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Abstract

Plasmacytoid dendritic cells (pDC) are the major producers of type I interferons (IFNs) in humans and rapidly produce IFN-
a in response to virus exposure. Although HIV infection is associated with pDC activation, it is unclear why the innate
immune response is unable to effectively control viral replication. We systematically compared the effect of HIV, Influenza,
Sendai, and HSV-2 at similar target cell multiplicity of infection (M.O.I.) on human pDC function. We found that Influenza,
Sendai, HSV-2 and imiquimod are able to rapidly induce IFN-a production within 4 hours to maximal levels, whereas HIV had
a delayed induction that was maximal only after 24 hours. In addition, maximal IFN-a induction by HIV was at least 10 fold
less than that of the other viruses in the panel. HIV also induced less TNF-a and MIP-1b but similar levels of IP-10 compared
to other viruses, which was also mirrored by delayed upregulation of pDC activation markers CD83 and CD86. BDCA-2 has
been identified as an inhibitory receptor on pDC, signaling through a pathway that involves SYK phosphorylation. We find
that compared to Influenza, HIV induces the activation of the SYK pathway. Thus, HIV delays pDC IFN-a production and pDC
activation via SYK phosphorylation, allowing establishment of viral populations.
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Introduction

The innate immune system is essential for the initial detection of

invading viruses and subsequent activation of adaptive immunity.

The type 1 interferons (IFNs) are the central effector cytokine of

innate immunity and have been shown to inhibit HIV-1 (HIV)

replication in vitro [1,2,3]. Plasmacytoid dendritic cells (pDC) are

the major producers of type I IFNs in mice and humans. PDCs

predominantly utilize TLRs for virus detection and IFN-a pro-

duction [4], activation occurring through TLRs 7 and 9. Both of

these receptors are endosomal and are triggered by ssRNA or

double stranded CpG-DNA, respectively [5]. The IFN response

by pDCs is both rapid and robust. With over 50% of the induced

RNA transcripts following TLR7 and TLR9 triggering encoding

for type I IFN, the result is production of 3–10 pg/cell of IFN-

a protein at 24 h, 100-1000X more than any other cell type in the

blood [6]. The enhanced capacity for pDCs to produce IFN is

related to the high constitutive expression of IRF7 in pDCs, which

allows for these cells to bypass the classic autocrine feedback

involving IFN-beta (IFN-b) [7,8].
Pathways downstream of TLR 7/9 signaling in pDCs

bifurcates, leading to IFN-a production as well as maturation

and inflammatory cytokine production [9,10]. The pathway

leading to IFN-a production depends on IRF7 phosphorylation

and ubiquitination, following which IRF7 dimerizes, migrates to

the nucleus, and facilitates transcription of IFN-a and IFN-b genes

[9,11,12]. Maturation involves TNF Receptor Associated Factor

(TRAF) 6 and the Interleukin-1 receptor-associated kinase (IRAK)

4, which mediates the downstream activation of NF-kB and

MAPKs [10,13]. NF-kB and MAPK activation result in pDC

maturation, manifested by CD83, co-stimulatory molecule ex-

pression, and pro-inflammatory cytokine production, which in-

clude MIP-1a, IP-10, TNF-a, IL-6, IL-8, IL-10 and IL-12

[14,15,16,17]. PDC maturation favors the priming of adaptive

immunity resulting in T cell activation and inflammation [5,6,18].

Thus pDCs, through a dual signaling pathway, link innate

immune responses to adaptive immune responses.

HIV has been shown to activate pDC directly, causing them to

mature and produce IFN-a and TNF-a [18]. PDC activation via

HIV has been shown to require interactions between CD4 on

pDCs and HIV gp120, as well as internalization and interaction

between HIV-RNA and TLR 7 [19]. In SIV infection, pDC are

observed 1 day post-infection at the vaginal mucosa near sites of

replicating virus, but are unable to control subsequent viral

replication and dissemination [20]. These pDC were also shown to

express the chemokines MIP-1a, MIP-1b, and MIP-3a, which

could play a role in recruiting more pDC and activated CD4 T

cells to be targeted for infection. It is currently unclear what role

pDCs are playing during the early events following viral exposure.
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Previous studies examining pDC responses to HIV in vitro have

