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Abstract

The unpleasant smell released from dead bodies, may serve as an alarm for avoiding cer-

tain behaviour or as feeding or oviposition attractants for animals. However, little is known

about their effect on the structure and function of proteins. Previously, we reported that

using the aroma form of TEMED (a diamine), representative of the "smell of death", could

completely inhibit the fibril formation of HEWL, as an antibacterial enzyme, and a model pro-

tein for fibrillation studies. To take this further, in this study we investigated the kinetics of

TEMED using a number of techniques and in particular X-ray crystallography to identify the

binding site(s) of TEMED and search for hotspot(s) necessary to inhibit fibril formation of

HEWL. Structural data, coupled with other experimental data reported in this study, revealed

that TEMED completely inhibited fibril formation and stabilized the structure of HEWL

through enhancement of the CH-Π interaction and binding to an inhibitor hotspot comprised

of residues Lys33, Phe34, Glu35 and Asn37 of HEWL. Additionally, results from this study

showed that the binding of TEMED increased the activity and thermal stability of HEWL,

helping to improve the function of this antibacterial enzyme. In conclusion, the role of the

"smell of death”, as an important signal molecule affecting the activity and stability of HEWL

was greatly highlighted, suggesting that aroma producing small molecules can be signals

for structural and functional changes in proteins.

Introduction

Sense of smell in animals and human beings help them to find food, detect dangerous situa-

tions and provide cognitive influences, especially in human beings. These smells or aromas,

arise from the properties of some compounds, which are found in their gaseous phase due to

their small size and low vapour pressure.

Researchers have looked at aroma producing compounds from different points of views.

Some researchers have investigated the effectiveness of the compounds on activation of some

signaling pathways in different parts of the body, which may or may not even involve the olfac-

tory system (such as the influence of the smell of sandal wood on hair growth [1]). On the
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other hand, some have studied the psychological or physiological effects of aroma producing

compounds on human beings or other animals [2]. For instance, Hussain et al., in 2016, dem-

onstrated that flies appear to use their sense of smell as a signal to find polyamine-rich foods

and that polyamine-rich diets significantly increased the number of progenies of flies [3]. Poly-

amines are a class of aroma producing small molecules that can be generated via a number of

ways including endogenous biosynthesis; microbes in the gut [4]; and the action of polyamine-

synthesis enzymes (i.e. ornithine decarboxylase aids decarboxylation of amino acids forming

polyamines such as putrescence and cadaverine [3]), which have bacterial origin and make the

"smell of death" from the bodies of dead animals. The smell of polyamines can be detected by

animals and at higher concentrations are unpleasant to human beings. It is interesting that

both the deficiency and excess of polyamines can be deleterious to health and reproduction

[5].

In our previous study [6], we investigated the effect of three different aroma producing

small molecules including two polyphenols with pleasant smells (Cinnamaldehyde and Phenyl

ethyl alcohol) and a polyamine with an unpleasant smell, (N,N,N,N’-Tetramethylethylenedia-

mine/ TEMED), on the fibrillation process of Hen egg white lysozyme (HEWL), as a model

protein in fibrillation studies. Based on the results achieved in that study, it was clear that

TEMED (a representative of polyamines), completely stopped the process of fibril formation

in HEWL (an antibacterial enzyme that lyses the cell wall of bacteria) and improved its enzy-

matic activity. To take that further, it was interesting for us to investigate whether compounds

in their aroma form can impact the thermal or structural stability of proteins and affect their

function. Therefore, in this study, we investigated the fibrillation kinetics of HEWL in the pres-

ence of TEMED, using a number of techniques including ThT and intrinsic fluorescence spec-

troscopy, Circular Dichroism spectroscopy, Atomic Force microscopy, Dynamic Light

Scattering, SDS-PAGE, and in particular X-ray crystallography, to reveal the binding mode

and mechanism for the prevention of fibril formation in HEWL. Differential scanning

fluorimetry was also used to investigate the thermal stability of HEWL in the presence of

TEMED in the aroma form and at different concentrations in solution. Our results showed

that TEMED behaves as a specific ligand for HEWL, binds to the active site of HEWL, inhibits

fibrillation and increases the activity and thermal stability of the enzyme.

Materials and methods

Materials

Hen egg-white lysozyme or HEWL (catalogue number L6876), Thioflavin T or ThT, Nile

red, glycine (CAS No. 56-40-6), Sodium dodecyl sulphate (SDS) (Catalog no. 85,192–2), N,N,

N,N’-Tetramethylethylenediamine or TEMED (CAS No. 110–189), and sodium acetate

(CH3COONa) (lot 110H-072015) were all purchased from Sigma-Aldrich. Protein gel marker

(PM1500) was purchased from SMOBiO. Mica for atomic force microscopy (ca. 92680) was

purchased from PELCO. Acrylamide (UN-NO 2074), Amicon Pro-Affinity Concentration Kit

Protein G (ACK5010PG) and N,N’methylendiacrylamid (EC.NO. 203-750-9) were purchased

from Merck. NaCl (Lot 24091) was purchased from SERVA. PEG400, ethylene glycol and 1,2

Propanediol were from Molecular dimensions CryoProtX MD1-61. Hampton Research Crystal

