypes (GMB+GHN); and a combined set containing all
2422 GMB, GHN, and HM3 haplotypes (GMB+GHN+HM3).

For each reference panel, we masked and imputed every 25th SNP
in the GMB validation set, then repeated this analysis in a sliding
window so that every genotyped SNP was imputed exactly once. To
mimic a GWAS of unrelated individuals, we treated the nonmasked
genotypes in the GMB validation set as unphased. We masked and
imputed all available Illumina 650Y SNPs on chromosomes 20 and 11
(we added chromosome 11 to raise the counts of low-frequency SNPs,
which are underrepresented in this dataset), except for those that were
not typed in or had allele conflicts with HapMap 3, yielding a total of
40,300 SNPs for imputation. As in the HapMap 3 cross-validations, we
split the chromosomes into non-overlapping 5-Mb regions to speed up
the analysis and support IMPUTE2’s computational approximations.

We also wanted to compare against Beagle on reference panels of
primarily African ancestry, so we generated another reference panel
called “HM3.afr” that included the HapMap3 haplotypes from the
ASW, LWK, MKK, and YRI panels (822 haplotypes). We then used
IMPUTE2 and Beagle to impute genotypes in the 1216 Gambians
based on two reference panels: GMB (200 haplotypes) and GMB
+GHN+HM3.afr (1222 haplotypes). We masked the SNPs as de-
scribed above, except that this time we masked every 13th SNP so
that Beagle would treat the data as it would a standard GWAS anal-
ysis. (Beagle invokes a different model-fitting strategy when fewer than
7% of the genotypes are missing from the study dataset.)

Computational benchmarking
To produce computational benchmarks in a realistic imputation
scenario, we simulated data that model the large, ancestrally diverse
reference panel that is being generated by the 1000 Genomes Project.
Our simulations were based on the sfs_code program (Hernandez
2008), which uses a pre-specified demographic model (typically
obtained from unbiased site frequency spectra) and DNA sequence
annotations to drive a forward simulation that models the effects of
genetic drift and natural selection on a population of chromosomes.
Ryan Hernandez kindly provided us with the output of an sfs_code
run that used a joint demographic model of three HapMap panels
(CEU, CHB, and YRI) on chromosome 17p12 (a 4.7-Mb region). At
the end of the forward simulation, the program sampled 10,000 hap-
lotypes from each of the three populations. These haplotypes do not

capture the full demographic complexity of the 1000 Genomes sample
set, but the simulation does provide realistic DNA sequence data for
three major sources of human genetic variation.

Given these simulated sequences, we sought to create imputation
reference panels that would capture features of the anticipated 1000
Genomes panels. We mirrored the overall size of the 1000 Genomes
reference set by sampling a panel of 1600 chromosomes from each
population, which yielded a total of 4800 chromosomes worldwide,
just under the 1000 Genomes target of 5000. The genome-wide
sequencing module of the 1000 Genomes Project is based on a low-
coverage design, so a certain fraction of low-frequency variants will be
missed in the real data. To mimic this ascertainment process, we used
power calculations from the 1000 Genomes pilot paper (The 1000
Genomes Project Consortium 2010) to determine the chances of
discovering SNPs with different numbers of variant allele copies. The
discovery probabilities are shown in Table S2; we applied them sep-
arately in each set of 1600 reference chromosomes, under the assump-
tion that true SNPs are discovered (or not) independently of each
other. Conditional on a SNP being discovered in any panel, we as-
sumed it was genotyped perfectly in all three panels. This is a reason-
able assumption for a benchmarking experiment because sporadic
genotyping errors are unlikely to have a noticeable effect on a pro-
gram’s computational burden.

Having simulated a reference panel, we then simulated a GWAS
dataset as the target for imputation. Of the 8400 CEU-like haplotypes
from sfs_code that were not included in the reference set, we selected
2000 and randomly paired them to create a GWAS sample of 1000
individuals. We thinned this dataset to the approximate SNP density
and MAF distribution observed in real Affymetrix 500k data on a set
of British controls [the 1958 Birth Cohort of the Wellcome Trust Case
Control Consortium (2007)].

We imputed our simulated GWAS dataset from two different
reference panels: a “Cosmopolitan” panel containing the full set of
4800 haplotypes and a “European” panel containing 1000 haplotypes
sampled from the 1600 CEU-like reference chromosomes. The first
panel models the worldwide 1000 Genomes set, whereas the second
panel models a single cluster of related populations (roughly speaking,
the 1000 Genomes samples will be divided among five such clusters
containing 500 individuals each). By imputing from both reference
panels, we can see how reference panel size and diversity affect the
computational loads of different imputation methods.

To provide a simple benchmark, we selected an imputation region
that contained exactly 10,000 polymorphic sites in the European
panel of 1000 haplotypes; this yielded the 1.9-Mb interval
[11200000,13096366] on chromosome 17. This region contains
a larger number of SNPs in the Cosmopolitan reference panel, but
we restricted that panel to the same 10,000 SNPs to simplify the
comparison. In practice, GWAS investigators may perform similar
filtering on Cosmopolitan reference panels to remove variants that are
underpowered in a particular study.