utilized high titers of virus, likely exceeding levels found in vivo

[19,21,22]. As such, it is unclear whether pDC can actually

undergo normal activation in response to doses of virus expected

in the setting of sexual transmission. In addition, the kinetics of

IFN-a production to HIV has not been previously studied, nor

have there been detailed comparisons of pDC responses to other

RNA viruses that do not cause chronic infections [19,22]. HIV is

a rapidly replicating RNA virus [23], with viral production rates of

up to 56104 viruses/infected cell, a virus doubling time of 0.65

days and a mean basic reproductive ratio of 8.0 [24,25]. These

rapid replication kinetics could potentially overwhelm the in-

hibitory effects of type I IFNs if the pDC response is not

adequately rapid or robust. In order to address these aspects, we

compared the direct effect of HIV with a panel of common virus

pathogens, many of which have similar replication kinetics to HIV

[26].

Results

Influenza Virus Induces Greater IFN-a from pDC
Compared to HIV
We used a comparative approach to examine differences in

pDC responsiveness to HIV and other viruses. In order to

standardize for the effects of different viruses on human pDC, we

used similar multiplicities of infection (M.O.I.s) of viruses, where

the M.O.I. is calculated from the virus infections of their main

target cell. In the first set of experiments, PBMC from healthy

volunteers were co-cultured with HIVBAL, and compared to

Influenza (both at an M.O.I. of 0.1) for 8 hours and then analyzed

by flow cytometry for intracellular IFN-a production. PDCs were

selected by positive staining for BDCA-2 and CD123, and

negative staining for CD14 (Fig. 1A). A representative flow

cytometry experiment is shown in Fig. 1B, with summary data

from 3 individuals in Fig. 1C. We found that stimulation with

influenza virus for 8 hours induced a greater percentage of IFN-

a expressing pDC compared to HIV isolates at similar M.O.I.s.

We then isolated pure populations of pDC by negative depletion of

fresh PBMC from normal volunteers and co-cultured the pDC

(purity 80–95%) with HIVBAL, HIVNL-43, or influenza [A/PR/8/

34 (H1N1)] at an M.O.I. of 0.5 (for HIV, equivalent to 1.76 ng of

p24 antigen) and measured IFN-a production in culture superna-

tant after 8 hours by ELISA. Summary data from 4 individuals,

depicted in Fig. 1D further demonstrates that Influenza virus at

comparable infectious doses is able to induce greater amounts of

IFN-a in culture supernatants when compared to two strains of

HIV.

HIV Induces a Delayed IFN-a Response in pDC Compared
to Other Viruses
To compare the kinetics of IFN-a production from pDC after

exposure to HIV and a larger panel of viruses, freshly isolated

pDC from healthy volunteers were co-cultured with 0.5 M.O.I. of

herpes simplex virus (HSV)-2, HIVBAL, HIVNL43, Influenza

(H1N1), Sendai virus (18 HA units) and the TLR7 agonist

imiquimod (20 mg/ml), and supernatants were sampled for IFN-

a. Representative data from five individuals comparing HIV and

Influenza are shown in Fig. 2A and summary data from all viruses

from all individuals are shown in Fig. 2B. In addition, these

differences were observed through a range of M.O.I.s and a range

of RNA copy numbers of respective viruses (Fig. 3b and Table 1).

These experiments demonstrate that RNA viruses such as

Influenza, and Sendai induce IFN-a rapidly reaching about 90%

of their maximal production by 4 hours of stimulation, whereas for

HIV, maximum production of IFN-a was only achieved at 48

hours post virus exposure, at comparable RNA copy numbers. In

addition, HIV viruses induced significantly less IFN-a even at

maximal production when compared to Influenza, Sendai, HSV

or imiquimod stimulation at similar target cell M.O.I.s.