Screen II for crystal growth (CAT NO. HR2-112), 24 well crystallization VDX Plates with or

without sealant (CAT NO. HR3-172 and HR3-142, respectively), OptiClear Plastic Cover

Slides (CAT NO. HR8-074) and Siliconized Glass Cover Slides (CAT NO. HR3-239) were all

purchased from the Hampton Research company. High vacuum grease was purchased from

Girovac. For DSF experiments, Hen egg-white lysozyme or HEWL (Lot number P02C037)

and Sypro Orange (catalogue number S6650) were purchased from Thermo fisher. Glycine
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(Lot number AO359169) was purchased from ACROS. N,N,N,N’-Tetramethylethylenedia-

mine or TEMED (CAS number 110-18-9) and PCR plates (catalogue number 82006–636)

were purchased from VWR.

HEWL sample solution preparation and incubation studies

2 mg/ml (140 μM) HEWL solution was prepared in 50 mM glycine buffer pH 2.2. Sample

TEMED5h and that of TEMED24h and Not-treated24h were incubated at 54 ˚C and 150 rpm

for 5h and 24h, respectively [6], in either the presence or absence of TEMED, in the aroma

form.

Thioflavin T (ThT) fluorescence assay

HEWL samples incubated with or without aroma for 5h and 24h were diluted 50-fold with

ThT solution (at 25 μM) and fluorescence intensities were recorded at 484 nm after excitation

at 440 nm. Excitation and emission slit widths were both set at 5 nm. A sample of Not-heated

HEWL was also used and ThT recorded as control. The results were repeated and standard

deviation bar calculated for the graph using multiple data.

Circular dichroism spectroscopy

Circular dichroism (CD) spectra of HEWL samples were recorded from 250 to 195 nm using

an AVIV 215 spectrophotometer (Aviv Associates, Lakewood, NJ, USA). The sample prepara-

tions were the same as described before in our previous study [6]. Three scans of each sample

were measured and averaged. The control buffer scans were run in duplicate, averaged and

then subtracted from the sample spectra. The results were plotted as ellipticity (deg. cm2

dmol−1) versus wavelength (nm).

Protein gel electrophoresis

Tris-glycine SDS polyacrylamide gel electrophoresis (SDS-PAGE) was used under reducing

conditions to analyze the HEWL samples in this study. A pre-stained protein marker was

used.

Atomic Force microscopy (AFM)

AFM scans were performed using a Veeco AFM instrument (Sharif University, Tehran, Iran).

The sample preparation method used was the same as described before [6].

Dynamic light scattering (DLS)

Dynamic light scattering measurements were performed using the Malvern Zeta Sizer Nano

ZS. The apparatus and parameters used were the same as we described in our previous study

[6].

Intrinsic fluorescence intensity assay

Not-heated HEWL, treated- and Not-treated HEWL samples were diluted 25 times with 50

mM glycine pH 2.2. The excitation wavelength was 280 nm and emission spectra were

recorded between 300 and 400 nm. Excitation and emission slit widths were both set at 10 nm.
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Differential scanning fluorimetry (DSF)

Stock solution (5000x) of the fluorescent dye Sypro Orange (Molecular Probes) was diluted

with ultrapure water to a final concentration of 25x. The initial concentration of HEWL was

140 μM. Reaction mixtures were prepared by diluting HEWL in the presence or absence of

desired concentrations of small molecules and 5 μL of 25x Sypro Orange, in order to yield a

final reaction volume of 50 μl.

The thermal stability was examined for all samples and 15 μM concentrations of HEWL

were used. DSF experiments were performed in a BioRad CFX96 RT-PCR machine pro-

grammed to the temperature range 20–90˚C and heating rate 1˚C / 0.5 min. All obtained

curves were inspected manually to check their quality, and the Tm values were determined

using the first derivative curve. All experiments were performed in triplicate [7].

TEMED-HEWL sample preparation and incubation studies using DSF

2 mg/ml (140 μM) HEWL solution was prepared in 50 mM glycine buffer pH 2.2. Sample

TEMED5h and that of TEMED24h and Not-treated24h were prepared by incubation of

HEWL at 54 ˚C and 150 rpm for 5h and 24h, respectively [6], in either the presence or

absence of TEMED as indicated. In addition, a second series of samples was prepared in

which HEWL was incubated at room temperature for 24h in the presence or absence of

TEMED in solution.

To determine the TEMED concentration range to be used in solution, the experimental set-

up initially used for detecting the effect of TEMED in the aroma form on HEWL fibrillation

was considered. Therefore, if the vial containing aroma producing TEMED and the bottle con-

taining HEWL were considered as two different systems, similar to the vapour diffusion

method in crystallisation, there would be an equilibrium between the water (as a basic solvent

of buffer) in the HEWL solution and TEMED in the aroma form circulating out from the vial.

Therefore, since the initial volume of TEMED in solution was 50 μl, calculation was done to

find the final concentration based on the reduced volume at the end of the incubation (S1

Table).