For each 10,000-SNP reference panel, we imputed the 1,000
GWAS individuals using IMPUTE v2.1.2 and Beagle v3.0.2. We used
the default settings for both methods (for IMPUTE2, the default khap
setting is 500), and we also ran IMPUTE2 with khap set to include all
available reference haplotypes. We recorded the single-processor run-
ning times and memory requirements for each run.

RESULTS
We performed a series of experiments to evaluate our proposed
imputation framework, which combines a cosmopolitan reference
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panel with a new approximation for speeding up imputation from
large reference datasets.

We implemented our approximation within IMPUTE2, which uses
an iterative algorithm to impute untyped variants in GWAS datasets.
Whereas the original algorithm imputes genotypes from the full set of
reference haplotypes, the new approximation imputes each study
haplotype from a custom subset of reference haplotypes. (Study
genotypes seldom come with known phase, but the haplotypes can
be inferred as part of the algorithm.) Each of these custom reference
panels includes the khap reference haplotypes that have the fewest allele
differences with a study haplotype at overlapping SNPs, where khap is
a user-defined parameter that controls the computational cost of im-
putation. If this method is applied over a limited genomic region (e.g.
a few million base pairs rather than a whole chromosome), we expect
the khap reference haplotypes to be enriched for those that share recent
common ancestry with the study haplotype of interest. We refer to
these haplotypes as “surrogate family members” because, like real fam-
ily members, they may share segments of nearly identical DNA that can
be used for imputation. We explore the relationship between khap and
accuracy in the results that follow, and we provide practical suggestions
for applying this approximation in the Discussion.

HapMap 3 cross-validation experiments
We first tested our proposed imputation framework on a chromosome
20 dataset from HapMap 3. This dataset includes hundreds of
haplotypes from each of several locations around the world, making
it a good qualitative model for future reference panels like those being
generated by the 1000 Genomes Project. The HapMap 3 panels used
in this study are described in Table 1; note that we combined the CHB
and JPT panels for this analysis.

Within each of the 10 panels, we masked a set of SNPs in one
individual at a time and used IMPUTE2 to infer the hidden genotypes.
We repeated this procedure across a range of khap values and with
various reference panels, which were creating by cumulatively adding
HapMap 3 panels in the order dictated by genome-wide average FST.
One way to think of this procedure is to imagine building a composite
reference panel for a population of interest: we start with a popula-
tion-specific reference panel, and we successively add more-diverged
panels to see if they will help (or possibly hurt) the imputation accu-
racy. These composite panels capture aspects of the Huang et al.
(2009a) cross-validation strategy for choosing reference sets, and they
provide population-label-informed benchmarks against which to
compare our label-free way of using reference data.

Selected results for ASW and TSI: In this section, we present results
for the ASW (African American) and TSI (Italian) panels, which
exhibit general trends and unexpected outcomes from our HapMap 3
cross-validations. Figure 1 shows how imputation accuracy depends
on reference panel composition and the number of surrogate family
haplotypes chosen from each composite panel (khap). We constructed
these plots in ways that highlight interesting features, and we re-
stricted the results to SNPs with MAF , 5% in the target panel.
We provide analogous plots for all HapMap 3 target panels in File S1.

The x-axis shows the value of the khap parameter, and the y-axis
shows the imputation accuracy, which is measured as the mean SNP-
wise R2 between true and imputed allele dosages (posterior mean
genotypes) for each cross-validation experiment. The computational
cost of imputation is roughly proportional to khap. Applying different
khap settings to a single reference panel generates a curve, and each
curve represents a different reference panel. (For further details of the
R2 distributions underlying the mean values at khap = 500, see File S2.)

Each individual was imputed initially from haplotypes in the same
panel, then from reference sets that cumulatively added panels in the
order shown in the plot legends, reading from bottom to top. The
black curves represent our suggested strategy of using a cosmopolitan
reference panel.

One observation from Figure 1 is that the full set of reference
haplotypes generated some of the highest accuracy levels in this exper-
iment – the black curves almost always lie above the other curves. As
we show in Figure 2 and File S3, this holds true across HapMap 3 target
panels, genotyping arrays, and SNP frequency classes. Another salient
feature of Figure 1 is that the curves plateau quickly with increasing
values of khap (moving from left to right within each plot). This shows
that our surrogate family approximation can decrease computing time
without losing accuracy. For example, the runs that selected 500 hap-
lotypes from the full HapMap 3 panel (khap ¼ 500; black curves)
achieved similar accuracy to the runs that didn't use this approximation
(khap = 2020), but the first set of runs was about four times faster.

Figure 1 also shows how imputation accuracy improved as partic-
ular panels were added to the reference set. The trends for the ASW
panel (Figure 1A) are basically as expected: each successive African
panel (MKK, LWK, and YRI) improved the accuracy incrementally,
and the panels that capture components of European ancestry (MXL,
GIH, TSI, and CEU) collectively raised the accuracy to its maximum
value for this experiment. The east Asian panels (CHB+JPT and
CHD) did not increase imputation accuracy any further, but nor
did they reduce it; this demonstrates the ability of the method to
ignore unhelpful reference haplotypes.

