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Abstract Brain connectivity analyses using voxels as fea-
tures are not robust enough for single-patient classification
because of the inter-subject anatomical and functional vari-
ability. To construct more robust features, voxels can be ag-
gregated into clusters that are maximally coherent across sub-
jects. Moreover, combining multi-modal neuroimaging and
multi-view data integration techniques allows generating mul-
tiple independent connectivity features for the same patient.
Structural and functional connectivity features were extracted
from multi-modal MRI images with a clustering technique,
and used for the multi-view classification of different pheno-
types of neurodegeneration by an ensemble learning method
(random forest). Two different multi-view models (intermedi-
ate and late data integration) were trained on, and tested for the
classification of, individual whole-brain default-mode net-
work (DMN) and fractional anisotropy (FA) maps, from 41
amyotrophic lateral sclerosis (ALS) patients, 37 Parkinson’s
disease (PD) patients and 43 healthy control (HC) subjects.
Both multi-view data models exhibited ensemble classifica-
tion accuracies significantly above chance. In ALS patients,
multi-view models exhibited the best performances (interme-
diate: 82.9%, late: 80.5% correct classification) and were
more discriminative than each single-view model. In PD

patients and controls, multi-view models’ performances were
lower (PD: 59.5%, 62.2%; HC: 56.8%, 59.1%) but higher
than at least one single-view model. Training the models only
on patients, produced more than 85% patients correctly dis-
criminated as ALS or PD type and maximal performances for
multi-view models. These results highlight the potentials of
mining complementary information from the integration of
multiple data views in the classification of connectivity pat-
terns from multi-modal brain images in the study of neurode-
generative diseases.
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Introduction

In Machine Learning applications, using different indepen-
dent data sets (e.g. from different measurement modalities)
to represent the same observational entity (e.g. a patient in a
clinical study), is sometimes referred to as multi-view (MV)
learning (Sun 2013). Assuming that each Bview^ encodes dif-
ferent, but potentially complementary, information, an MV
analysis would treat each single view (SV) data set with its
own statistical and topological structures while attempting to
classify or discriminate the original entities on the basis of
both data views.

Functional and anatomical brain connectivity studies are
providing invaluable information for understanding neurolog-
ical conditions and neurodegeneration in humans (Agosta
et al. 2013; Chen et al. 2015). In clinical neuroimaging based
onmulti-modal magnetic resonance imaging (MRI), function-
al connectivity information can be extracted from blood oxy-
gen level dependent (BOLD) functional MRI (fMRI)
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time-series, usually acquired with the patient in a resting
state (rs-fMRI), whereas anatomical connectivity infor-
mation is typically obtained from the same patient using
diffusion tensor imaging (DTI) or similar techniques ap-
plied to diffusion-weighted MRI (dMRI) time-series (Sui
et al. 2014; Zhu et al. 2014). Thereby, addressing connectivity
and neurodegeneration from both data types can be naturally
framed within the same MV analysis of MRI images
(Hanbo Chen et al. 2013).

Functional and anatomical connectivity analyses can be
performed using either voxel- or region-of-interest (ROI)
based methods applied to the available fMRI and dMRI data
sets. The voxel space is the native space of both image types
and therefore retains the maximum amount of spatial informa-
tion about whole-brain connectivity; however this information
is spread over tens of thousands (in 3 Tesla MRI) or millions
(in 7 Tesla MRI) spatial dimensions. After functional pre-pro-
cessing, one or more parametric maps can be calculated to
represent connectivity information at each voxel. Fractional
anisotropy (FA) maps, obtained from DTI data sets via tensor
eigenvalue decomposition (Basser and Jones 2002), and
default-mode network (DMN) component maps, obtained
from rs-fMRI data sets via independent component analysis
(ICA) or seed-based correlation analyses (van den Heuvel and
Pol 2010), have been the most commonly employed images in
structural and functional clinical studies of brain connectivity.

ICA decomposition values from rs-fMRI do not describe
the functional connectivity between two specific brain re-
gions. Similarly, FA values from DTI modelling of dw-MRI
do not describe the structural connectivity between two spe-
cific regions. Nonetheless, in many research and clinical ap-
plications, ICA values are used to describe the spatial distri-
bution (over the whole brain) of certain rs-fMRI signal com-
ponents that fluctuate coherently in time within a given func-
tional brain network (van de Ven et al. 2004; Beckmann et al.
2005; Ma et al. 2007). In the absence of systematic
task-related activations, as in the case of the resting state, both
the amount of synchronization of rs-fMRI fluctuations and
their spatial organization as functional networks, is fundamen-
tally due to functional connectivity processes, thereby the ICA
values are considered spatially continuous descriptors of func-
tional connectivity effects which are not constrained to a
pre-specified number of regions.

In contrast to voxel-based methods, in the so called
connectome approaches (Sporns et al. 2005), a dramatically
lower number of regions, usually up to one or two hundreds, is
predefined using standard atlas templates or known functional
network layouts, and region-to-region fMRI-derived
time-course correlations and dMRI-reconstructed fibre tracts
are calculated, yielding a graph model of brain connectivity
(Sporns 2011). An MV clustering technique has been
previously proposed in the context of graph theoretic
models to derive stable modules of functional and anatomical

connectivity across healthy subjects (Hanbo Chen et al. 2013).
However, while the dramatically reduced spatial dimensional-
ity allows highly detailed and complex connectivity models to
be estimated according to brain physiology and graph theory
(Fornito et al. 2013), the a priori definition of Bseed^ ROIs
may sometimes excessively constrain, and potentially dis-
solve (part of), the information content of the input images.
Moreover, the use of the same set of regions to constrain both
fMRI and dMRI data sets may introduce some sort of depen-
dence between the views. On the other hand, using individual
voxels as features is usually considered not robust enough for
individual connectivity pattern classification and discrimina-
tion. In fact, both the extremely high dimensionality of intrin-
sically noisy data sets like the fMRI and dMRI maps and the
inter-subject anatomical and functional variability of the
voxel-level connectivitymaps easilymake the statistical learn-
ing highly sensible to errors (Flandin et al. 2002).

To alleviate both the curse of dimensionality and the prob-
lem of misaligned and noisy voxels, here we propose to use
the approach of feature agglomeration (Thirion et al. 2006;
Jenatton et al. 2011) in the context of voxel-based MV con-
nectivity image analysis. In this approach, the whole brain
volume is partitioned into compact sets of voxels (i.e. clusters)
that jointly change as coherently as possible across subjects. In
combination with agglomerative clustering in the voxel space,
an ensemble learning technique called Random Forests (RF)
(Breiman 2001) is applied to the MV neuroimaging data sets.
Due to its non-linear and multivariate nature, the RF has been
previously shown to best capture important effects inMV data
sets, and to improve prediction accuracy in the context of MV
learning (Gray et al. 2013). There are three common strategies
to define MV data models: early, intermediate and late inte-
gration (Pavlidis et al. 2001). Early integration is performed
by concatenating the features of all views prior to further pro-
cessing; intermediate integration defines a new joint feature
space created by the combination of all single views; late
integration aggregates the predictions derived by models
trained on each single view.

Using individual pre-calculated DMN and FA maps from
independently acquired 3 Tesla rs-fMRI and DTI-dMRI data
sets, we applied the intermediate and late MV integration ap-
proaches for the RF-based MV learning, to the problem of
classifying age-matching elderly subjects as belonging to
one out of three different classes: Amyotrophic Lateral
Sclerosis (ALS) patients, Parkinson’s Disease (PD) patients
and healthy controls (HC).