Crystallisation

Crystals of Not-heated (or native) HEWL was obtained and used as the control in two different

solutions consisting 50 mM glycine pH 2.2 and 50 mM glycine pH 8.6. In the case of treated

HEWL samples (at 2 mg/ml incubated with aroma form of TEMED), samples were prepared

as mentioned in our previous study [6]. For the purpose of crystallising the treated HEWL

samples (TEMED5h and TEMED24h), the initial concentration at 2 mg/ml was increased to

between 6 and 8 mg/ml, respectively, using a concentrator with 10,000 Da MWCO. For prepa-

ration of co-crystallised sample, HEWL was mixed with TEMED and incubated for 45 min at

4 ˚C (the molar ratio of TEMED was approximately 100 times more than HEWL), and then

centrifuged for 5 min at 14000 rpm and used in crystallisation. The final concentration of co-

crystallised HEWL was 15 mg/ml. Conditions 1 (2 M NaCl and 10% PEG 6000) and 9 (2 M

NaCl and 0.1 M sodium acetate pH 4.6) from Hampton Research Crystal Screen II were used

for crystallisation of Not-heated, treated and co-crystallised HEWL samples. The final cryo-

protectant solutions were generally composed of the crystallisation conditions in which the

crystals were grown in (with about 20% increase in precipitant concentration) and the addition

of 25% (v/v) ethylene glycol (EDO) or 20% (v/v) 1,2 Propanediol (PGO). All crystals were

obtained using the hanging drop method.
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Data collection and structure determination

Diffraction data were collected at the ALBA synchrotron source, the XALOC Beamline, at 100

K and at a wavelength of 0.9792 Å. The highest-resolution crystals diffracted to 1.08 Å.

iMOSFLM [8] was used for data reduction, and Scala [9] was used for scaling and merging

intensities. The structures were determined by molecular replacement using Phaser [10] with

1DPX as the search model. Refinement of the structures was performed using REFMAC ver-

sion 5.8.0135 [20]. Once the structures were solved (Table 1), Ligplot+ [11], QtMG from CCP4

software [20], and Chimera [12] were used for a detailed structural analysis of the ligand bind-

ing site(s).

Results and discussion

Fibrillation kinetics

The main goal of this study was to investigate the kinetics of TEMED (as a representative of

smell of death) in inhibiting fibril formation of HEWL, as an antibacterial enzyme. Previously

we reported that incubating HEWL at 54 ˚C in 50 mM glycine pH 2.2 for 24h in the presence

of TEMED in its aroma form prevented fibril formation, while in the absence of TEMED, fibril

Table 1. Data collection and refinement statistics.

Sample Name pH = 8.6 TEMED 5h TEMED 24h TEMED-co

PDB ID 6ABN 6AEA 6AD5 6ADF

Space group P43212 P43212 P43212 P43212

a, b, c (Å) a = 78.17 a = 79.46 a = 78.94 a = 78.47

b = 78.17 b = 79.46 b = 78.94 b = 78.47

c = 36.97 c = 36.95 c = 36.97 c = 37.02

α, β, γ (˚) α = β = γ = 90 α = β = γ = 90 α = β = γ = 90 α = β = γ = 90

Resolution (Å) 55.27–1.17 (1.23–1.17)a 56.19–1.4 (1.48–1.4)a 55.82–1.75 (1.84–1.75)a 39.24–1.08 (1.13–1.08)a

Total number of observations 423585 (57240)a 205422 (28451)a 104597 (14869)a 568308 (76287)a

Total number unique 39339 (5648)a 23907 (3437)a 12277 (1724)a 50672 (7269)a

Multiplicity 10.8 (10.1)a 8.6 (8.3)a 8.5 (8.6)a 11.2 (10.5)a

Completeness (%) 100 (100)a 99.9 (99.5)a 99.8 (99.5)a 100 (100)a

Rsym b (Rmerge) 0.209 (0.33)a 0.14 (0.42)a 0.111 (0.412)a 0.067 (0.224)a

Mean I/Sigma (I) 13.1 (5.8)a 8.6 (3.8)a 15.6 (8.6)a 19.5 (8.4)a

Rpim c 0.067 (0.109)a 0.052 (0.150)a 0.039 (0.144)a 0.021 (0.072)a

Rmeas d 0.22 (0.348)a 0.151 (0.447)a 0.118 (0.437)a 0.7 (0.235)a

Resolution (Å) 1.17 1.4 1.75 1.08

Mosaicity 0.28 0.41 0.54 0.39

rmsd bond length (Å)/angle (˚) 0.031/2.461 0.028/2.543 0.023/2.182 0.032/2.675

Mean B value (Å2) 9.562 17.659 16.299 12.572

R-factor/R-free (%)e 16.48/19.56 16.19/19.79 13.79/18.04 15.21/17.55

a The parameter values for higher resolution are given in parentheses
b Rsym = ∑hkl ∑I |Ii − |/∑hkl ∑Ii, Ii is the intensity of the ith observation, <I> is the mean intensity of the reflection, and the summations extend over all unique reflections

(hkl) and all equivalents (i), respectively.
c Rpim is a measure of the quality of the data after averaging the multiple measurements.
d Rmeas (also known as Rrim) is an improved version of the traditional Rmerge (Rsym) and measures how well the different observations agree.
e R-factor = ∑hkl |Fo_Fc|/∑hkl Fo, where Fo and Fc represent the observed and calculated structure factors, respectively. The R-factor is calculated using 95% of the data

included in refinement and R-free the 5% excluded. The values presented in this Table come from SCALA [14] and REFMAC [20] from the CCP4 suite [16].