The results for the TSI panel (Figure 1B) are more surprising. As we
would expect, accuracy improved with the addition of each panel that
contains recent European ancestry (CEU and MEX). The GIH panel
also increased the accuracy, which is reasonable given the relatively
modest genetic divergence between this panel and TSI. Perhaps unex-
pectedly, the maximum imputation accuracy in TSI was not achieved
until a set of African haplotypes (MKK) was added to the reference
panel. This improvement was also observed when adding MKK hap-
lotypes to the reference set for CEU imputation (File S1). Supplementary
results from the HapMap 3 paper (The International HapMap Consor-
tium 2010) show that the MKK panel has an admixture component that
could reflect an ancient migration from Europe or the Middle East into
eastern Africa, which might explain our results, although we observed
a similar increase in accuracy after replacing the MKK panel with the
remaining African panels (data not shown). Regardless of the underly-
ing explanation, these results highlight the complexity of human de-
mographic history, which is one motivation for frameworks like ours
that use inclusive reference panels without population labels.

Notably, the common SNPs did not follow all of the patterns seen
here for low-frequency SNPs (see File S3.) A cosmopolitan reference
panel produced high imputation accuracy in both frequency classes, but
the accuracy at common SNPs came almost entirely from the most
closely related panels. For example, the maximum accuracy at common
SNPs in TSI was attained with a TSI+CEU reference panel, and the
addition of other panels neither increased nor decreased the accuracy.
Hence, our results confirm that cosmopolitan reference panels are be-
nign for imputing common variants, while showing that such panels
can be positively helpful for imputing low-frequency variants. This
difference can be understood in terms of the representation of
the minor allele in the reference panel: common alleles are usually
well-represented in population-matched panels of nontrivial size,
whereas low-frequency alleles may be present in only a few copies or
absent entirely, depending on allele frequency, SNP ascertainment
scheme, and the number of reference haplotypes. Additional copies
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of these alleles (and their associated haplotype backgrounds) may some-
times be found in other populations, which explain why a cosmopolitan
reference panel can improve imputation accuracy at low-frequency
variants. These statements are supported by the results in File S2.

High-level results for all HapMap 3 panels: We now extend the
results from Figure 1 to the full set of HapMap 3 panels and a compet-
ing imputation method. We chose to compare against Beagle (Brown-
ing and Browning 2009) because past studies showed that it could
achieve competitive speed and accuracy with large reference panels
(Browning and Browning 2009; Howie et al. 2009; Jostins et al. 2011).

The high-level results of our cross-validation experiment are
shown in Figure 2. As before, the solid black curves depict IMPUTE2
results with our suggested strategy of using a cosmopolitan reference
panel, and different points on the x-axis correspond to different values
of khap. Here, the multicolored curves from Figure 1 (which represent
imputation from subsets of the HapMap 3 haplotypes) are replaced
with orange curves. The identities of the orange curves are omitted for
plotting clarity, but full details are provided in File S1. We imputed
and evaluated 1,523-2,364 low-frequency SNPs per HapMap 3 panel,
with the exact numbers provided in Table S1. The black dashed lines
in Figure 2 show the results of using Beagle with the full HapMap 3
reference panel; these lines are flat because Beagle does not have an
analog of the khap parameter.

As in Figure 1, our proposed framework always produced near-
maximal accuracy. Also as before, the solid black curves typically
reach their highest accuracy values at small values of khap. Figure 2
shows that IMPUTE2 achieved higher accuracy than Beagle in every
panel, except at the lowest khap settings. In some target panels, the
difference between methods was small; for example, IMPUTE2 was
only slightly more accurate than Beagle in the CEU and TSI panels,
which is consistent with previous results comparing these methods on
a European dataset (Howie et al. 2009). [We note that Jostins et al.
(2011) reached the contradictory conclusion that Beagle is more ac-
curate than IMPUTE2 when imputing Europeans from diverse refer-
ence panels. We believe that their conclusion was driven by spurious
IMPUTE2 results, as we explain in File S4.] On the other hand,
IMPUTE2 was more accurate by a large margin in the African panels
(YRI, LWK, and MKK). These trends cannot be attributed to the fact
that we are running Beagle with a stratified reference panel when the
method is not designed for that situation: IMPUTE2 also produced
higher accuracy when we used reference panels that were well-
matched to the target panels, both in the current HapMap 3 frame-

work (data not shown) and in our MalariaGEN analyses (results
below). We further note that the Beagle results shown here are better
than the ones we obtained with smaller, less diverse HapMap 3 ref-
erence sets (data not shown). We tried running Beagle with larger
values of its niterations and nsamples parameters, but there was es-
sentially no change in these results (data not shown). We speculate on
the mechanistic reasons for the accuracy differences between IM-
PUTE2 and Beagle in the Discussion.

A subtle feature of Figure 2 is that not all of the IMPUTE2 curves
are monotonically increasing with khap: some of the black curves peak
at intermediate values of this parameter, then steadily decay as khap
grows to its maximum value of 2,020. This trend is clearest in the YRI
panel, but it is also observable in other panels. There should be few
problems of statistical computation (e.g. failure of the MCMC algo-
rithm to converge) in our leave-one-out experiments, so we assume
that this result reflects a real feature of the method. Our interpretation
is that restricting the reference set via khap actually imposes a more
appropriate prior distribution on the haplotype copying probabilities
when there is significant population structure in the panel. Tuning this
prior by changing khap has only a small effect on mean accuracy,
which implies that our imputation method is largely robust to strat-
ified reference data even without the surrogate family approximation.
At the same time, this result implies that choosing custom reference
panels may have benefits beyond just speeding up the computation,
which is consistent with the conclusions of Pasaniuc et al. (2010).