Figure 1. IFN-a production from pDCs following stimulation
with HIV or Influenza. (A) Gating strategy used to identify CD14
negative BDCA-2 positive CD123 positive pDCs. (B) PBMCs from HIV
negative individuals were treated with either Influenza (M.O.I = 0.1) or
HIVBAL (M.O.I = 0.1) in the presence of GolgiPlugTM for 8 hours and
stained for intracellular IFN-a expression. Shown is a representative flow
cytometry plot. (C) Summary data of pDCs from 3 individuals measuring
intracellular IFN-a expression following stimulation with Influenza
(M.O.I = 0.1) or HIVBAL (M.O.I = 0.1) (D) Isolated pDCs from 3 HIV negative
patients were stimulated with Influenza (M.O.I = 0.5) and HIVBAL
(M.O.I = 0.5) for 8 hours, and levels of IFN-a in supernatant were
quantified by ELISA. Mean 6 SEM, * = p,0.05.
doi:10.1371/journal.pone.0037052.g001
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PDC Activation in Response to HIV is Delayed Compared
to Other Viruses
PDCs are capable of producing a range of cytokines and

chemokines that may be involved in directing adaptive immune

responses at the site of infection. As such, we used a cytometric

bead array assay to examine the levels of MIP-1b, IP-10, TNF-a,

IL-10 and IL-12 in pDC supernatants following stimulation with

the panel of viruses. Examination of cytokine production in

isolated pDC samples after virus exposure showed similarly

delayed kinetics for both HIV isolates tested (Fig. 4). Influenza,

Sendai, HSV and imiquimod induced MIP-1b, TNF-a and IP-10

with similar kinetics: MIP-1b appeared rapidly, particularly in

Figure 2. Kinetics of IFN-a production. Isolated pDCs from five HIV negative donors were rested overnight, and treated with a panel of stimuli as
described in the materials and methods. Levels of IFN-a in supernatants were quantified by CBA as part of a panel of other cytokines. (A) Quantified
IFN-a (pg/ml) present in culture supernatant of 3–5 donors (N1-N5) at various time points (represented by blue shaded bars) following stimulation by
HIVBAL, HIVNL43 or Influenza (B) Mean 6 SEM concentrations of IFN-a present in supernatants at various time points following stimulation by HIVBAL,
(red), HIVNL43 (orange), Influenza (yellow), HSV-1 (green), Imiquimod (light blue), Sendai virus (dark blue), and medium control (white) from data from
5 donors.
doi:10.1371/journal.pone.0037052.g002
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Figure 3. Response of pDC to varying amounts of viruses. 26104 isolated pDCs were plated in 96 well flat bottom plates overnight in R10+IL-
3, then treated for designated time points with various concentrations of virus based on MOI or imiquimod (mg/ml) in a) and RNA copy numbers in b).
Supernatants were then harvested and analyzed by ELISA for IFN-a. Each experiment is representative of one of two donors, performed in duplicate.
doi:10.1371/journal.pone.0037052.g003

Table 1. Viruses used for RNA quantitation.

Infectious Particles Protein (p24, or HA)
Theoretical Viral
Particles RNA copies Nucleotides

HIVBAL 1.06104 1.76 ng p24 2.26107* 2.476108 2.4061012

HIVNL43 1.06104 2.92 ng p24 3.76107* 3.9961010 3.8961014

Influenza A H1N1 1.06104 0.15 ng HA 3.66106** 2.256105 3.066109

Standardized to an MOI of 0.5 on 20,000 pDCs.
*Based on 2000 p24 molecules/virus.
**Based on 400 HA molecules/virus.
doi:10.1371/journal.pone.0037052.t001
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imiquimod and Sendai stimulated samples (Fig. 4A), while TNF-

a was detected at 12–24 hours post stimulation (Fig. 4C), and IP-

10 was seen relatively later at 24–48 hours (Fig. 4B). In contrast,

HIV tended not to induce comparable levels of cytokines over the

time period measured, with the exception of IP-10. Neither IL-10

nor IL-12 was detected from pDC in any of the treatments. Thus,

in comparison to other RNA viruses tested, HIV induced fewer

pro-inflammatory cytokines.

TLR signaling of pDC typically results in maturation of pDCs,

antigen presentation, and expression of activation markers such as

MHCII, CD83, CD80 and CD86 [19,27,28,29,30,31]. As such,

we tested whether HIV induced comparable levels of maturation

in pDCs compared to Influenza or imiquimod. PDC were stained

for activation markers, using similar co-culture conditions as

described above. In Influenza stimulated samples, we observed

early (at 3 hours) upregulation of CD83, followed by dual

expression of CD83 and CD86, and subsequently downregulation

of CD83 but persistent CD86 expression (24 hours) (Fig. 5). In

HIV stimulated cells, there was markedly delayed expression of

CD83 and CD83/86 co-expression (Fig. 5). Although an extended

time course was not performed, it appears that HIV induced

a similar sequence of CD83 followed by CD86 up-regulation, but

with delayed kinetics. Thus, compared to imiquimod or other

RNA viruses such as influenza, HIV delays pDC maturation.