https://doi.org/10.1371/journal.pone.0232953.t001
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formation of HEWL was detected [6] even after 5h incubation [13]. AFM results, confirmed

fibril formation in HEWL incubated for 5h in the absence of TEMED (Not-treated5h) (Fig 1j)

and DLS results, showed an increase in diameter size to 77.7 nm (Fig 1h), in comparison with

Not-heated sample, which we reported previously was 3.36 nm [6]. Following this kinetics

Fig 1. Characterization of HEWL samples treated with TEMED after 5h and 24h incubation. (a-e) ThT fluorescence intensities and CD spectra of HEWL in the

presence of TEMED in its aroma form after 5h and 24h incubation. (a) ThT fluorescence intensities of HEWL Not-treated and treated with aroma of TEMED after

5h and 24h incubation. (b) Changes in the secondary structure of HEWL after 5h incubation under fibrillation conditions as monitored by CD. (c) Changes in the

secondary structure of HEWL after 24h incubation under fibrillation conditions as monitored by CD. (d, e) Summary of CD spectra for Not-treated and TEMED-

treated HEWL samples, respectively, after 5h and 24h incubation. (f) Intrinsic fluorescence analyses of HEWL control and treated samples. Changes in the exposure

of the hydrophobic patches of HEWL examined by intrinsic fluorescence spectroscopy are shown. The excitation wavelength was at 280 nm and the fluorescence

emission intensity was measured between 300 nm to 400 nm. (g) SDS-PAGE analyses of HEWL control and treated samples. The inhibitory effect of aroma from

TEMED on HEWL fibrillation as assessed by SDS-PAGE. The wells contained the following: (Marker) Protein marker, (lane 1) Not-heated HEWL, (lane 2) Not-

treated5h, (lane 3) Not-treated24h, and (lanes 4 and 5) TEMED5h and TEMED24h, respectively. The entire uncropped gel photo is presented as S6 Fig in the

supplementary information section. (h-k) DLS and AFM results of HEWL control and aroma treated samples: (h, j) Not-treated5h and (i, k) TEMED5h. For DLS

analysis, all samples were diluted to 1 mg/ml (from 2 mg/ml). The intensity mode of each sample is also provided in the upper right corner of each panel.

https://doi.org/10.1371/journal.pone.0232953.g001
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experiment, the effect of TEMED and its ability to prevent fibril formation after 5h was further

investigated. Results from CD and ThT fluorescence experiments (Fig 1a–1e) were in line with

AFM and DLS results (Fig 1h–1k), confirming that incubation of HEWL with TEMED led to

complete inhibition of the fibrillation process even after 24h.

Intrinsic fluorescence spectroscopy and SDS-PAGE analysis

Using intrinsic fluorescence spectroscopy, we monitored changes in the environment of three

different aromatic residues (Trp, Tyr and Phe). As shown in Fig 1f, although TEMED5h had

the highest fluorescence intensity, even more than Not-heated HEWL, the Not-treated5h sam-

ple in comparison with other samples, especially Not-treated24h, also showed high intrinsic

fluorescence intensity indicating that there is a greater exposure of hydrophobic residues after

5h incubation in Not-treated5h, consistent with the presence of a more hydrophobic environ-

ment with β-sheet structures [6]. SDS-PAGE analysis showed that while both TEMED5h and

TEMED24h samples entered the gel similar to Not-heated sample, the Not-treated24h sample

was not able to enter the gel as fibrils were formed and remained in the loading pockets.

Appearance of several bands under the main HEWL band in lanes 1 and 2, can be explained to

be due to HEWL degradation in acidic pH, which were absent in lanes 4 and 5, as the pH in

the presence of TEMED was basic (Fig 1g).

Thermal stability of HEWL

DSF is a rapid screening method to study the thermal stability of a protein in various condi-

tions. This method is based on the fact that the fluorescence of a protein-binding dye increases

with increasing hydrophobicity in the environment. Changes in the exposure of the protein’s

hydrophobic patches will occur upon heat denaturation. Due to these changes, the dye can

interact with exposed hydrophobic regions generated by partially or fully unfolded proteins

[14]. Waldron et al. 2003, stated that binding a compound to the native state of a protein in the

absence of binding to denatured state will stabilize the native state by increasing its thermal

stability [15]. Therefore, if TEMED has the ability to bind to the native state of HEWL, then it

is expected to increase the melting temperature.

To explore this ability, HEWL samples were prepared in the presence and absence of

TEMED (incubated for 5h and 24h under fibrillation conditions) and DSF was used to deter-

mine whether or not TEMED resulted in a shift in the Tm value of HEWL. In addition, a sec-

ond series of samples were prepared in which HEWL was incubated at room temperature for

24h in the presence or absence of different concentrations of TEMED in solution. To find a

linear correlation between changes in Tm and an increase in thermal stability, the binding site

(s) should be saturated [16]. Therefore, in order to find a logical relationship between the con-

centration of TEMED and changes in Tm of HEWL, this experiment was done using a wide

range of concentrations of TEMED, until the Tm reached a plateau.