It is not straightforward to compare these results to those of Huang
et al. (2009a) because our experimental design is somewhat different.
Nonetheless, we believe that our basic conclusions align with theirs.
For example, we observed that the imputation accuracy with a world-
wide reference panel (khap = 2020) was never much lower than the
accuracy with the optimal khap (peaks of black curves in Figure 2), and
the Huang et al. (2009a) results show a similar trend for cosmopolitan
vs. optimal mixtures of HapMap 2 panels. In this sense, our khap
approximation can be viewed as a flexible and automatic way of
implementing the Huang et al. (2009a) panel selection approach with
an arbitrarily large number of reference populations.

MalariaGEN cross-validation experiments
To assess whether our imputation strategy would yield similar benefits
in African populations outside the HapMap 3 set, we performed
additional cross-validations in a Gambian dataset from the Malaria
Genomic Epidemiology Network (MalariaGEN; Malaria Genomic Ep-
idemiology Network 2008). Previous work on imputing Gambians in

Figure 1 Imputation accuracy at low-frequency
SNPs in HapMap 3 cross-validations in ASW
and TSI, as a function of reference panel
composition and khap value. These plots show
the imputation accuracy of IMPUTE2 in (A) the
ASW panel and (B) the TSI panel. The accu-
racy of each experiment is plotted on the y-
axis as the mean R2 across all SNPs with MAF
, 5% in the cross-validation panel (identified
by the gray box in each plot). The x-axis
shows the khap parameter, which scales line-
arly with the computational burden of impu-
tation updates in IMPUTE2. Each curve
represents a different reference panel, with
panels added cumulatively in the order
shown in the legends, reading from bottom
to top. Similar plots for other HapMap 3 tar-
get panels can be found in File S1.
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a disease study found that the HapMap 2 YRI panel produced weaker
association signals than did a Gambia-specific panel at the strongly
selected beta-globin gene (Jallow et al. 2009). Here, we extend that
work to examine imputation accuracy in larger reference panels and
a broader variety of loci. We also rephrase the question to ask whether
haplotypes sampled outside The Gambia can improve accuracy when
a dedicated Gambian panel is available.

To answer these questions, we masked and imputed 40,300 SNPs
from the Illumina 650Y array in a set of 1216 Gambian individuals
from MalariaGEN. We repeated the analysis for each of four reference
panels: all 2022 HapMap 3 haplotypes (HM3); 200 Gambian
haplotypes (GMB); 200 Gambian haplotypes plus 200 Ghanaian
haplotypes (GMB+GHN); and all of the aforementioned panels
combined (GMB+GHN+HM3; 2422 haplotypes). For each imputation

Figure 2 Imputation accuracy at low-frequency SNPs in HapMap 3 cross-validations, as a function of target panel, reference panel composition,
khap value, and imputation method. These plots show the imputation accuracy of IMPUTE2 and Beagle in various cross-validation experiments.
The accuracy of each experiment is plotted on the y-axis as the mean R2 across all SNPs with MAF, 5% in the cross-validation panel (identified by
the gray box in each plot). The x-axis shows the khap parameter, which scales linearly with the computational burden of imputation updates in
IMPUTE2. The solid black curves show how R2 varies with khap when using IMPUTE2 with a reference panel containing the full set of 2020 HapMap
3 haplotypes; the dashed black lines show the accuracy of Beagle with this reference panel. IMPUTE2 was also applied to subpanels of the full
HapMap 3 panel, with results shown as orange curves. Similar plots for other observed SNP sets and imputed SNP MAFs can be found in File S3.
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run, we used IMPUTE2 with khap = 500. In reference panels with fewer
than 500 haplotypes, we reduced khap to the number of available hap-
lotypes. The results are shown in Figure 3, which breaks down the
imputation accuracy by the minor allele frequencies of the SNPs in
the 1216 imputed Gambians.

Figure 3A shows the results for all imputed SNPs, whereas Figure
3B is restricted to SNPs with MAF , 10%. We omitted SNPs with
MAF , 1% from both plots as there were too few of these to provide
reliable measurements. Like previous authors (Jallow et al. 2009), we
found that a Gambia-specific reference set outperformed a HapMap
set that did not include Gambians: the GMB panel (blue curves)
produced higher overall accuracy than did the HM3 panel (red
curves), despite the fact that there were�800 chromosomes of African
ancestry in the HM3 set and only 200 chromosomes in the GMB set.
This suggests that historical divergence between the populations in the
HapMap 3 and Gambian panels makes HapMap 3 less accurate as an
imputation resource.

The HapMap 3 panel is still useful, however. Across the allele
frequency spectrum, the difference in mean R2 between the GMB and
HM3 panels was never larger than 2.5%, and the difference was small-
est at low-frequency SNPs. In fact, the HM3 panel was more accurate
than the GMB panel for SNPs in the 1–2% and 2–3% MAF bands
(Figure 3B); this shows that an ancestrally inclusive, nonspecific ref-
erence panel can capture low-frequency alleles that are poorly repre-
sented in a Gambia-specific panel. A recent simulation study found
that association power and mean imputation R2 have a roughly linear
relationship with a slope near 1.0 (Zheng et al. 2011), which suggests
that using the HM3 panel in place of the GMB panel would cause only
a small loss of power in an imputation-based association scan. [We
note that the results from Zheng et al. (2011) appear to conflict with
those of a recent study by Huang et al. (2009b), which found that
power drops quickly with mean R2. We believe that the Zheng et al.
(2011) results more accurately reflect this relationship because the
mathematical model of imputation errors used by Huang et al. ignores
the correlation of imputation error across individuals, which could be
substantial, e.g. at hard-to-impute SNPs.