HIV Induces Elevated SYK Phosphorylation
BDCA-2 has been identified as an inhibitory receptor on pDCs:

ligation of BDCA-2 results in both diminished IFN-a responses as

well as ineffective maturation [32,33,34] and HIV gp120 has

previously been shown to ligate BDCA-2 [35]. Thus, we sought to

determine whether the suboptimal IFN-a production, diminished

cytokine production and delayed maturation could be a result of

signaling through BDCA-2. BDCA-2 signaling utilizes a BCR-like

signaling cascade involving SYK phosphorylation [36]. Using

antibody specific to phosphorylated SYK (Y352), we demonstrate

upregulation of intracellular phosphorylated SYK in pDCs within

15 minutes of exposure to HIVBAL virus (Fig. 6A). This

upregulation is sustained up to 90 minutes, at levels comparable

to pDCs stimulated with cross-linking anti-BDCA-2 antibody. In

contrast, Influenza stimulated cells did not demonstrate any

appreciable increases in intracellular SYK levels. Previous reports

indicate that SYK in pDCs is phosphorylated at multiple tyrosine

sites, including Y352, Y525/526, and Y348. Using antibodies

specific for phosphorylated SYK, we show that HIV induces

phosphorylation of SYK at both tyrosine sites. In addition,

monomeric gp120 treatment of pDC also induced SYK

phosphorylation (Fig. 6C). Thus, HIV is capable of inducing

SYK phosphorylation in pDCs, in part through gp120, indicating

activation of the inhibitory BDCA-2 signaling cascade. To further

demonstrate that BDCA2 signaling inhibits virus or TLR ligand

induced IFN-a production, pDC were co-cultured with viruses or

imiquimod in the presence of BDCA2 stimulating antibody or

isotype control. All BDCA-2 stimulated conditions were associated

with reduced IFN-a (Fig. 6D).

Discussion

In this report, we provide evidence that HIV stimulation of

pDCs induces sub-optimal responses compared to other viruses

and stimuli in multiple areas, including cytokine profile, IFN-

a production, and maturation kinetics. Furthermore, we provide

data supporting a mechanistic explanation of these suboptimal

responses, involving the inhibitory BDCA-2 signaling pathway.

The uniquely rapid and robust ability of pDCs to produce IFN–

a implicates these cells as key players during early critical events of

virus exposure. Although pDCs are rapidly recruited to the vaginal

mucosa following intravaginal exposure to SIV, subsequent viral

dissemination occurs [20], indicating potential defects in the pDC

response to HIV/SIV. Although in vitro studies have repeatedly

demonstrated the ability of HIV to induce IFN-a in pDCs, most of

these studies have utilized high doses of HIV in the range of 300–

900 ng/ml of p24 antigen [19,21,22]. These doses are likely

unrepresentative of levels of virus that are sexually transmitted, as

there is evidence that HIV infection is established primarily by

a small founding population of virus [20,37]. We attempted to use

amounts of HIV in our experiments that estimated levels found

during transmission in vivo. The amounts of virus used in our

studies ranged from 108 to 1010 RNA copies of HIV/experiment,

which are similar in quantities used in sexual transmission studies

Figure 4. Cytokine expression profiles following stimulation.
Isolated pDCs from HIV negative donors were rested overnight, and
treated with a panel of stimuli as described in the materials and
methods. Cytokines were quantified in culture supernatants by
cytometric bead array. Mean 6 SEM concentrations of (A) MIP-1b, (B)
IP-10, and (C) TNF-a from 5 donors are shown at various time points
following stimulation by HIVBAL, (red), HIV NL43 (orange), Influenza
(yellow), HSV (green), Imiquimod (light blue), Sendai virus (dark blue),
and medium control (white). Neither IL-10 nor IL-12p70 was detected in
any of the supernatant samples.
doi:10.1371/journal.pone.0037052.g004
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of SIV infection of rhesus macaques [38]. Although it is difficult to

accurately determine the amount of HIV required to directly

transmit virus at the genital mucosa, the amounts used in our

experiments were also within the range described in blood during

acute HIV infection [39], and somewhat higher than observed in

semen associated with a high rates of transmission [40,41].