Both ALS and PD are neurodegenerative diseases that pro-
gressively impair the ability of a patient to respectively start or
smoothly perform voluntary movements; however, they are
extremely different for what concerns the pathological mech-
anism. In fact, while ALS affects motor neurons (progressive-
ly leading to their death), PD affects dopamine-producing
cells in the substantia nigra, causing a progressive loss of
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movement control. The majority (i.e. about 90%) of all ALS
and PD cases are of sporadic type, meaning that the cause is
unknown (de Lau and Breteler 2006; Kiernan et al. 2011).

For both diseases, diagnosis is performed by experienced
neurologists with a series of standard clinical tests that basi-
cally exclude other pathologies with similar behaviour.
However, both PD and ALS generally exhibit highly variable
clinical presentations and phenotypes and this makes the di-
agnosis and patient classification challenging. In particular,
there is no definitive diagnostic test for ALS, which is some-
times identified on the basis of both clinical and neurophysi-
ologic signs (Brooks et al. 2000; de Carvalho et al. 2008).

According to recent epidemiological data, the diagnosis
rate of PD (Hirsch et al. 2016) is 2.94 and 3.59 (new cases
per 100,000 persons per year, respectively for females and
males) in the age range of 40–49 years, reaches the peaks of
104.99 and 132.72 in the range of 70–79 years and drops to
66.02 and 110.48 in the range of 80+ years. For ALS
(Logroscino et al. 2010), the diagnosis rate is definitely lower:
1.5 and 2.2 in the range of 45–49 years, 7.0 and 7.7 in the
range of 70–79 years and 4.0 and 7.4 in the range of 80+ years.
This suggests that the development of reliable diagnostic and
prognostic biomarkers would represent a significant advance,
especially in the clinical work-up of ALS.

Previous neuroimaging studies have demonstrated that
ALS and PD can be better characterized by taking into ac-
count multiple measurement types (Douaud et al. 2011;
Aquino et al. 2014; Foerster et al. 2014). Here, the comple-
mentary information encoded in DMN and FAviews has been
exploited for the SVandMVRF classification of ALS and PD
patients as well as of healthy controls.

Methods

Ethics Statement

The institutional review board for human subject research at
the Second University of Naples approved the study and all
subjects gave written informed consent before the start of the
experiments.

Participants

We acquired data from 121 age-matched subjects ranging from
38 to 82 years of age (mean age 63.87 ± 8.2). These included 37
(14 women and 23 men) patients with a diagnosis of PD ac-
cording to the clinical diagnostic criteria of the UnitedKingdom
Parkinson’s disease Society Brain Bank, 41 ALS patients (20
women and 21 men) fulfilling the diagnostic criteria for prob-
able or definite ALS, according to the revised El Escorial
criteria of the World Federation of Neurology (Brooks et al.
2000) and 43 volunteers (23 women and 20 men).

MRI Data Acquisition and Pre-Processing

MRI images were acquired on a 3 T scanner equipped with an
8-channel parallel head coil (General Electric Healthcare,
Milwaukee, Wisconsin).

DTI was performed using a repeated spin-echo echo
planar diffusion-weighted imaging sequence (repetition
time = 10,000 ms, echo time = 88 ms, field of view =320 mm,
isotropic resolution =2.5 mm, b value =1000 s/mm2, 32
isotropically distributed gradients, frequency encoding RL).
Rs-fMRI data consisted of 240 volumes of a repeated
gradient-echo echo planar imaging T2*-weighted sequence
(TR = 1508 ms, axial slices =29, matrix =64 × 64, field of
view =256 mm, thickness = 4 mm, inter-slice gap =0 mm).
During the scans, subjects were asked to simply stay motion-
less, awake, and relax, and to keep their eyes closed. No visual
or auditory stimuli were presented at any time during func-
tional scanning.

Three-dimensional T1-weighted sagittal images (GE se-
quence IR-FSPGR, TR = 6988 ms, TI = 1100 ms,
TE=3.9ms, flipangle=10,voxelsize=1mm×1mm×1.2mm)
were acquired in the same session to have high-resolution
spatial references for registration and normalization of the
functional images.

DTI data sets were processed with the FMRIB FSL
(RRID:SCR_002823) software package (Jenkinson et al.
2012). Pre-processing included eddy current and motion cor-
rection and brain-tissue extraction. After pre-processing, DTI
images were concatenated into 33 (1 B = 0 + 32 B = 1000)
volumes and a diffusion tensor model was fitted at each voxel,
generating the FA maps.

Rs-fMRI data were pre-processed with the software
BrainVoyager QX (RRID:SCR_013057, Brain Innovation BV,
Maastricht, theNetherlands). Pre-processing included the correc-
tion for slice scan timing acquisition, the 3D rigid body motion
correction and the application of a temporal high-pass filter with
cut-off set to three cycles per time course. From each data set, 40
independent components (ICs), corresponding to one sixth of the
number of time points (Greicius et al. 2007) and accounting for
more than 99.9% of the total variance, were extracted using the
plug-in of BrainVoyager QX implementing the fastICA algo-
rithm (Hyvarinen 1999). To select the IC component associated
with theDMN,we used aDMN spatial template from a previous
study on the same MRI scanner with the same protocol and pre-
processing (Esposito et al. 2010). The DMN template consisted
of an inclusive binary mask obtained from the mean DMNmap
of a separate population of control subjects and was here applied
to each single-subject IC, in such a way to select the best-fitting
whole-brain component map as the one with the highest good-
ness of fit values (GOF =mean IC value inside mask –mean IC
value outside mask) (Greicius et al. 2004, 2007). To avoid ICA
sign ambiguity, each component signwas adjusted in such away
to have all GOF positive-valued.
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Both diffusion and functional data were registered to struc-
tural images, and then spatially normalized to the Talairach
standard space using a 12-parameter affine transformation.
During this procedure, the functional and diffusion images
were all resampled to an isometric 3 mm grid covering the
entire Talairach box. After spatial normalization, all resampled
EPI volumes were visually inspected to assess the impact of
geometric distortion on the final images, which was judged
negligible given the purpose of analysing whole-brain distrib-
uted parametric maps rather than regionally specific effects.

Overview of the Methodology

The proposed approaches are schematically represented in
Fig. 1. After preprocessing, each view dimensionality is inde-
pendently reduced by a hierarchical procedure of voxel ag-
glomeration (BFeature Agglomeration^ section). We applied
the additional constraint that only adjacent areas can be
merged in order to get contiguous brain areas. Each brain area
is then compressed in a robust feature computing the median
of the corresponding voxel values for each subject. The fea-
tures are then used to train the two MV classification algo-
rithms (BRandom Forest Classifier^ section).

Following the distinction made in (Pavlidis et al. 2001), the
proposed models belong to the following two categories:

& Late Integration
Two independent RFs are trained on functional and

structural feature sets. The MV prediction is based on a
majority vote approach made according to the classifica-
tion results of the forests from each single view. This is
done by merging the sets of trees from the SV RFs and
counting the predictions obtained by this pooled set of
trees. This method has the advantage of being easily im-
plemented in parallel, since each model is trained on a
view independently from the other but it does not take into
account the interactions that may exist between the views.

& Intermediate Integration
Data is integrated during the learning phase. For this

purpose, an intermediate composite dataset is created by
concatenating the features of each view. This approach has
the advantage of learning potential inter-view interactions.
As a downside, a larger number of parameters must be
estimated, and additional computational resources are
necessary.

Feature Agglomeration

Brain activity and brain structural properties are usually
spread over an area bigger than the volume of a single voxel.
Aggregating adjacent voxels together improves signal

stability across subjects, while reducing the number of fea-
tures, and may translate in improved prediction capabilities.