Figure 3 also shows that non-Gambian panels can improve impu-
tation accuracy in the presence of a Gambian panel: the orange curve
represents the addition of haplotypes from a moderately diverged
population (GHN) and the black curve represents the further addition
of a worldwide reference panel (HM3). These results support our
strategy of using cosmopolitan reference panels: regardless of which

reference data are available, the highest accuracy is achieved when
using all available haplotypes and letting the imputation method de-
cide which ones to use.

Aside from these questions of reference panel composition, we can
also ask whether the choice of imputation method matters in African
datasets. Our HapMap 3 comparisons suggest that Beagle has trouble
imputing African genotypes, and we wanted to see if this conclusion
would hold up in the MalariaGEN data. To address this, we used
Beagle to impute the Gambian validation set using two different
reference panels: (i) the GMB panel and (ii) a composite reference set
containing the GMB panel, the GHN panel, and the HM3 panels with
majority African ancestry (ASW, LWK, MKK, and YRI). We decided
to reduce the HM3 set to these panels (which we label “HM3.afr”) in
case Beagle’s difficulties in the previous comparisons were caused by
the inclusion of non-African haplotypes in the reference panel. For
consistency, we also imputed from the GMB+GHN+HM3.afr panel
with IMPUTE2.

The results of this comparison are shown in Figure 4. Results based
on the GMB panel are shown in blue, while results based on the GMB
+GHN+HM3.afr panel are shown in gray. Accuracy curves for IM-
PUTE2 and Beagle are drawn with solid and dashed lines, respectively.
In concurrence with our previous results on African populations, we
found that Beagle was much less accurate than IMPUTE2 when pro-
vided with the same reference panel: for each color, the solid line in
Figure 4 is consistently above the dashed line. In fact, IMPUTE2
achieved higher accuracy when imputing from 200 GMB haplotypes
(solid blue line) than Beagle did when imputing from 1222 African
haplotypes (dashed gray line), of which the 200 GMB were a subset.
The difference between methods was largest at low-frequency SNPs,
but there was a substantial gap across the entire frequency spectrum.

We believe that Beagle's difficulties in imputing African datasets
arise from properties of its clustering model. It is possible that Beagle
could produce better results with different settings, although we tried
varying both the model-fitting parameters (niterations, nsamples) and
the model-building parameters (scale, shift) without observing a mean-
ingful change in accuracy (data not shown).

Computational benchmarking
To provide computational benchmarks for the imputation methods
used in this study, we simulated two reference panels: one containing
4800 haplotypes modeled on the ancestrally diverse reference dataset
that is being produced by the 1000 Genomes Project, and another

Figure 3 Imputation accuracy in Gambian
validation set as a function of reference panel
composition and minor allele frequency.
These plots show the accuracy obtained
when imputing masked SNPs in 1216 Gam-
bian individuals from the MalariaGEN dataset
using IMPUTE2 with khap = 500. Each refer-
ence panel is represented by a different
color, and the results are shown for (A) all
SNPs and (B) SNPs with MAF , 10% in the
Gambian validation set. The results are
binned by MAF, with 5% bins in (A) and 1%
bins in (B). Each point on a curve is located in
the middle of the corresponding MAF bin.
The following reference panel codes are used
in the legend: GMB (Gambia, 200 haplo-
types); GHN (Ghana, 200 haplotypes); and
HM3 (HapMap 3, 2022 haplotypes).
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containing 1000 haplotypes modeled on the European component of
the 1000 Genomes set. We restricted the panels to a shared set of
10,000 SNPs spanning 1.9 Mb of sequence, and we imputed from both
panels into a simulated GWAS of 1000 European individuals. The
GWAS samples were provided with genotypes at SNPs that mirror the
properties of the Affymetrix 500k platform; there were 337 such SNPs
in the simulated region.

We imputed the simulated GWAS dataset from each reference
panel using IMPUTE2 and Beagle. We ran Beagle on the same
(default) settings as in the cross-validations, and we ran IMPUTE2 on
two settings for each panel: khap = 500 and khap = N, where N is the
number of haplotypes in the reference panel. As in the cross-validations,
we fixed the IMPUTE2 phasing parameter at k = 80. Table 2 shows
the single-processor running times and random-access memory
(RAM) requirements of each program. We obtained these bench-
marks from a single computer with 148 GB of RAM and a 2.4 GHz
Intel Xeon processor.