As revealed in Fig 2a and 2b, incubation of HEWL under fibrillation conditions in the pres-

ence of TEMED, either for 5h or 24h resulted in an increase in the Tm of HEWL by 4 ˚C. On

the other hand, as was expected, thermal profiles of HEWL incubated for 2h, without any

treatment (Not-treated24h), revealed a non-native structure, interpreted to be related to fibril

formation [13].

The results achieved by incubation of the native state of HEWL with different concentra-

tions of TEMED at room temperature showed that by increasing the amount of TEMED in

solution, the thermal stability of HEWL was increased (Fig 2c–2f). As shown in Fig 2g, the

greatest increase in Tm of HEWL was at a concentration of 200 mM of TEMED. After this con-

centration (200 mM), higher concentrations of TEMED did not result in higher Tm.
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Fig 2. DSF of HEWL in the absence or presence of TEMED in the aroma form and in solution. (a, b) HEWL dissolved in 50 mM

glycine buffer at pH 2.2 was incubated with TEMED in its aroma form at 54 ˚C under fibrillation conditions for 5h and 24h. (a) Thermal

melting profile of Not-heated HEWL (control) and HEWL treated with TEMED at 54 ˚C under fibrillation conditions for 5h and 24h. (b)

First derivative results of Not-heated HEWL (control) and HEWL treated with TEMED at 54 ˚C under fibrillation conditions for 5h and

24h. (c-h) DSF of HEWL incubated with different concentrations of TEMED in solution. HEWL dissolved in 50 mM glycine buffer at pH

2.2 was incubated with different concentrations of TEMED at room temperature for 24h. (c) Thermal melting profiles of Not-heated
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Previous studies using TEMED showed changes in the pH of HEWL solution from acidic

to basic (from pH 2.2 in glycine buffer to pH 8.3 upon incubation with TEMED in the aroma

form). Regarding the importance of pH in this study, as a next step, HEWL was dissolved in

glycine buffer pH 8.6 and the DSF experiment was repeated and results compared with that of

HEWL dissolved in glycine buffer pH 2.2 (Fig 3).

Correlation between the Tm and pH of HEWL at lower concentrations than 200 mM

TEMED (with 200 mM identified as the saturation concentration) was useful in predicting the

amount of TEMED in the aroma form used in the fibrillation experiments. Referring back to

Fig 2a and 2b, Tm values obtained for TEMED24h and TEMED5h were 59 ˚C and 59.5 ˚C,

respectively, at pH of about 8.6. The results obtained from the correlation between Tm and pH

using different concentrations of TEMED in solution (Fig 3d), revealed that at Tm of 59 ˚C

and pH of 8.6, the concentration of TEMED used was 50.11 mM. Therefore, this suggests that

in our fibrillation set-up, the final concentration of TEMED, after incubation under fibrillation

conditions at a final pH of 8.3, would have been around 50 mM.

Results in this study showed that the presence of TEMED changed the acidic pH to a basic

pH and increased the Tm of HEWL. However, the rise in pH by addition of more TEMED did

not necessarily result in higher Tm and greater thermal stability, such that at higher than the

optimum concentration of 200 mM TEMED, the Tm started to decrease, which may be due to

the saturation level of HEWL (Fig 3c). In other words, although increase in concentration of

TEMED and thermal stability of HEWL was correlated with increasing pH of the solution up

until 200 mM of TEMED, there was no further linear relationship between the Tm and pH

after this concentration.

Ligand-binding sites

Data collection and refinement statistics of the crystals structures and information about

ligand binding to HEWL comprising of TEMED, cryoprotectants including ethylene glycol

(EDO) and polyethylene glycol (PGO) and acetate (ACT) from the sodium acetate buffer, are

summarised in Tables 1, 2 and 3, respectively. As previously mentioned, TEMED5h and

TEMED24h structures refer to HEWL treated under fibrillation conditions with TEMED in

the aroma form for 5h and 24h, respectively. Furthermore, as indicated in the DSF results sec-

tion, based on changes in pH, the final concentration of TEMED at a pH of 8.6, close to the

pH of TEMED5h and TEMED24h at 8.3, is estimated at approximately 50 mM. Therefore, the

final molar ratio of HEWL:TEMED under these conditions would be around 140 μM: 50 mM

or 1:357. On the other hand, TEMED-co, refers to the structure of HEWL co-crystallised with

18.46 mM TEMED, with a molar ratio of 1:131 (HEWL:TEMED). Most of the ligands are asso-

ciated with HEWL by hydrophobic interactions as shown by the Ligplot analysis (Table 2).

All the different HEWL structures (Table 1) were superposed and presented in three graph-

ical representations (Fig 4). The overall view of each of the structures revealed that four, two

and one TEMED attached to HEWL in the structures of TEMED5h, TEMED24h and

TEMED-co, respectively.