We built a common data driven parcelation of the brain by
clustering the voxels across all the subjects. The clustering
was unsupervised and performed once for all subjects of each
training dataset, resulting in one common parcelation for each
single view. This produced the single-view features that are
(eventually) concatenated for the intermediate integration (see
Fig. 1). As the clustering operates in the space of subjects, the
features are simply concatenated along the subject dimension,
thereby the correspondence of each cluster across subjects is
preserved.

Voxels are aggregated using hierarchical agglomerative
clustering with the Ward’s criterion of minimum variance
(Ward 1963). The clustering procedure is further constrained
by allowing only adjacent voxels to be merged. This proce-
dure allowed a data-driven parcelation yielding a new set of
features (clusters of voxels) that corresponded to brain areas of
arbitrary shape that were maximally coherent across training
subjects. This methodology of construction of higher level
features has been used in (Jenatton et al. 2011) and (Michel
et al. 2012). In (Jenatton et al. 2011) the authors used the
hierarchical structure derived from the parcelation to regular-
ize two supervised models trained on both synthetic and
real-world data. Previous works already showed that, com-
pared to standardmodels, these regularized models yield com-
parable or better accuracy, and that the maps derived from the
weights exhibit a compact structure of the resulting regions. In
(Michel et al. 2012), the parcelation was derived from the
hierarchical clustering in a supervised manner, i.e., by explic-
itly maximizing the prediction accuracy of a model trained on
the corresponding features. Although this procedure is not
guaranteed to converge to an optimum, experimental results
on both synthetic and real data showed a very good accuracy.

Decision Tree Classifier

Decision tree classifiers produce predictions by splitting the
feature space into axis-aligned boxes were each partitioning
increases a criterion of purity (Fig. 2). The most common
purity indices for classification are:

Cross−Entropy: − ∑
K

k¼1
p̂k log p̂k

� �

Gini Index: ∑
K

k¼1
p̂k 1−p̂k
� �

Where p̂k is the proportion of samples of each class k as-
sociated to a given node (Hastie et al. 2009).

The main advantages of decision trees are the low bias in
prediction and the high interpretability of the model. Despite
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their simplicity, decision trees are flexible enough to capture
the main structures of data. On the other hand, decision trees
are highly variable, meaning that small variations in the train-
ing data can produce different partitioning of the feature space,
and hence unstable predictions.

Random Forest Classifier

An RF is an ensemble method based on bagging (bootstrap
aggregating) (Breiman 1996). A large set of potentially unsta-
ble (i.e. possibly with a high variance in predictions) but

Fig. 1 a Intermediate Data integration model. Preprocessed input images
are parcelated by unsupervised clustering. The parcelation is used to
compute the features that are concatenated and used to train the
MV intermediate integration RF model. The training procedure
is performed in nested cross-validation and the resulting best
parameters are used to estimate the generalization capability of
the model on the held-out fold. b Late Data integration model.

Preprocessed input images are parcelated using by unsupervised
clustering. The obtained parcelation is used to compute the
features that are used to train the SV RFs. The resulting
classifications are integrated to generate the MV prediction. The
training procedure is performed in nested cross-validation and the
best parameters are used to estimate the generalization capability
of the model on the held-out fold

Fig. 2 A decision tree with its
decision boundary. Each node of
the decision tree represents a
portion of the feature space (left).
For each data point, its predicted
class is obtained by visiting the
tree and evaluating the rules of
each inner node. When a leaf
node is reached, then the
corresponding class is returned as
the prediction (right)
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independent classifiers are aggregated to produce a more ac-
curate classification with respect to each single model. Here,
with classification independence, we mean that the labels pre-
dicted from different classifiers are as much uncorrelated as
possible across the observations. One of the few requirements
for ensemble methods to work is that the single classifiers in
the ensemble have accuracy better than chance. In fact, even
an accuracy slightly higher than chance would be sufficient to
guarantee that the probability that the whole ensemble predicts
the wrong class is exponentially reduced. The full indepen-
dency of the classifiers is needed to ensure that possible wrong
predictions are rejected by the rest of correct classifiers which
are expected to be higher in number, thereby increasing the
overall accuracy (Dietterich 2000).

The base predictor structure used in RF is the decision tree,
hence the name.

Random forests handle multi-class problems without the
need of transformation heuristics, like One-vs-One or
One-vs-Rest which are necessary to extend binary classifiers
like SVMs to multi-class classification problems and which
suffer from potential ambiguities (Bishop 2006).

Independency of the predictors is ensured by training each
predictor on a bootstrapped training dataset and randomly
sampling a subset of features each time a splitting of the
dataset has to be estimated (Breiman 2001).

Training an RF consists in training an ensemble of decision
trees: each decision tree is trained on a bootstrapped dataset,
i.e., sampled with replacement from the original dataset and
with the same dimensionality.

Each sample in the original dataset has a probability of
1− 1

N

� �
N of not appearing in a bootstrapped dataset.

Particularly, this probability tends to 1
e ≈0:3679 for N→∞,

where N is the number of samples in the original dataset.
This means that each decision tree is trained on a bootstrapped
dataset that, on average, has roughly two thirds of samples of
the original dataset plus some replicated samples. The remain-
ing one third of samples in the original dataset not appearing
in the bootstrapped dataset is used to estimate the generaliza-
tion performance of the tree. These generalization estimates
are aggregated into the Out Of Bag (OOB) error estimate of
the ensemble. Through the OOB error, it is possible to esti-
mate the generalization capabilities of the ensemble without
the need of an hold-out test set (Breiman 2001). Empirical
studies showed that the OOB error is as accurate in predicting
the generalization accuracy as using a hold-out test set, or a
cross-validation scheme when data is not sufficiently abun-
dant, given a sufficient number of estimators in the forest to
make the OOB estimate stable (Breiman 1996).

However, since we perform a feature clustering procedure
before training the forest we cannot exploit OOB estimates but
rely on cross-validation. This is because voxel agglomeration
is performed before RF training, meaning that if a train/test
split is defined after the agglomeration (as would be in the case

of bootstrapping the training dataset for each tree in the forest)
some information about the test data of each tree gets passed
into the partitioning, potentially leading to over-optimistic
biases in the estimate of generalization performances.

We also evaluated for each feature, the average measure of
improvement in the purity criterion each time a feature is
selected for a split as an index of the relevance of that feature
to the classification.

Model Settings and Classification

Prior to training the models, the effect of age and sex is re-
moved from the voxels via linear regression. We performed
this operation at the voxel level to avoid that the obtained
parcelation could encode age or sex similarities rather than
functional and/or structural similarities across subjects.

Each SV and MV model is trained with two nested
cross-validation loops. After preprocessing, the whole dataset
is partitioned into 5 outer disjoint subsets of subjects (or
folds). Iteratively, all subjects of one outer fold are set aside
and only used as test subjects to estimate the generalization
performances of the model. All subjects belonging to the re-
maining 4 outer folds are used to estimate the best configura-
tion of parameters (number of clusters, features, number of
trees, impurity criterion) and to train the models. To optimize
parameters, all subjects belonging to the 4 outer folds were
further partitioned into 3 inner folds (nested loop
cross-validation). In the inner loop, 2 out of the 3 inner folds
are used to train the models by varying the parameter config-
uration and the third (held-out) inner fold is used to estimate
the accuracy performance of that configuration. The accura-
cies for each parameter configuration are averaged across the
held-out inner folds and the best performing configuration of
parameters is used to train each model on all the data of the 4
outer folds. The models trained with the best parameters are
then tested on the held-out outer fold and the results across the
held-out outer folds are averaged to estimate the generaliza-
tion performances for each model. This training scheme is
graphically represented in Fig. 3. The same operations
were also repeated by permuting the labels of the train
subjects in the outer folds to estimate the null distribution
(see BPerformance Evaluation^ section).