In order to provide a more reliable platform for comparison, we

examined pDC responses to similar doses of different viruses.

Through this method, we demonstrate that HIV is relatively

suboptimal at IFN-a induction, with responses that are both

delayed, and less robust. PDCs stimulated by Influenza produce

IFN-a within 4 hours of exposure, emphasizing these cells as early

mediators of immune responses. HIV has rapid replication kinetics

with a half life of ,6 hours; it is therefore conceivable that a 12

hour delay in the pDC response is sufficient to allow several

rounds of replication to occur before IFN-a is able to exert its

antiviral effects.

Similar defects in both maturation and cytokine production

were observed when comparing HIV stimulated pDCs to pDCs

stimulated by other viruses. Delays in the upregulation of CD83

and CD86 were seen, compared to Influenza, which is a robust

activator of pDCs. CD83 and CD86 are typical markers used to

gauge dendritic cell maturation as well as antigen presentation and

T-cell activation capacity [15,30,42]. Despite this, the role of these

markers in pDC mediated T-cell activation is still poorly defined.

Remarkably, in both HIV and Influenza stimulated pDCs, the

upregulation of CD83 and CD86 occurred with distinct kinetics;

CD83 upregulation occurred early following stimulation and

eventually declined, whereas CD86 upregulation occurred later

following stimulation. The implications of these observations on

recruitment and activation of T-cells at the sites of HIV exposure

remains to be explored. In addition to maturation, we examined

whether or not HIV induced comparable cytokine profiles

compared to other stimuli. With the exception of IP-10, the levels

of cytokine and chemokines induced by HIV were less robust

compared to other viruses. Interestingly, IP-10 is involved in the

recruitment of macrophages and T-cells [43] and has also been

implicated in stimulating HIV viral replication [44].

Our finding that HIV tends to downregulate pDC production of

IFN-a and cytokine in comparison to other viruses, questions the

paradigm that immune activation by pDC is a driving force of

viral replication in infected individuals [45]. Previous studies have

used large doses of HIV, 20 to 100 fold more than used in our

experiments to study interactions of HIV with pDC [46]. It is

possible that the quantities of HIV used in our studies may more

accurately reflect how pDC are interacting with HIV in vivo.

Clearly, further work studying pDC activation ex vivo from recently

infected individuals may help to delineate the role of pDC and

immune activation during HIV infection.

Our results are consistent with recent studies by Gondois-Rey et

al comparing pDC responsiveness to HCV, HIV, HSV and

Influenza, in which viral treatments were normalized by genome

copy number [47]. Remarkably, compared to Influenza or HSV,

pDCs demonstrated diminished IFN-a responses to HIV as well as

HCV, another virus that establishes chronic infection. Together

with our results, these data suggests that pDC responses to HIV

are in general less robust and less rapid compared to other viruses

and stimuli. Recently, O’Brien et. al. demonstrated, that pDC pre-

stimulated with HIV can continue to produce IFN-a and cytokines

upon restimulation with HIV or other viruses and lose the capacity

to become refractory compared to pre-stimulation with TLR

agonists [48]. This is consistent with the notion that HIV may sub-

optimally stimulate pDC upon initial exposure thus, making them

less refractory to subsequent stimuli, a phenomenon that has been

demonstrated with T cell stimulation [49].

Variations in pDC responsiveness can be accounted for by

intrinsic differences in viral genomes. For instance, differences in

the number of stimulatory sequences present in virus genomes

may affect for the potency of pDC responses. Recently, specific

uridine-rich sequences in the HIV genome have been shown to

have TLR7 stimulatory capacity [50]; similar studies examining

Influenza, HSV and other RNA viruses remain to be performed.

Furthermore, the length of viral genome may dictate the amount

of stimulatory material present. Influenza, for instance, has 8 single

stranded RNA segments that in total are 13588 nucleotides in

length [51]. HIV virions on the other hand each contain two

copies of single stranded RNA that are around 9750 nucleotides in

length each [52]. However, our experiments used 3 logs more

HIV nucleotides than influenza raising the possibility that HIV is

obstructing pDCs from mounting an effective response.