Structural data show that the active site of HEWL is in the region involving Glu35 and

Asp52 [19]. Based on the activity tests from our previous study [6], the greatest increase in

HEWL (control) and HEWL treated with different concentrations of TEMED. (d) Magnified version of the thermal melting curve. (e) First

derivative results of Not-heated HEWL (control) and HEWL treated with different concentrations of TEMED. (f) Magnified version of the

first derivative results. (g) Table representing the influence of the presence of various concentrations of TEMED in changing the Tm of

HEWL, achieved by the first derivative results where the Tm of the control sample was 54.5 ˚C. (h) 2-D column representation of ΔTm. (i)

Increasing trend in ΔTm results at different concentrations of TEMED.

https://doi.org/10.1371/journal.pone.0232953.g002
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enzymatic activity was shown by TEMED24h. This was intriguing since TEMED24h resulted

in an increase in HEWL activity, above that of the Not-heated HEWL sample. Now, in light of

the structural data obtained, this is understandable. As seen from the Ligplot analysis (Fig 5),

in the structure of TEMED5h (Fig 5b), four TEMED molecules bind to HEWL in different

positions. One of the TEMED molecules, which was bound near the active site residues includ-

ing Lys33, Phe34, Glu35 and Asn37, was retained up until 24h in the TEMED24h structure

(Fig 5e). The conformation of this TEMED in both TEMED5h and TEMED24h was the same

and orientated in a similar way (Fig 5b and 5e). A couple of points can be drawn from these

data. Firstly, the similarity in the binding position of TEMED in TEMED5h (Tem2) and

TEMED24h (Tem1) shows that the binding of TEMED near the active site of HEWL had a

positive effect on the activity of HEWL in comparison to the Not-treated HEWL, which had

lost its activity completely, suggesting that TEMED, caused conservation in the activity of

HEWL.

Fig 3. Correlation between changes in the thermal stability of HEWL and pH of buffer. (a) First derivative results of Not-heated HEWL dissolved in glycine buffer

pH 2.2 and pH 8.6. (b) First derivative results of Not-heated HEWL dissolved in glycine buffer pH 8.6 in comparison with Not-heated HEWL dissolved in glycine

buffer pH 2.2 and incubated with different concentrations of TEMED at room temperature for 24h. (c) Relationship between changes in Tm and pH of solution in the

presence of different concentrations of TEMED. Table representing the influence of the presence of various concentrations of TEMED in changing the Tm of HEWL,

achieved by the first derivative results. The Tm of the control sample was 54.5 ˚C at pH 2.2. The ΔTm and ΔpH shows the changes from the control Tm upon addition of

increasing amounts of TEMED. (d) Relationship between changes in Tm and pH of solution in the presence of different concentrations of TEMED.

https://doi.org/10.1371/journal.pone.0232953.g003
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Table 2. Ligand binding sites for TEMED, cryoprotectants and acetate. The residues involved in either hydrophobic interaction or hydrogen bonding as revealed by

the Ligplot+ software version 1.4.5 [17]. Residues with rotamers as revealed from the electron density maps, using Coot from CCP4 package version 2.10.7 [17], are shown

in bold.

PDBs Ligands Hydrophobic interactions H-bond (distance in Å)

6ABN (pH 8.6) EDO Gln57, Ile58, Trp63, Ile98, Ala107, Trp108 -

ACT Asn74, Leu75 Arg73 (2.76)

6AEA (TEMED5h) TEMED1 Glu35, Asn44, Asp52, TEMED2 -

TEMED2 Lys33, Phe34, Glu35, Asn37, TEMED1 -

TEMED3 Arg5, Ala122, Trp123 -

TEMED4 Arg128, Leu129 -

PGO1 Gln57, Ile58, Ile98, Ala107, Trp108 Asn59 (2.99)

PGO2 Trp62, Trp63, Leu75, Asp101 -

6AD5 (TEMED24h) TEMED1 Lys33, Phe34, Glu35, Asn37, EDO1 -

TEMED2 Arg5, Ala122 -

EDO1 Glu35, Asn44, TEMED1 -

EDO2 Gln57, Ile58, Trp63, Ala107, Trp108 Asn59 (2.97)

6ADF (TEMED-co) TEMED1 Arg5, Ala122, Trp123 -

PGO1 Trp62, Trp63, Leu75, Asp101 -

PGO2 Gln57, Ile58, Asn59, Trp63, Ala107, Trp108 -

PGO3 Asn46, Asp48, Ser50, Asn59, Arg61 -

ACT Asn74, Leu75 Arg73 (2.71)

https://doi.org/10.1371/journal.pone.0232953.t002

Table 3. Binding positions of TEMED in HEWL.

Binding hotspots Ligand binding position TEMED-co TEMED5h TEMED24h

Lys33, Phe34, Glu35, Asn37 A - ✔ ✔
Arg5, Ala122, Trp123 B ✔ ✔ ✔
Glu35, Asn44, Asp52 C - ✔ -

Arg128, Leu129 D - ✔ -

https://doi.org/10.1371/journal.pone.0232953.t003

Fig 4. Three different representations for superposed structures of HEWL with TEMED. TEMED molecules are coloured black. Oxygen and nitrogen atoms

are coloured red and dark blue, respectively. PGO, EDO and ACT are shown as sticks with carbon coloured blue and oxygen coloured red. In addition, the sodium

and chloride ions are shown in large and small gray balls, respectively. (a) The overall structures of HEWL-TEMED complexes are shown in the ribbon shaped

model. (b) Electrostatic potential representations of the complexes are shown in their active site views. The structural graphics in panels a and b were generated

using CCP4MG version 2.10.7 [18]. (c) Hydrophobic surface representations of the structures with TEMED are shown in their active site views. The structure

graphics were generated using Chimera version 1.13.1 [12].