For each training set, the entire brain volume is parcelled in
an unsupervised manner using the clustering obtained from
the different views.

The features resulting from the unsupervised step are used
to train two types of MV classifiers depending on whether the
integration is performed before or after the training of RF
(intermediate and late integration, respectively).

In each model, the actual number of brain areas (clusters)
had to be chosen as a trade-off between the compactness of a
cluster in the subject space (i.e. coherence across subjects) and
its size (number of voxels).
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Performance Evaluation

The generalization performances of the best parameter configu-
rations of each model estimated by nested cross-validation were
assessed by permutation testing. We built the empirical null hy-
pothesis by training 500 classifiers for eachmodel where we first
permuted the samples’ labels and then collected the accuracies.

To further investigate the performances of the proposed
models in the classification of healthy controls, we defined
the following assessment procedure: for each healthy control
xc in our dataset, we trained each proposed model 100 times
by randomly choosing 70% of the dataset as the training. To
rule out the possibility that the resulting models would be over
trained, we assessed the quality of the predictions of each of
these models by evaluating their predictions on the corre-
sponding 30% hold-out data not used for training. We also
ensured that the training set did not contain xc and recorded
its predicted class labels. We repeated this experiment twice:
in the former, the training set comprised the HCs, whereas in
the latter the classifiers were trained only on the pathologic
classes. In this way, it was possible to verify whether, and
quantify to what extent, the possible wrong assignment of a
given healthy control was driven by a specific selection of the
training examples, or, rather, by a systematic bias (i.e. the
features of some of the healthy controls would effectively
result more similar to those of the ALS or PD patients than
to those of the other controls). Particularly, we expect that the

majority HCs correctly recognized have unstable predictions
in the case of classifiers trained only on pathologic classes. On
the other hand, stable but wrong predictions in the case of
classifiers trained with HCs, should be somewhat reflected
or amplified in the case of training without HCs.

We also generated brain maps of feature relevance. For each
model, a brain area (cluster) was assigned a score depending on
how much, on average, a split on that feature reduces the impu-
rity criterion. A high score corresponds to high impurity reduc-
tion, i.e. the feature is more important. These scores were nor-
malized such that the sum of all importance values equals to 1 in
each view. In order to make the scores from different models
anatomically comparable, we assigned the score of each brain
cluster to all the corresponding voxel members, normalized by
the number of voxels that form the region. Normalization en-
sures that the sum of the scores across all voxels still sums to 1.
Thus, the resulting score maps have the same scales for all
models and can be compared across models.

Results

Brain Parcelation

Using a simple gaussianmodel (see, e. g., Forman et al. 1995),
we preliminary estimated the mean spatial smoothness of each
individual functional and structural map prior to running the

Fig. 3 Training schedule used for
each SVand MVmodel. The data
is recursively partitioned into
outer and inner training and test
sets by a nested cross-validation
scheme. The inner train/test splits
are used to estimate the best
parameters configurations,
whereas the outer train/test splits
are used to estimate the
generalization capabilities of the
models trained with the best
performing configurations of
parameters
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feature agglomeration procedure. These calculations yielded a
mean estimated smoothness of 2.16 +/− 0.47 voxels for the
DMN maps and of 2 +/− 0.23 voxels for the DTI maps. We
used these maps (without spatial smoothing) to obtain the
brain parcelation.

As we observed that (across the folds) different numbers of
parcels for DMN and DTI resulted in optimal performances
(reported in Table 1), we decided to choose the configurations
that contain a number of clusters equal to 500 for both DMN
and DTI, thus allowing the majority of cluster sizes to range
from 10 to 150 voxels, which represents a good compromise
considering the typical cluster sizes found for regional effects
in neuroimaging.

This choice produced a new dataset for each view made of
500 features derived from the clustering. In the case of late
integration, each single viewmodel was fitted to single dataset
of dimensionality 121 subjects × 500 features, whereas in
Intermediate Integration we used a merged dataset of 121
subjects × 1000 features.

Random Forest Parameters

For each ensemble model, we assessed the number of trees,
the purity criterion and the number of features to sample when
estimating the best split.

In the case of late integration, at least 10,000 trees were
necessary to reach the maximum generalization on the outer
cross-validation. For the intermediate integration, at least
15,000 trees were necessary.

For both integration strategies, results with the Entropy
purity criterion were slightly better compared to the Gini
index.

Lastly, in both models, the number of randomly selected
features for splitting had little or no influence on the accuracy
estimates, thereby we chose to set it to

ffiffiffi
p

p
as suggested in

(Breiman 2001), where p is the number of features.

Performances

Performance evaluations for both SV and MV models are
illustrated in Fig. 4, where the null distributions of
the estimated accuracies are shown together with the corre-
sponding non-permuted case. For all models, the classification
accuracies were significantly higher than those obtained under

the null hypothesis (see Table 1), that can be rejectedwith high
statistical confidence (p < 10−6).

The classifier confusion matrices (i.e. the accuracies report-
ed for each class) for all models are reported in Fig. 5 and
show that the performances are not homogenous across clas-
ses. Generally, the models’ discrimination capability is higher
when it comes to distinguish among pathologies compared to
the discrimination between pathology and healthy conditions.
The SV model trained only on DMN maps has better classi-
fication accuracy for ALS patients (70.7%) compared to PD
patients (62.2%) and HC (61.4%). The SVmodel trained only
on FAmaps has better classification accuracy for ALS patients
(68.3%) compared to PD patients (54.1%) or HC (52.3%).
MV classifiers have better classification accuracy for ALS
patients, reaching 82.9% for Intermediate and 80.5% for
Late. PD patient classification accuracy after integration is
on the other hand comparable to the SV models, with
Intermediate integration reaching 59.5% and Late Integration
reaching 62.2%. In both MV models, HC classification accu-
racy is slightly degraded with respect to the best SV model,
scoring 56.8% in Intermediate Integration and 59.1% in Late
Integration.

When repeating the training process keeping each HC out-
side the training set, we considered as the final class label of
each HC the majority label across all the 100 classifiers for
each data integration type.We identified five groups, shown in
Fig. 6, in which controls can be separated depending on the
predictions obtained by each SVandMVmodel: (i) a group of
10 HC that are systematically classified with the correct label
by each SV and MV model; (ii) a group of 11 HC that are
consistently classified by both SV and MV models as ALS;
(iii) a group of 6 HC that are consistently classified as PD by
each SV and MV model; (iv) a group of 8 HC that are classi-
fied correctly as controls by at most one SVmodel and get the
correct label byMVmodels; (v) a group of 8 HC for which the
predictions among the SV are in disagreement resulting in
unstable MV predictions.

In the case of training on pathologic classes only, HCs of
group (i) were split into 5 controls with a stable classification
as PD, 1 control classified as stable ALS and 4 controls for
which the SV and MV models are in disagreement. HC clas-
sified with a stable label as ALS (group ii) or PD (group iii)
maintain their stable labels also in this case. Similarly for
group (i), the HC which are correctly classified only by MV

Table 1 Accuracies of the
proposed models compared to the
respective null hypothesis

Model Chance accuracy Estimated accuracy p-value

Single-View (DMN) 0.354 ± 0.094 0.650 ± 0.078 <10−6

Single-View (FA) 0.322 ± 0.098 0.582 ± 0.118 <10−6

Multi-View (Intermediate) 0.351 ± 0.091 0.667 ± 0.150 <10−6

Multi-View(Late) 0.342 ± 0.091 0.675 ± 0.141 <10−6
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Fig. 4 Distribution of the
generalization accuracies (blue
histograms) estimated for each
SVand MV model. The null
distribution of the generalization
accuracy (green histograms) is
computed by permuting the labels
of the dataset and repeating the
training 500 times for each model
to obtain the significance of the
statistical test

Fig. 5 Class-specific accuracies
computed for each SV and MV
model reported as confusion
matrices. Each row reports the
percent of subjects belonging to
each class, whereas each column
corresponds to the percent of
subjects belonging to a predicted
class

Neuroinform (2017) 15:199–213 207



models (group iv) are split into a single HC with a stable ALS
prediction, 4 HC with a stable PD prediction and 3 HC for
which predictions are unstable. Finally, the HC of group (v)
for which there was disagreement among views in the 3-class
scenario are partitioned into 3 HCwith stable ALS label, 3 HC
with stable PD label and 2 HC with unstable prediction.