In addition to the above, we hypothesized that HIV may be

involved in the active inhibition of the pDC response through

ligation of BDCA-2. Ligation and cross-linking of the BDCA-2

receptor on pDCs inhibits both maturation and interferon

production [36,53] Furthermore, gp120 from HIV is capable of

binding to BDCA-2 and abrogating pDC responsiveness [35].

BDCA-2 signaling utilizes a B-cell receptor signalosome, involving

factors such as SYK [36,53]. Upon measuring SYK phosphory-

lation, we demonstrate phosphorylation of SYK at multiple

tyrosine sites following exposure to HIV and gp120, suggesting

that HIV may actively hijack the BDCA-2 signaling pathway in

order to subvert the normal rapid pDC response. Recently,

hepatitis B surface antigen (HbsAg) has also been shown to ligate

BDCA-2 [54], suggesting that inhibition of pDC responses may be

an important factor in a variety of viral infections. However, the

mechanisms downstream of BDCA-2 ligation that affect pDC

signaling are still unknown. Further studies examining the

phosphorylation of molecules involved in pDC activation in

response to HIV will provide further insight into how HIV alters

typical pDC responses.

Materials and Methods

Ethics Statement
Informed consent was obtained in accordance with the guide-

lines for conduction of clinical research at the University of

Toronto and Maple Leaf Clinic institutional ethics boards. Written

Informed Consent and study approval was provided by the

institutional research ethics boards of the University of Toronto,

Canada and of St. Michael’s Hospital, Toronto, Canada. Human

samples were obtained through blood draw or leukopheresis of

HIV negative donors.

Figure 5. Kinetics of CD83 and CD86 upregulation. Isolated pDCs from HIV negative donors were treated with Influenza (M.O.I = 0.5),
imiquimod (20 mg/ml), or HIV (M.O.I = 0.5) for various time points and harvested for analysis by flow cytometry for surface expression of CD83 and
CD86. (A) Representative contour plots of CD83 and CD86 upregulation at various time points post stimulation by Influenza, showing distinct kinetics
of CD83 and CD86 upregulation. (B) Percentage of pDCs that are CD83 single positive (SP, Blue bars), CD83/CD86 double positive (DP, Purple bars),
CD86SP (Red bars), and double negative for both markers (DN, gray bars) at time points post stimulation with Influenza, imiquimod or HIVBAL. (C)
Percentages of pDCs that are CD83+ or CD86+ at time points post stimulation. Data shown are representative of at least 3 different donors stimulated
and stained in duplicate.
doi:10.1371/journal.pone.0037052.g005
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Figure 6. HIV induces upregulation of pSYK. (A) Purified pDCs were treated with Influenza and HIVBAL for various time points. Positive control
with anti-BDCA-2 antibody (1:100) treated for 30 minutes is shown. Cells were harvested, permeabalized and stained for pSYK (Y352) as described in
the materials and methods. Shown are representative histograms from 3 independent experiments. (B) PDCs were stimulated with HIVBAL, HIV NL43,
Influenza, or medium alone for 30 minutes and percentages of pDCs staining positive for pSYK (Y352) and pSYK (Y525/526) were evaluated by flow
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PBMC Stimulation and Surface Marker Expression
PBMCs were isolated by a Ficoll-Paque Plus gradient (Amer-

sham Biosciences, Piscataway, NJ). PBMCs were plated at

16106 cells/well with 200ul of R10 media (RPMI 1640 medium

with 10% FBS, L-glutamine, 100 units/ml Penicillin G and

100 mg/ml of Streptomycin (Gibco-Invitrogen, Carlsbad, CA)

supplemented with 20 ng/ml of human recombinant IL-3 (R&D

Systems, Minneapolis, MN) in 96-well flat-bottom plates.