https://doi.org/10.1371/journal.pone.0232953.g004
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Fig 5. Binding of TEMED to HEWL as revealed by Ligplot analysis. (a-d) Binding of four TEMED molecules to HEWL after 5h incubation. (e and f) Binding of

two TEMED molecules to HEWL after 24h incubation. (g) Binding site of a single TEMED to HEWL, upon co-crystallisation. Figure was generated using the

Ligplot+ software, version 1.4.5 [11].

https://doi.org/10.1371/journal.pone.0232953.g005
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Secondly, comparing the structures of TEMED5h and TEMED24h revealed that Tem1,

which is in the vicinity of Tem2 in TEMED5h (Figs 5a, 5b, 6a and 6b), is no longer visible in

the TEMED24h structure. It is suggested that upon further incubation from 5h to 24h, the

equivalent of Tem1 in TEMED5h (Figs 5a and 6a) is no longer present in TEMED24h, as the

more stable binding position is defined by Tem1 in TEMED24h (Fig 5b and 5e), at a position

involving residues Lys33, Phe34, Glu35 and Asn37. There is evidence to suggest that there is a

transition in the binding sequence of TEMED from Tem1 to Tem2 in TEMED5h, as Tem2 is

associated with a weaker electron density map than Tem1. In TEMED24h, however, Tem1

(equivalent to Tem2 in TEMED5h) is clearly observed at higher contours of the electron den-

sity map (Table 3 and S2e, S3 and S4 Figs), although the structure was solved at a lower

resolution.

Based on the structural evaluation of the TEMED-HEWL complexes analysed in this study,

four main TEMED binding positions (labeled A-D) were identified and reported in Table 3.

In light of the results obtained from this study, amongst the four main positions where

TEMED was attached in HEWL (Table 3), position B was occupied with TEMED in all of the

structures. In some cases, TEMED molecules were shown to bind weakly in position B, which

may raise the question whether their binding should have been reported or not. With regards

to the binding of TEMED near Trp123 (position B) in TEMED5h, the intrinsic fluorescence

results showed that there was no quenching whatsoever at this position and instead an

increased intrinsic fluorescence intensity was observed in comparison to the Not-heated

HEWL (Fig 1f). This may be explained by the increased hydrophobicity in the environment of

Trp123 due to the presence of TEMED, a hydrophobic compound (log P = 0.30), which sup-

ports the structural data in this study. Therefore, based on both intrinsic fluorescence studies

and the existence of multiple rotamers and changes in B factors of certain residues (S2 and S3

Tables, S1 Fig), it was plausible to confirm binding in position B. In the case of positions C and

D, a TEMED molecule was observed in TEMED5h, however after 24h incubation, TEMED

was not observed in this position in the structure of TEMED24h.

Additionally, according to the results obtained in this study, position A could be strongly

suggested as the "hotspot" for inhibition of fibril formation in HEWL. This position is near the

Fig 6. Binding of TEMED molecules to HEWL. (a) Three of the four TEMEDs bound to HEWL after 5h incubation. (b) Binding of two TEMED molecules to

HEWL after 24h incubation. TEMED molecules are coloured black. Oxygen and nitrogen atoms are coloured red and dark blue, respectively. Ethylene glycol

(EDO) in TEMED24h is shown as sticks. Water molecules are represented in small red balls. The electrostatic potentials were generated using the Coulombic

surface colouring; red is negative and blue is positive. The structural graphics were generated using CCP4MG version 2.10.7 [18].

https://doi.org/10.1371/journal.pone.0232953.g006
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active site of HEWL and binding of TEMED to this position could explain why treatment of

HEWL with TEMED resulted in an increased enzymatic activity. Harada et al. 2007, claimed

that existence of lysyl residues with a positive charge at the C-terminal of α-helix A, α-helix B

and α-helix C (consisting of residues 5–15, 26–36 and 89–100, respectively) contributed to the

stability of helices, resulting in conformational stability of HEWL [20]. Additionally, Kawa-

mura et al. 2008, stated that Arg114 and Phe34 are two residues which are responsible for the

productive binding at right-sided binding site of HEWL and that the CH-π interaction

between the guanidyl side chain (C(NH2)2) of Arg114 and the phenyl ring of Phe34 on the

molecular surface could stabilize the Arg114 side chain and position it to accept the substrate

molecule [21]. Accordingly, the interaction between Arg114 and Phe34 is suggested to be the

important structural factor in maintaining the native conformation of HEWL. Based on their

results, Arg114 in HEWL is thought to play an important role in lysozyme catalysis, especially

in transglycosylation. Now looking at our results of the enzymatic activity test and the struc-

ture of HEWL treated with TEMED, the presence of TEMED near Phe34 (with hydrophobic

interactions) could have an effect on the stabilization of Arg114. Additionally, it is plausible to

say that the CH-π interaction between the methylamine (N(CH₃)₂) groups in TEMED (of

which there are two) and phenyl ring in Phe34 (providing the π system), in addition to the

CH-π interaction between the guanidyl side chain of Arg114 and again that of the phenyl ring

of Phe34, are the main contributors in enhancing the ability of HEWL to accept its substrate,

such that we see greater enzymatic activity in HEWL in the presence of TEMED and greater

intrinsic fluorescence emission.