Table 2 illustrates the computational benefits of our surrogate family
approximation. In the Cosmopolitan reference panel with 4800 haplo-
types, reducing khap from 4800 to 500 decreased IMPUTE2’s running
time by a factor of 4.8. Another way of viewing this is to notice that
with khap fixed at 500, IMPUTE2's running time increased by only
a factor of 1.4 when moving from a panel with 1000 haplotypes to
a panel with 4800 haplotypes. By comparison, Beagle's running time
increased by a factor of 9 with the same panels. In this setting, fixing
khap fixes the cost of the imputation calculations used by IMPUTE2, so
the 1.4-fold increase in running time at khap = 500 reflects the additional

time needed to evaluate a larger number of haplotypes when choosing
which 500 to use for imputation. Preliminary experiments suggest that
this evaluation step could be shortened by ignoring divergent haplo-
types after the first few iterations of the algorithm (data not shown),
which would make the overall running time almost independent of the
number of reference haplotypes for fixed khap.

On these kinds of imputation datasets, IMPUTE2 shows clear
computational advantages over Beagle. Even when using a large,
ancestrally diverse reference panel, IMPUTE2 finished in less time on
default settings (127 min with khap = 500) than it took Beagle to
impute from an ancestrally homogeneous panel with almost five times
fewer haplotypes (655 min). IMPUTE2 also required much less RAM:
for each reference panel, Beagle needed about 20 times more memory.
These results, in combination with our cross-validation results, con-
firm that IMPUTE2 is both more accurate and more efficient than
Beagle in the kinds of imputation datasets that are beginning to drive
the field. As with any sophisticated inference method, there are ways
to tweak Beagle's settings to achieve better speed, but all of them
would reduce imputation accuracy. (Beagle's memory footprint can
also be reduced, at the cost of even longer running times.) We explore
some of the factors underlying these computational differences, and
the implications they hold for future methods development, in the
Discussion.

For fixed k and khap, IMPUTE2’s computational burden scales
linearly with the number of study individuals, the number of reference
haplotypes, the number of study SNPs, and the number of reference
SNPs. Each of these factors makes a different per-unit contribution to
the overall running time, with the number of study individuals and the
number of reference SNPs having the biggest effect in modern data-
sets. Extrapolating the numbers from Table 2 to the entire genome
and assuming the availability of 100 parallel computer processors, we
predict that it would take IMPUTE2 about a day to impute 1000
individuals from a reference panel with thousands of sequenced hap-
lotypes. For investigators with limited computational resources or very
large GWAS cohorts, the imputation can be made even faster by
prephasing the GWAS genotypes, as we explain in the Discussion.

DISCUSSION
Advances in DNA sequencing technologies have made it feasible to
obtain near-complete genome sequences from thousands of individ-
uals. Association mapping studies will immediately benefit from these
developments: whole-genome sequencing of large GWAS datasets will
not be practical for a while yet; in the meantime, we can impute a wide
range of genetic variation from genomes that have already been
sequenced. Most of the mutations discovered in these genomes will
occur at low population frequencies, so it is important that imputation

Figure 4 Comparison of imputation accuracy between IMPUTE2 and
Beagle in Gambian validation set. This plot shows the accuracy
obtained when imputing masked SNPs in 1216 Gambian individuals
from the MalariaGEN dataset using either IMPUTE2 with khap = 500
(solid lines) or Beagle on default settings (dashed lines). Imputation
was performed with a reference panel of Gambian haplotypes (blue)
and a reference panel of Gambian, Ghanaian, and HapMap 3 African
ancestry haplotypes (gray). The results are grouped into 5% MAF bins,
and each point on a curve is located in the middle of the correspond-
ing MAF bin. The following reference panel codes are used in the
legend: GMB (Gambia, 200 haplotypes); GHN (Ghana, 200 haplo-
types); and HM3.afr (HapMap 3 African ancestry, 822 haplotypes).

n Table 2 Computational benchmarks for a simulated GWAS of
1000 European individuals imputed from reference panels with
10,000 SNPs

Method khap
Reference

Panel
Running Time

(minutes) RAM (GB)

IMPUTE2 500 Europeana 90 0.26
500 Cosmopolitanb 127 0.60

1000 European 157 0.30
4800 Cosmopolitan 603 0.74

Beagle — European 655 5.2
— Cosmopolitan 5904 15.2

a
The European panel contains 1000 haplotypes.

b
The Cosmopolitan panel contains 4800 haplotypes with ancestry from Africa,
Asia, and Europe.
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strategies be tailored to capture low-frequency variants. As sequencing
projects produce larger and more diverse reference datasets, imputa-
tion-based GWAS will also face practical challenges like choosing
appropriate reference panels and keeping computation tractable.

We have developed a coherent and convenient imputation
framework that addresses these concerns. To simplify the process of
choosing reference haplotypes from a diverse collection, our approach
uses a cosmopolitan reference panel. Previous work suggested that
cosmopolitan panels could increase imputation accuracy at low-
frequency variants, and our results extend these findings to a wide
range of human populations. It is computationally intensive to
perform imputation with large, ancestrally diverse reference panels,
so we have also developed an approximation that decreases the cost of
adding haplotypes to a reference set without sacrificing accuracy.

Our framework was motivated by the idea that larger reference
datasets should make imputation faster and simpler, rather than
slower and more complicated. We believe that our work represents
a first step toward bridging current imputation practice with the
paradigm suggested by Kong et al. (2008), in which large population
samples eliminate the need for complex models and reference panel
selection, and investigators do not have to balance efficiency and
accuracy. Detailed population models and reference panel weighting
schemes may provide modest accuracy improvements in the short
term, but we expect that the power gains from such developments
will seldom justify the added computational costs.