Cells were stimulated with Influenza A/PR/8/34 (Charles

River Laboratories, Wilmington, MA), or HIVBAL for 8 hours at

37uC and 5% CO2. Subsequently, cells were harvested and pDCs

were identified by staining for surface expression of BDCA-2

(BDCA-2-FITC, Miltenyi Biotec, Auburn, CA) and the absence of

CD14 (CD14-APC, BD Pharmingen, San Diego, CA). Cells were

also stained for the expression of CD83 (CD83-PerCP, Biolegend,

San Diego, CA) and CD86 (CD86-APC, Biolegend,). Samples

were analyzed on a FACSCaliburTM flow cytometer using

CellQuest software (BD Biosciences, San Diego, CA) and analyzed

by Flow Jo Software (Treestar, Ashland, Oregan). HIV viral stocks

were generated and titred in HIV negative PBMCs as previously

described [55].

IFN-a ICS
PBMCs were stimulated as above, with the addition of

GolgiPlugTM (BD Biosciences) at 7 hours prior to the end of

incubation to block golgi transport. Following incubation, cells

were harvested and stained for surface expression of BDCA-2 and

CD123. Cells were then permeabalized with Cytofix/Cyto-

permTM (BD Biosciences) and stained for intracellular IFN-

a (IFN–a-PE, Chromaprobe, Maryland Heights, MO) in Perm/

Wash BufferTM (BD Biosciences) as per manufacturer’s instruc-

tions. Samples were analyzed by flow cytometry as described

above.

Isolation of pDCs
Purified pDCs were enriched by negative depletion using

Miltenyi pDC Isolation Kit (Miltenyi Biotec) and LD columns

(Miltenyi Biotec) following manufacturer’s instructions. Purity of

the enriched cell population was evaluated by staining for surface

expression of BDCA-2 (BDCA-2-FITC, Miltenyi Biotec) and

CD123 (CD123-PE, Miltenyi Biotec). Purity ranged from 80–

95%, and yields ranged from 0.06%-0.23%.

IFN-a ELISA
Isolated pDCs were plated at 2–36104 cells/well with 100 ul of

R10 (Gibco-Invitrogen) +20 ng/ml of IL-3 (R&D) in 96 well flat-

bottom plates, and left overnight at 37uC, 5% CO2. PDCs were

stimulated the next day with HIVBAL (M.O.I = 0.5), HIVNL43

(M.O.I = 0.5), Influenza (M.O.I = 0.5) or media alone for 8 hours.

Supernatants were harvested, transferred to V-bottom 96 well

plates, centrifuged to remove cell debris, and stored at 220uC.
IFN-a levels were quantified by a pan-specific IFN-a ELISA

(Mabtech, Nacka Strand, Sweden) according to manufacturer’s

instructions.

HSV-2 Virus Generation
Vero cells (African green monkey kidney epithelial cells)

generously provided by Scott Gray-Owen (University of Toronto,

Toronto, ON) were cultured at 37uC in DMEM supplemented

with 5% BS and grown on T25 flasks to 80% confluency. Cells

were infected at an M.O.I of 0.1 with stock HSV-2, a gift from J.

Newton (McMaster University, Hamilton ON) for 24–48 hours, or

until detachment from plate surface was observed. Cells were

harvested and sonicated with a probe sonicator, and virus was

harvested from cell debris following centrifugation. Viral titer was

determined by performing serial dilutions of virus stock on plated

Vero target cells at 80% confluency in 6 well plates. Following 48

hours of infection, media was aspirated and cells were stained with

500 ul of crystal violet stain and plaques were counted.

PDC Stimulation
The following viruses were used for pDC stimulation: Influenza

A/PR/8/34 (H1N1, lot #4XAPR060202), Sendai Virus, Cantell

strain (ATCC VR-907 Para-influenza 1, in amnioallantoic fluid)

(lot #7Y050401B), both were obtained from Charles River

Laboratories (Wilmington, MA). HIV isolates were obtained from

the NIH AIDS Reagent Program. HSV-2 viruses were prepared

as above. ID50s were obtained for the following viruses after

culture in PHA stimulated PBMC blasts for HIV isolates, in chick

egg cultures for influenza and sendai, and Vero cell cultures for

HSV. Thus, MOI were determined based on their respective

ID50s.

Purified pDCs were plated at 26104 cells per well in R10

(Gibco-Invitrogen) +20 ng/ml IL-3 (R&D) and rested at 37uC, 5%
CO2 overnight. The next day, cells were stimulated with the

following panel: a) 18 HA/ml Sendai Virus Cantell strain (Charles

River), b) HSV-2 (M.O.I = 0.5), c) HIVBAL (M.O.I = 0.5) d)

Influenza (M.O.I = 0.5, Charles River), e) HIVNL43 (M.O.I = 0.5)

and f) 20 mg/ml of imiquimod (Invivogen, San Diego, CA) [56].