Conclusions

In this study, TEMED was chosen because of its pungent fishlike odour and its similarity to

putrescence and cadaverine as polyamines, also known as the "smell of death" [3]. A common

route for polyamine formation is decarboxylation of precursor amino acids by enzymes of bac-

terial origin. It is revealed that polyamines regulate growth in pathogens and can therefore

have an influence on infection and parasitic disease [22]. As such, bacteria, during growth and

activity make more and more polyamines. As we can see from the structural results of this

study, TEMED binds to HEWL (as an enzyme that lyses the cell wall of bacteria) at a hotspot

comprising residues Lys33, Phe34, Glu35 and Asn37 providing complete inhibition of fibril

formation, greater enzymatic activity and increased thermal stability. This may suggest that

TEMED in its aroma form acts as a catalyst of HEWL activity (as an antibacterial enzyme),

which is in line with a report which emphasizes on the importance of smell and shows how

bacteria may use the sense of smell for communication [23]. Furthermore, changes in pH

caused by TEMED, even in the aroma form, suggests that bacterial infection may result in a

similar pH as a consequence of protein degradation products, including putrescence and

cadaverine, and provide an activation signal for HEWL, which confirms the importance of the

smell or aroma of a compound, usually a small molecule, as a signal affecting the structure and

function of proteins, such as HEWL investigated in this study. On the other hand, as HEWL is

used as a model protein for fibril formation, this work also shows that attempts to interfere

with fibrillation processes may also find fruitful grounds in the identification of small mole-

cules that can stabilize the native structure of proteins known to undergo fibrillation.

Supporting information

S1 Fig. Shifts or rotamers of Arg128 and Asn19 in the different structures. (a,e) HEWL at

pH 8.6 (PDB ID 6ABN), (b,f) TEMED-co (PDB ID 6ADF), (c,g) TEMED5h (PDB ID 6AEA)

and (d,h) TEMED24h (PDB ID 6AD5). Structure graphics were generated using Coot from
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CCP4 package version 2.10.7 [17].

(DOCX)

S2 Fig. Electron density maps showing binding of TEMED to HEWL. (a-d) Binding of four

TEMED molecules to HEWL after 5h incubation. (e and f) Binding of two TEMED molecules

to HEWL after 24h incubation. (g) Binding site of a single TEMED in HEWL upon co-crystal-

lisation. The σA-weighted 2Fobs−Fcalc maps were contoured at 0.5 sigma and generated in

Coot from CCP4 package version 2.10.7 [17].

(DOCX)

S3 Fig. Electron density map showing binding of TEMED to HEWL after 5h incubation.

The σA-weighted 2Fobs−Fcalc maps (in blue mesh) were contoured at 0.5 and 1.0 sigma lev-

els and the σA-weighted Fobs-Fcalc maps (in green and red mesh) were contoured at a

default sigma level of 3.0. The maps were generated in Coot from CCP4 package version

2.10.7 [17].

(DOCX)

S4 Fig. Electron density map showing binding of TEMED to HEWL after 24h incubation.

The σA-weighted 2Fobs−Fcalc maps (in blue mesh) were contoured at 0.5 and 1.0 sigma lev-

els and the σA-weighted Fobs-Fcalc maps (in green and red mesh) were contoured at a

default sigma level of 3.0. The maps were generated in Coot from CCP4 package version

2.10.7 [17].

(DOCX)

S5 Fig. Electron density map showing binding of TEMED to HEWL upon co-crystallisa-

tion. The σA-weighted 2Fobs−Fcalc maps (in blue mesh) were contoured at 0.5 and 1.0 sigma

levels and the σA-weighted Fobs-Fcalc maps (in green and red mesh) were contoured at a

default sigma level of 3.0. The maps were generated in Coot from CCP4 package version 2.10.7

[17].

(DOCX)

S6 Fig. The inhibitory effect of aroma from TEMED on HEWL fibrillation as assessed by

SDS-PAGE. The wells contain the following: (Marker) Protein marker, (lane 1) Not-heated

HEWL, (lane 2) Not-treated5h, (lane 3) Not-treated24h, and (lanes 8 and 9) TEMED5h and

TEMED24h, respectively. Lanes 4–7 contain samples not relevant to this research article. This

Supplementary Figure is provided since the original uncropped and unadjusted images under-

lying all blot or gel results are to be reported.

(DOCX)

S1 Table. Various concentrations of TEMED used in this study using a vapour diffusion

method.

(DOCX)

S2 Table. Different rotamers of residues in HEWL in complex with TEMED and at pH 8.6.

(DOCX)

S3 Table. B-Factor values for Arg14, Glu7 and His15, Asp18, Asn19 and Arg128 in the

structures of HEWL in complex with TEMED and at pH 8.6.

(DOCX)

S1 Data.

(ZIP)
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