Albeit not surprising, we noted that, when trained only with
pathological classes, the accuracies of the classifiers consider-
ably increase. In fact, ALS accuracy reaches the highest value
of 92.3% for the SV DMN classifier, while both the interme-
diate and late MV classifiers reached 93.8%, whereas the ac-
curacy of the SV DTI classifier reaches an accuracy of 83.6%.
For PD patients, the highest accuracy is reached by the MV
late classifier (86.9%) compared to the SVDMN classifier and
the MV intermediate (both reaching 84.2%). Also in this case,
the SV DTI classifier achieves a slightly lower accuracy of
79%.

Lastly, we also report the most relevant features in the
learned RF models. These can in principle be different be-
tween single and intermediate MV models due to a possible
effect of data integration on the relative importance of fea-
tures; this is not the case for late integration models since they
were based on SV feature relevance. In Figs. 7 and 8 we
highlight the most important clusters of the parcelation for
the 3-class discriminations given by the SV and MV models
respectively. For both figures, a transparency level is assigned
to each cluster of voxels in its entirety. The more relevant a
cluster is, the less transparent it is represented. These brain
maps suggest that the patterns of relative importance are very
similar between SV and MV models. The relevant areas
resulting from the SV model trained on the DMN correspond
well to the centres of the anchor node regions of the DMN in

the medial prefrontal cortex and in the precuneus, with more
peripheral regions showing gradually lower importance for
the discrimination. For the DTI FA maps resulting from the
SV model, the importance of the two cross-hemispheric
callosal bundles is evident, with gradually lower importance
along the main association bundles that connect the brain from
the corpus callosum anteriorly and posteriorly towards the
cingulate cortex.

Discussion

We proposed two novel MV data integration models for
RF-based ensemble classification of brain connectivity images
from different MRI modalities. They showed that the MV
analysis of multiple views can improve the predictive power
of individual classifications based on single-subject data.

In general, ensemble classifiers offer a higher margin of
accuracy compared to single classifiers. In (Dietterich 2000)
three reasons for the advantage of ensemble methods are ev-
idenced: (i) from the statistical viewpoint, when data is scarce
compared to its dimensionality, it is easier to find even linear
classifiers that perfectly fit the data (overfitting); in contrast an
ensemble classifier provides an averaged prediction reducing
the generalization error (less overfitting); (ii) computationally,
ensemble models that converge to different local minima of
the objective criterion (e.g. a decision tree or a neural network)
provide a better approximation of the classification function
compared to a single model; (iii) if the ideal classification
function is not well represented by the functional family of
the chosen classifier (e.g. linear SVMs cannot learn non-linear
decision functions), as it is the case in many real world

Fig. 6 Stable label predictions
for HC subjects partitioned based
on the behaviour of the predicted
labels computed by sampling 100
different training sets for each HC
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applications, by the sole combination of different classifiers, it
would extend the class of classification functions and better
approximate the ideal classification function.

The brain images chosen as views corresponded to
functional and anatomical connectivity maps respective-
ly extracted from rs-fMRI and dw-MRI data sets of the
same experimental subjects. In particular, the ICA-derived
default-mode network (DMN) component maps and the
DTI-derived fractional anisotropy (FA) maps were calculated
to provide the algorithms with complementary functional and
structural information about large-scale and long-range brain
connectivity.

The mean smoothness of the maps corresponding to the
two views were different from each other. As we did not apply
any spatial smoothing to the data, we fully preserved the orig-
inal intrinsic smoothness of the calculated maps in the feature
agglomeration procedure. In fact, although we expect that
applying a spatial smoothing filter prior to this step would
increase the smoothness of the maps and therefore produce
more compact clusters of voxels with similar variability across
subjects, this would also reduce the inter-individual variabili-
ty. As we are ultimately aiming at classifying individual
(multi-view) patterns, we preferred to retain as much as pos-
sible of the inter-individual variability of the data, even at the

Fig. 8 Voxel cluster relevance
maps (triplanar reslicing: coronal,
sagittal, transversal) computed
from the multi-view intermediate
integration Random Forest.
Upper row: DMN view; Bottom
row: FA view

Fig. 7 Voxel cluster relevance
maps (triplanar reslicing: coronal,
sagittal, transversal) computed
from the single-view Random
Forests. Upper row: DMN view.
Bottom row: FA view
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cost of producing less compact clusters at the feature agglom-
eration stage. In addition, given the different spatial structure
of the two views, it would be difficult to anticipate the optimal
kernel for each view. Future extensions of the presented meth-
odology may entail with determining the optimal size and the
influence of the application of a spatial smoothing filter on the
performances of the single- and multi-view classifications.

To reduce the input data set dimensionality, the voxel-wise
images from training subjects of each view were initially sub-
mitted to a clustering algorithm using a feature (voxel) ag-
glomeration unsupervised procedure (Jenatton et al. 2011) that
retained as much information as possible about the
inter-subject variability. We did not explicitly enforce anatom-
ical constraints like symmetry between the hemispheres and,
in fact, the resulting parcelation is not expected to be anatom-
ically plausible. Nonetheless, this data-driven parcelation has
been chosen because it allowed a class-independent dimen-
sion reduction without discarding voxels in advance (like e.g.
through the application of voxel-level statistical thresholds or
anatomical masks from standard atlases (Mwangi et al.
2014)), thereby retaining as much as possible information of
the multivariate patterns in the data (Kriegeskorte et al. 2007).
Particularly, our feature selection method did not require the
performance of group-level statistical tests, even if this
could have been computationally attractive. It has been
in fact highlighted that feature selection by group com-
parison is not the optimal method for selecting informative
features in machine learning applications because high statis-
tical significances do not imply high classification accuracy
(Arbabshirani et al. 2015).

Following (Pavlidis et al. 2001), we explored two different
strategies to integrate DMN and DTI views: (i) Intermediate
integration, when we performed integration contextually dur-
ing learning of the classification rule, resulting in a single MV
prediction; (ii) Late integration in which we trained two SV
RFs separately and then aggregated the resulting SV predic-
tions into one final MV prediction. Due to both anatomical
and dimensionality issues, we considered the strategy of early
integration not appropriate for our case because the fusion of
the two views should have been performed at the voxel level
despite fMRI and DTI views are known to carry complemen-
tary information in different regions of the brain, made up,
respectively, of mainly gray matter and mainly white matter
voxels. This aspect was easily confirmed by visually
inspecting the voxel importance maps resulting from the
trained RF models.

We compared SV and MV data models on the problem of
discriminating 121 subjects (HC: 43, ALS: 41, PD: 37) on the
basis of their individual DMN and FA maps using the RF
classifier. Compared to linear classifiers, such as, e.g., linear
support vector machines (SVMs), ensemble models like RFs,
are expected to be more robust to noise in high-dimensional
settings and easier to train, with less effort on parameter tuning

(Kuncheva and Rodríguez 2010). Moreover, RFs can be eas-
ily extended to work in MV contexts (Gray et al. 2013).