Conversely, imputation strategies that are agnostic to population
labels (as ours is) may become increasingly attractive as sequencing
studies fill in the continuum of human genetic diversity. One benefit
of such approaches is that they can capture unexpected allele sharing
without needing to model the complexities of human demographic
history, as we demonstrated by showing that African haplotypes can
improve imputation accuracy in Europeans. Approaches like ours are
also well-suited for imputation in recently admixed populations:
methods that choose custom reference panels for different admixed
individuals in different parts of the genome can increase accuracy
by adapting to local ancestry changes, as previously suggested by
Pasaniuc et al. (2010).

The framework we have proposed can serve as a general approach
for using reference data in current and future imputation studies, and
we expect that it will spur additional methods development in this
area. Below, we discuss the aspects of this framework that make it
successful in modern reference panels, along with some practical and
theoretical questions that may arise when extending the conclusions of
this study to other datasets.

Extending our results to future studies
Our cross-validation experiments have provided a wealth of in-
formation about how to use existing imputation resources like
HapMap 3, but these datasets do not capture the full range of features
that will be present in future reference panels. For example, our results
are based on data from commercial SNP arrays, whose composition is
biased toward variants that share alleles across populations. Conse-
quently, population-specific accuracy contributions like the ones seen
in Figure 1 should not be treated as quantitative predictions for newly
discovered variants. While we could have used 1000 Genomes data to
address the SNP ascertainment issue, the data available when we were
preparing this manuscript contained smaller sample sizes and a nar-
rower sampling of human genetic diversity than found in HapMap 3,
so we decided to focus on the latter dataset as a model of future 1000
Genomes reference panels. We have run similar imputation experi-
ments with an interim release of the 1000 Genomes Phase I haplo-

types, and we have continued to see benefits from using ancestrally
inclusive reference panels (B. Howie; unpublished data).

In this work, we have highlighted the fact that combining reference
data from different populations can improve imputation accuracy at
low-frequency variants. This finding reflects both the limited sample
sizes of existing reference panels and the shared ancestry of human
populations: an allele that occurs at low frequency in a study
population may be poorly represented in a well-matched reference
panel due to sampling effects; however, that same allele may be found
in reference sets from other populations due to genetic drift or
introduction by recent migrants. While a multipopulation reference
panel can improve accuracy at this kind of variant, there are other
situations in which accuracy might be harmed by such panels. Possible
mechanisms for decreased accuracy include (i) the imputation of
variant alleles at sites that do not segregate in a study dataset, (ii)
signal dilution from reference haplotypes that are similar to those in
a study population but do not carry a variant allele that segregates in
that population, and (iii) misleading results from reference haplotypes
that carry recurrent mutations. We discuss these issues in File S5; we
conclude that they will seldom hurt the imputation of low-frequency
alleles from HapMap 3 or 1000 Genomes haplotypes, but that refer-
ence panel composition may need to be reevaluated when imputing
rare alleles (MAF , 0.5%) or using other reference datasets.

Another question to consider when applying our framework is
whether the optimal number of surrogate family haplotypes will
change with different reference datasets. Judging from our experience
in a variety of studies, we suggest the rule of thumb that khap should be
set to the number of reference haplotypes that have broadly similar
ancestry to the study population. For example, the broad ancestral
groupings in HapMap 3 (Europe, East Asia, Africa) each include 500–
800 haplotypes, and we found that khap = 500 worked well with this
resource. Imputation accuracy is not highly sensitive to this variable,
regardless of other factors like chunk size and local recombination
rate, so it should not usually be necessary to optimize khap empirically.
As reference sets grow and we further develop our approximation, we
anticipate that it will be possible to achieve high accuracy with even
lower values of khap.

Suggestions for imputation-based GWAS in Africa
African populations pose a special challenge for imputation because
they are among the most genetically diverse in the world (Rosenberg
et al. 2010). Genetic relationships among African populations have
been shaped by complex demographic histories, deep ancestries, and
strong selective pressures, which can cause patterns of haplotype shar-
ing in Africa to look much different than patterns in other parts of the
world (Bryc et al. 2010; Campbell and Tishkoff 2008, 2010; Reed and
Tishkoff 2006; Tishkoff et al. 2007, 2009). African populations also
carry substantial burdens of common disease, yet few large-scale
GWAS have been conducted in this setting. Efforts like the 1000
Genomes Project and MalariaGEN are changing this landscape, so
it will be important to define effective reference panels for GWAS
in a variety of African populations.

We addressed this question by performing cross-validation experi-
ments in Gambian individuals from MalariaGEN. In concurrence
with a more limited analysis by Jallow et al. (2009), we found that
a population-specific reference panel yielded higher average accuracy
than did a larger HapMap 3 panel that lacked Gambian haplotypes.
However, we also found that the HapMap 3 panel produced reason-
able imputation accuracy across the allele frequency spectrum, and
that non-Gambian haplotypes improved accuracy when added to
a Gambia-specific reference panel.
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Although these findings were obtained from a limited sampling of
African genetic diversity, they provide some intuition about general
strategies for imputation in people of recent African ancestry. It will
always help to collect new reference data through population-specific
sequencing or genotyping, but the gains from this approach will often
be larger in Africa. Whether or not a well-matched panel is available for
a particular study population, imputing from all available haplotypes of
African ancestry may often improve the results. Non-specific reference
panels can weaken association signals near loci that have recently
experienced strong selection, as with the beta-globin region in the
Jallow et al. study, so it may be worthwhile to re-impute from just the
ancestry-matched reference haplotypes (when such haplotypes are
available) in regions showing decisive evidence of selective sweeps.