Supernatants were harvested from individual wells into V-bottom

96 well plates at 4, 8, 12, 24, and 48 hours post stimulation, and

spun down at 1500 rpm for 10 minutes to remove cell debris.

Supernatants were stored at -20uC until analysis.

Viral RNA Quantification
Quantification of HIV RNA copy numbers was determined

using Cobas Ampliprep/Cobas Taqman HIV Test, version 2.0

(Roche Diagnostics, Pleasanton, CA). Determination of influenza

RNA copies was performed using a TaqMan qPCR system against

Flu Matrix 2 gene as previously described [57] and performed on

an ABI Prism 7900HT Sequence detection System (Foster City,

CA).

Quantification of Cytokines by Cytometric Bead Array
Supernatants were thawed at room temperature, diluted

appropriately, and the presence of a panel of cytokines was

measured by BD Cytometric Bead Array Flex sets (BD

Biosciences) according to the manufacturer’s instructions. Briefly,

supernatants were diluted with Assay Diluent (BD Human Soluble

Protein Master Buffer Kit), and incubated for one hour with

a mixture of beads specific for detecting levels of IL-6 (BD,

cytometry (n = 3). In (C) gp120 induces pSyk signaling in pDCs. Purified pDCs were stimulated for 90 minutes in the presence of 1 mg/ml monomeric
gp120, AN1, (blue); 20 mg/ml imiquimod, (red); or the absence of stimulation (black). Cells were harvested and stained for pSyk (pY348) and analyzed
by flow cytometry. Shown is a representative flow cytometric plot of two experiments. (D) pDCs were stimulated with 0.5 M.O.I. of HIVBAL, HIV NL43,
Influenza, and imiquimod, or medium alone for 24 hours in the presence or absence of anti-BDCA2 antibody or an IgG1 isotype control and IFN-a was
measured by ELISA (n = 2, performed with two independent replicates, *p,0.001, **p,0.00005). BDCA2 treated pDC completely abrogated IFN-
a production in the presence of HIV (bars not seen).
doi:10.1371/journal.pone.0037052.g006
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coordinate A7), IL-8 (BD, coordinate A9), IL-10 (BD, coordinate

B7), IL-12p70 (BD, coordinate E5), TNF-a (BD, coordinate C4),

IFN-a (BD, coordinate B8), MIP-1b (BD, coordinate B9) and IP-

10 (BD, coordinate B5). Recombinant human protein standards of

each cytokine were run along with each sample set. After initial

incubation, a master mix containing PE-conjugated detection

antibodies was added to the beads and the mixture was further

incubated for 2 hours. The beads were then washed in Wash

Buffer (BD Biosciences) and analyzed by flow cytometry. Standard

curves were generated using FCAP Array software (Soft Flow,

Burnsville, MN) and sample mean fluorescence was measured by

Flow Jo Software (Treestar, Inc.).

Phosflow Assay
Phosflow was performed to measure the phosphorylation state

of intracellular SYK following stimulation. Purified pDCs were

plated at 26104 cells per well in R10 (Gibco-Invitrogen) +20 ng/

ml IL-3 (R&D), and stimulated with Influenza (M.O.I = 0.5,

Charles River), HIVBAL (M.O.I = 0.5), 20 mg/ml of imiquimod

(Invivogen) or anti-BDCA-2 mAb (Miltenyi Biotec) for 15, 30, 60,

and 90 minutes. Cells were then fixed in prewarmed BD Phosflow

Fix Buffer I (BD Biosciences) and incubated at 37uC for 10

minutes then permeabalized with BD Phosflow Perm buffer III

(BD Biosciences). Cells were then washed with PBS +2% FBS, and

intracellular phosphorylated SYK was stained with the following

antibodies: p-SYK (Y348) (p-SYK-PE, BD Biosciences), p-SYK

(Y525/526 and Y352) (Cell Signaling Technologies, Beverly MA)

followed by PE-anti-Rabbit IgG (Ebioscience, San Diego, CA).
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