We also performed some preliminary tests using SVMs for
the single views and then using both a majority vote approach
(for late integration) and a mixture of linear kernels computed
from the DTI and DMN views as an alternative solution for
intermediate integration via so called multiple kernel learning
or (MKL) (Gönen and Alpaydın 2011). In both cases, the
multi-view results were not better (41% Majority Vote,
36.7% mixture of kernels) than the corresponding
single-view SVMs (43.4% DMN and 37.3% DTI). For these
tests, due to computational reasons, we kept the number of
clusters fixed to 500 for both views. Moreover, the parameter
C of each SVM and the mixture parameter of the MKL were
estimated in nested cross-validation, i.e. the performances of
each parameter set were estimated with an inner leave-one-out
cross-validation and then the generalization performances of
the best set of parameters were estimated with an outer 5-fold
cross-validation. We believe that the lower performances ob-
served for MKL may be due to the relatively low amount of
complementary information between the views and/or to the
low number of observations available (patients). Indeed, a
systematic review of four data integration methods applied
to linear SVMs (Pettersson-Yeo et al. 2014) has previously
shown that MKL does not always perform better than simpler
integration methods (like unweighted kernel averaging or ma-
jority vote) in cases where the views carry relatively more
common (and less complimentary) information and for small
sample sizes. On the other hand, the sample size used in the
present work is very common in neuroimaging studies. As we
only considered linear SVMs, further investigations are still
needed for the exploration of non-linear kernels, even though
these are also not usual in neuroimaging due to so called
Bpre-image^ problem that anyway limits the interpretation of
the estimated models (Kwok and Tsang 2004).

Results of RF models showed that the proposed MV clas-
sification methods yield, on average, improved accuracy com-
pared to SV classifiers built on DMN or FA maps separately.
This suggests that mining complementary information from
the integration of multiple data views may lead to a better
understanding of the phenomena under study.

The improvement of the proposed MV vs. SV models was
more evident for the ALS class where both intermediate and
late integration models achieved a higher classification accu-
racy compared to both SV models. Class-specific classifica-
tion improvements were observed for the PD class where both
intermediate and late integration models reached an accuracy
comparable to the best SV result (the DMN view in this case)
and better than the worse SVresult (the DTI view in this case).
Similar trends were seen for the HC class, but, compared to
patients; the overall classification accuracies of HCs reached
lower values in both SV and MV data models. This might be
due to bad performances of the RF classifiers (due to, e.g.,
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poor representativeness of the data sets or small sample size),
to the higher general difficulty of correctly classifying elderly
HCs with (only) the chosen views, or to a combination of
both. As a matter of fact, it has been sometimes reported that
physiological age-related changes of functional connectivity
of resting state BOLD signals in healthy populations are not
only characterized by possible reductions in the resting-state
functional connectivity within the DMN (similar to various
clinical populations) but also by ubiquitous increases in
internetwork correlations, i.e. functional connectivity effects
that involve connections between the DMN and other atten-
tional networks (Lustig et al. 2003; Damoiseaux et al. 2008;
Ferreira and Busatto 2013), with the consequence that the
DMN view alone would have more limited capabilities in
the separation of HCs from non-HC (e. g. ALS and PD) pop-
ulations. Future work extending the presented MV framework
to more (functional) views will possibly address this aspect
directly.

On the other hand, it remains possible that the selected
neuroimaging features target some specific patterns of
(age-related) neurodegeneration that are not exclusively lim-
ited to pathological conditions but rather affect with similar
modalities the healthy like the pathological brains. In this case,
we would expect that possible misclassifications of HCs
would not result as random errors of the RF classifiers but as
consistent wrong assignments of a subject to one specific
pathological class. To address this question, we further ex-
plored the possibility that some HCs would be systematically,
and not randomly, classified as ALS or PD. However, to rule
out that RF classification errors were due to an overall poorly
representative training set, we created 100 random subsets of
training samples and repeated 100 times the training of each
RF model, separately for each single HC, which was always
excluded from all training sets. We found that the misclassifi-
cation of some HCs as PD or ALS was highly consistent with
one of the two pathological classes and stable across all train-
ing sets. In an additional experiment, we also repeated the
classification of all patterns using RF models trained only on
patients’ data sets. In this case, the models were completely
missing the information from control patterns and could only
assign each pattern to the ALS or PD class. As expected, the
accuracies of both SV and MV classifiers considerably in-
crease for patients and both MV classifiers outperformed at
least one of the two SV classifiers. For HCs, systematic mis-
classifications in the 3-class problem were further confirmed
in the 2-class problem, i.e. HCs systematically assigned to the
same (ALS or PD) class by both the 3-class and the 2-class RF
models. Thereby, we cannot definitely exclude that the lower
discriminative power of the original 3-class RF classifiers ob-
served in our data is at least in part due to the fact that RF
models can capture some specific effects of physiological neu-
rodegeneration (probably, albeit not necessarily, associated
with aging) because of a connectivity pattern shared by some

HCs with either PD or ALS patients and mimicking an
ALS-type or PD-type neurodegeneration process.

Both SV and MV RF models provide insight of how
relevant each feature is for the classification as a
by-product of training. Since we used brain areas as fea-
tures, we derived a set of maps which could be visually
inspected to verify the plausibility of the maps. The fea-
ture importance maps appeared very similar between SV
and MV models and corresponded well to the main node
regions of the DMN in the grey matter and the main
association bundles in the white matter, suggesting that
the chosen clustering technique for voxel aggregation
retained the relevant pattern information in the reduced
set of features.

Finally, to rule out whether the ALS patients had a
significant weight on the feature agglomeration, we also
performed a single-class agglomeration of features, how-
ever, the resulting parcelation did not show noticeable
differences in the resulting clusters among classes, sug-
gesting that the feature agglomeration mainly captures
general class-independent similarities of voxels in their
variations across subjects. In sum, we believe that the
differences among groups are encoded in subtle differ-
ences among whole-brain distributed patterns, possibly
due to feature values derived by a more general parcelation
of the brain that cannot be easily recognizable by visual
inspection.

Although the results of integrating structural and functional
connectivity of the same subjects are promising, this applica-
tion suffers from some limitations. First, as for most Machine
Learning applications to neuroimaging problems, the sample
size is a limiting factor. Although our sample size is near the
median of sample sizes of similar studies published during the
last few years, our approach as well as other similar methods
proposed, may greatly benefit from larger sample sizes, in
which the heterogeneity of diseases could be also better char-
acterized (Arbabshirani et al. 2015). Second, the spatial scale
of the parcelation was determined for each imaging view sep-
arately by cross-validation. An adaptive method able to deter-
mine the best suitable parcelation given the data may lead to
more robust and discriminative features. The supervised cut
procedure proposed in (Michel et al. 2012) is an example in
this direction, even though there is no guarantee for optimal
performances. Lastly, the relevant features returned by the
models only bring information on which areas are the most
relevant to the classification accuracy, but do not provide in-
formation about which area is the most discriminative for a
given class, neither provide information about the characteri-
zation of a class in terms of the values of the features. We
hypothesize that a custom procedure to evaluate the criterion
of mean accuracy decrease (see, e. g.,(Archer and Kimes
2008)) could be developed to obtain a set of group-specific
relevant areas.
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Future work is also needed to adapt the proposed
multi-view classification framework to work with classi-
cal connectivity measures (e.g. correlation or covariance)
for the functional view. In fact, as ICA values do not
measure the connectivity between two specific regions,
they would not be reliable for subject classification if
the set of regions is defined a priori, from independently
determined brain networks or standard atlases, as required
by classical connectivity measures, but rather need to be
used in combination with some form of data-driven voxel
clustering, as proposed here.