Imputation methods based on the Li and Stephens (2003) model of
DNA sequence variation (like IMPUTE2 and MaCH) are well suited
to performing imputation in African GWAS. As shown in our
HapMap 3 and MalariaGEN cross-validations, this kind of model can
consistently produce higher accuracy than clustering approaches like
the one used by Beagle, for reasons we discuss below. When the model
is implemented via an efficient algorithm like IMPUTE2, this accuracy
can be achieved at a fraction of the computational price.

Looking ahead, we anticipate that many of the initial African
GWAS will be conducted in west African populations; for example,
such populations constitute a large part of MalariaGEN's Consortial
Project 1. The power of these studies could potentially be boosted by
using African American haplotypes to augment the reference sets
collected in Africa. While there are clear merits to this idea, one might
worry that the haplotype segments of non-African ancestry would
pose problems for imputation. We can address this question by in-
specting the IMPUTE2 results from our HapMap 3 cross-validations.
Encouragingly, these results show that adding the HapMap 3 ASW
panel to the reference set improved accuracy in every African cross-
validation panel (File S1).

Computational strategies for imputation with large,
sequence-based reference panels
Throughout our imputation experiments, we found that IMPUTE2
can attain both higher accuracy and faster computation than Beagle,
which is a leading inference method for large datasets. We believe that
the success of IMPUTE2 in this context can be attributed to its
computational strategies and its model of DNA sequence variation.
We discuss these attributes here in hopes that they will inform future
methods development, and we address the role that prephasing can
play in speeding up imputation.

Beagle's basic modeling approach is to combine haplotypes into
clusters. This speeds up computation because it restricts the number
of HMM states that need to be considered: rather than perform HMM
calculations on every haplotype in a dataset, Beagle can run the cal-
culations on a smaller set of clusters. Similar state-reduction techni-
ques are used by GERBIL (Kimmel and Shamir 2005), fastPHASE
(Scheet and Stephens 2006), GEDI (Kennedy et al. 2008), and other
related methods. By contrast, the basic HMM used by IMPUTE2 and
MaCH includes a state for every haplotype. Using all of the states
makes computation intractable, which is why IMPUTE2 restricts the
states via its k and khap parameters. The intuition is that the “surrogate
family members” identified in this way should include the most in-
formative haplotypes for a particular individual in a particular part of
the genome.

Both of these state-reduction approaches speed up imputation, but
our cross-validations show that IMPUTE2 attains higher accuracy
than Beagle in practice, especially at low-frequency variants in datasets

that have higher haplotype diversity (e.g. those with recent African
ancestry). We suggest that this is because clustering models have in-
herent difficulties capturing low-frequency variation: by grouping sim-
ilar haplotypes into clusters, these methods obscure the differences
between those haplotypes, which reduces the ability to impute low-
frequency variants. This could explain why the accuracy disparity
between IMPUTE2 and Beagle was largest in African populations,
which have higher genetic diversity than non-African populations
and hence a larger fraction of low-frequency haplotypes. Methods like
Beagle may be able to make up some of this ground by using more
clusters, but this will further increase the computational load.

These trends should persist as imputation datasets continue to
grow: clustering models will need to add even more states to their
HMMs to remain competitive on accuracy, whereas the closest k (or
khap) surrogate family haplotypes will become even more informative,
thereby enhancing the running time and accuracy advantages of
methods like IMPUTE2. The natural endpoint of this process will
arrive when so many genomes have been sequenced that imputation
requires just a handful of the closest genealogical neighbors, which is
where “surrogate parent” methods, like the one developed by Kong
et al. (2008), will take hold. Until that point is reached, we suggest that
our surrogate family approximation will remain an attractive way to
balance accuracy and speed.

Another technique for increasing the efficiency of imputation is
called “pre-phasing.” The idea is to (pre-)phase the assayed genotypes
in a GWAS dataset, then impute directly into the inferred haplotypes;
this speeds up imputation by more than an order of magnitude at the
cost of a small amount of accuracy (B. Howie and C. Fuchsberger,
unpublished data). In principle, most imputation methods could use
this approach, and researchers can already download implementations
based on the IMPUTE2 and MaCH models (the MaCH implementa-
tion is called “minimac”). We have found that khap has similar accu-
racy characteristics in both unphased and pre-phased GWAS datasets
(data not shown), so we view pre-phasing as being complementary to
our surrogate family approximation: both approaches speed up im-
putation, and they can be used together for even greater efficiency.

Extensions
One potential extension of the results and methodology seen in this
study is to whole-genome sequencing efforts like the 1000 Genomes
Project. One study design that has arisen in this context is to sequence
many individuals at low coverage; say, 2–4·. The data from this kind
of experiment are too sparse to directly and confidently determine
most genotypes, but they can be called with high accuracy by applying
the same kinds of models that are used for genotype imputation in
GWAS (Li et al. 2011; The 1000 Genomes Project Consortium 2010).
We expect that the approach of combining information across pop-
ulations will help call low-frequency alleles in that setting, much as it
helped impute low-frequency alleles in this study.
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