In conclusion, we proposed two MV data models to inte-
grate functional and structural connectivity maps for the same
subjects to be used with an RF classifier to classify ALS and
PD patients as well as HC. As features, we used voxel clusters
derived by aggregating contiguous voxels in an unsupervised
fashion. The trained data models were based on the RF frame-
work that has been extended to work with MV data sets.
Accuracy performances were comparable or higher for
MV compared to the SV data models, although there were
differences among the classes. We further investigated the
prediction accuracy in HCs and hypothesized that the
used features may encode aspects of neurodegeneration
that can be sometimes similar between physiological and
different types of pathological aging, making it more dif-
ficult the discrimination of some HCs as HCs. In future
works, the same approach can be used to classify images
of different brain networks as alternative or additional
views and the entire MV framework can be further ex-
tended to combine imaging with non-imaging views, such
as clinical, behavioural or even genetic multidimensional
data, when available from the same subjects.

Information Sharing Statement

Source code (python scripts) implementing the methods and
the analyses described in this paper can be requested to
Michele Fratello at michele.fratello@unina2.it.

Acknowledgements The authors would like to thank A. Paccone, A.
Serra and G. Luciano for their help in collecting data and running
experiments.

Compliance with Ethical Standards The institutional review board
for human subject research at the Second University of Naples approved
the study and all subjects gavewritten informed consent before the start of
the experiments.

Conflict of Interest The authors declare that they have no conflict of
interest.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /

creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Agosta, F., Canu, E., Valsasina, P., et al. (2013). Divergent brain network
connectivity in amyotrophic lateral sclerosis. Neurobiology of
Aging, 34, 419–427. doi:10.1016/j.neurobiolaging.2012.04.015.

Aquino, D., Contarino, V., Albanese, A., et al. (2014). Substantia nigra in
Parkinson’s disease: a multimodal MRI comparison between early
and advanced stages of the disease. Neurological Sciences, 35, 753–
758. doi:10.1007/s10072-013-1595-2.

Arbabshirani, M. R., Plis, S. M., Sui, J., & Calhoun, V. D. (2015). Single
subject prediction of brain disorders in neuroimaging: promises and
pitfalls. NeuroImage. doi:10.1016/j.neuroimage.2016.02.079.

Archer, K. J., & Kimes, R. V. (2008). Empirical characterization of
random forest variable importance measures. Computational
Statistics and Data Analysis, 52, 2249–2260. doi:10.1016/j.
csda.2007.08.015.

Basser, P. J., & Jones, D. K. (2002). Diffusion-tensor MRI: theory, exper-
imental design and data analysis – a technical review. NMR in
Biomedicine, 15, 456–467. doi:10.1002/nbm.783.

Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations
into resting-state connectivity using independent component
analysis.

Bishop, C. M. (2006). Pattern recognition and machine learning. Berlin:
Springer.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–
140. doi:10.1007/BF00058655.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
doi:10.1023/A:1010933404324.

Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El
Escorial revisited: revised criteria for the diagnosis of amyotrophic
lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor
Neuron Disorders, 1, 293–299. doi:10.1080/146608200300079536.

Chen, H., Li, K., Zhu, D., et al. (2013). Inferring group-wise
consistent multimodal brain networks via multi-view spectral
clustering. IEEE Transactions on Medical Imaging, 32,
1576–1586. doi:10.1109/TMI.2013.2259248.

Chen, Y., Yang, W., Long, J., et al. (2015). Discriminative analysis of
Parkinson’s disease based on whole-brain functional connectivity.
PloS One, 10, 1–16. doi:10.1371/journal.pone.0124153.

Damoiseaux, J. S., Beckmann, C. F., Arigita, E. J. S., et al.
(2008). Reduced resting-state brain activity in the Bdefault
network^ in normal aging. Cerebral Cortex, 18, 1856–1864.
doi:10.1093/cercor/bhm207.

de Carvalho, M., Dengler, R., Eisen, A., et al. (2008). Electrodiagnostic
criteria for diagnosis of ALS. Clinical Neurophysiology, 119, 497–
503. doi:10.1016/j.clinph.2007.09.143.

de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of
Parkinson’s disease. Lancet Neurology, 5, 525–535. doi:10.1016
/S1474-4422(06)70471-9.

Dietterich, TG. (2000). Ensemble methods in machine learning. In:
Multiple Classifier Systems, Berlin, Heidelberg: Springer Berlin
Heidelberg, pp 1–15

Douaud, G., Filippini, N., Knight, S., et al. (2011). Integration of struc-
tural and functional magnetic resonance imaging in amyotrophic
lateral sclerosis. Brain, 134, 3467–3476. doi:10.1093/brain/awr279.

212 Neuroinform (2017) 15:199–213

http://dx.doi.org/10.1016/j.neurobiolaging.2012.04.015
http://dx.doi.org/10.1007/s10072-013-1595-2
http://dx.doi.org/10.1016/j.neuroimage.2016.02.079
http://dx.doi.org/10.1016/j.csda.2007.08.015
http://dx.doi.org/10.1016/j.csda.2007.08.015
http://dx.doi.org/10.1002/nbm.783
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1080/146608200300079536
http://dx.doi.org/10.1109/TMI.2013.2259248
http://dx.doi.org/10.1371/journal.pone.0124153
http://dx.doi.org/10.1093/cercor/bhm207
http://dx.doi.org/10.1016/j.clinph.2007.09.143
http://dx.doi.org/10.1016/S1474-4422(06)70471-9
http://dx.doi.org/10.1016/S1474-4422(06)70471-9
http://dx.doi.org/10.1093/brain/awr279


Esposito, F., Pignataro, G., Di Renzo, G., et al. (2010). Alcohol increases
spontaneous BOLD signal fluctuations in the visual network.
NeuroImage, 53, 534–543. doi:10.1016/j.neuroimage.2010.06.061.

Ferreira, L. K., & Busatto, G. F. (2013). Resting-state functional connec-
tivity in normal brain aging. Neuroscience and Biobehavioral
Reviews, 37, 384–400. doi:10.1016/j.neubiorev.2013.01.017.

Flandin, G., Kherif, F., Pennec, X., et al. (2002). Improved detection
sensitivity in functionalMRI data using a brain parcelling technique.
Medical Image Computing and Computer-Assisted Intervention,
467–474.

Foerster, B. R., Carlos, R. C., Dwamena, B. A., et al. (2014). Multimodal
MRI as a diagnostic biomarker for amyotrophic lateral sclerosis.
Annals of Clinical Translational Neurology, 1, 107–114.
doi:10.1002/acn3.30.

Forman, S. D., Cohen, J. D., Fitzgerald, M., et al. (1995). Improved
assessment of significant activation in functional magnetic
resonance imaging (fMRI): use of a cluster-size threshold.
Magnetic Resonance in Medicine, 33, 636–647. doi:10.1002
/mrm.1910330508.

Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the
human connectome: promise, progress, and pitfalls. NeuroImage,
80, 426–444. doi:10.1016/j.neuroimage.2013.04.087.

Gönen, M., & Alpaydın, E. (2011). Multiple kernel learning algorithms.
Journal of Machine Learning Research, 12, 2211–2268.

Gray, K. R., Aljabar, P., Heckemann, R. A., et al. (2013). Random forest-
based similarity measures for multi-modal classification of
Alzheimer’s disease. NeuroImage, 65, 167–175. doi:10.1016/j.
neuroimage.2012.09.065.

Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004).
Default-mode network activity distinguishes Alzheimer’s disease
from healthy aging: evidence from functional MRI. Proceedings of
the National Academy of Sciences of the United States of America,
101, 4637–4642. doi:10.1073/pnas.0308627101.

Greicius, M. D., Flores, B. H., Menon, V., et al. (2007). Resting-state
functional connectivity in major depression: abnormally in-
creased contributions from Subgenual cingulate cortex and
thalamus. Biological Psychiatry, 62, 429–437. doi:10.1016/j.
biopsych.2006.09.020.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statis-
tical learning. Elements, 1, 337–387. doi:10.1007/b94608.

Hirsch, L., Jette, N., Frolkis, A., et al. (2016). The incidence of
Parkinson’s disease: a systematic review and meta-analysis.
Neuroepidemiology, 46, 292–300. doi:10.1159/000445751.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithm for indepen-
dent component analysis. IEEE Transactions on Neural Networks,
10, 626–634.

Jenatton R, Gramfort A, Michel V, et al. (2011) Multi-scale mining of
fMRI data with hierarchical structured sparsity. Proc.-Int. Work.
Pattern Recognit. NeuroImaging, PRNI 2011, 8548:69–72. doi:
10.1109/PRNI.2011.15

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., et al. (2012). Fsl.
NeuroImage, 62, 782–790. doi:10.1016/j.neuroimage.2011.09.015.

Kiernan, M. C., Vucic, S., Cheah, B. C., et al. (2011).
Amyotrophic lateral sclerosis. Lancet, 377, 942–955.
doi:10.1016/S0140-6736(10)61156-7.

Kriegeskorte, N., Formisano, E., Sorger, B., & Goebel, R. (2007).
Individual faces elicit distinct response patterns in human anterior
temporal cortex. Proceedings of the National Academy of Sciences
of the United States of America, 104, 20600–20605. doi:10.1073
/pnas.0705654104.

Kuncheva, L. I., & Rodríguez, J. J. (2010). Classifier ensembles for fMRI
data analysis: an experiment. Magnetic Resonance Imaging, 28,
583–593. doi:10.1016/j.mri.2009.12.021.

Kwok, J. T.-Y., & Tsang, I. W.-H. (2004). The pre-image problem in
kernel methods. IEEE Transactions on Neural Networks, 15,
1517–1525. doi:10.1109/TNN.2004.837781.

Logroscino, G., Traynor, B. J., Hardiman, O., et al. (2010). Incidence of
amyotrophic lateral sclerosis in Europe. Journal of Neurology,
Neurosurgery, and Psychiatry, 81, 385–390. doi:10.1136
/jnnp.2009.183525.

Lustig, C., Snyder, A. Z., Bhakta,M., et al. (2003). Functional deactivations:
change with age and dementia of the Alzheimer type. Proceedings of
the National Academy of Sciences of the United States of America, 100,
14504–14509. doi:10.1073/pnas.2235925100\r2235925100 [pii].

Ma, L., Wang, B., Chen, X., & Xiong, J. (2007). Detecting functional
connectivity in the resting brain: a comparison between ICA and
CCA. Magnetic Resonance Imaging, 25, 47–56. doi:10.1016/j.
mri.2006.09.032.

Michel, V., Gramfort, A., Varoquaux, G., et al. (2012). A supervised clus-
tering approach for fMRI-based inference of brain states. Pattern
Recognition, 45, 2041–2049. doi:10.1016/j.patcog.2011.04.006.

Mwangi, B., Tian, T. S., & Soares, J. C. (2014). A review of feature
reduction techniques in neuroimaging. Neuroinformatics, 12, 229–
244. doi:10.1007/s12021-013-9204-3.

Pavlidis, P., Weston, J., Jinsong, C., & Grundy, W. N. (2001). Gene
functional classification from heterogeneous data. In Proceedings
of the fifth annual international conference on computational
biology (pp. 242–248).

Pettersson-Yeo, W., Benetti, S., Marquand, A. F., et al. (2014). An em-
pirical comparison of different approaches for combiningmultimod-
al neuroimaging data with support vector machine. Frontiers in
Neuroscience, 8, 189. doi:10.3389/fnins.2014.00189.

Sporns, O. (2011). The human connectome: a complex network.
Annals of the New York Academy of Sciences, 1224, 109–
125. doi:10.1111/j.1749-6632.2010.05888.x.

Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a
structural description of the human brain. PLoS Computational
Biology, 1, e42. doi:10.1371/journal.pcbi.0010042.

Sui, J., Huster, R., Yu, Q., et al. (2014). Function–structure associations of
the brain: evidence frommultimodal connectivity and covariance stud-
ies. NeuroImage, 102, 11–23. doi:10.1016/j.neuroimage.2013.09.044.

Sun, S. (2013). A survey of multi-view machine learning. Neural
Computing and Applications, 23, 2031–2038. doi:10.1007
/s00521-013-1362-6.

Thirion, B., Flandin, G., Pinel, P., et al. (2006). Dealing with the short-
comings of spatial normalization: multi-subject parcellation of fMRI
datasets. Human Brain Mapping, 27, 678–693. doi:10.1002
/hbm.20210.

van de Ven, V. G., Formisano, E., Prvulovic, D., et al. (2004). Functional
connectivity as revealed by spatial independent component analysis
of fMRI measurements during rest. Human Brain Mapping, 22,
165–178. doi:10.1002/hbm.20022.

van den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain
network: a review on resting-state fMRI functional connectivity.
European Neuropsychopharmacology, 20, 519–534. doi:10.1016/j.
euroneuro.2010.03.008.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective func-
tion. Journal of the American Statistical Association, 58, 236–244.

Zhu, D., Zhang, T., Jiang, X., et al. (2014). Fusing DTI and fMRI data: a
survey of methods and applications. NeuroImage, 102, 184–191.
doi:10.1016/j.neuroimage.2013.09.071.

Neuroinform (2017) 15:199–213 213

http://dx.doi.org/10.1016/j.neuroimage.2010.06.061
http://dx.doi.org/10.1016/j.neubiorev.2013.01.017
http://dx.doi.org/10.1002/acn3.30
http://dx.doi.org/10.1002/mrm.1910330508
http://dx.doi.org/10.1002/mrm.1910330508
http://dx.doi.org/10.1016/j.neuroimage.2013.04.087
http://dx.doi.org/10.1016/j.neuroimage.2012.09.065
http://dx.doi.org/10.1016/j.neuroimage.2012.09.065
http://dx.doi.org/10.1073/pnas.0308627101
http://dx.doi.org/10.1016/j.biopsych.2006.09.020
http://dx.doi.org/10.1016/j.biopsych.2006.09.020
http://dx.doi.org/10.1007/b94608
http://dx.doi.org/10.1159/000445751
http://dx.doi.org/10.1109/PRNI.2011.15
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1016/S0140-6736(10)61156-7
http://dx.doi.org/10.1073/pnas.0705654104
http://dx.doi.org/10.1073/pnas.0705654104
http://dx.doi.org/10.1016/j.mri.2009.12.021
http://dx.doi.org/10.1109/TNN.2004.837781
http://dx.doi.org/10.1136/jnnp.2009.183525
http://dx.doi.org/10.1136/jnnp.2009.183525
http://dx.doi.org/10.1073/pnas.2235925100%5Cr2235925100
http://dx.doi.org/10.1016/j.mri.2006.09.032
http://dx.doi.org/10.1016/j.mri.2006.09.032
http://dx.doi.org/10.1016/j.patcog.2011.04.006
http://dx.doi.org/10.1007/s12021-013-9204-3
http://dx.doi.org/10.3389/fnins.2014.00189
http://dx.doi.org/10.1111/j.1749-6632.2010.05888.x
http://dx.doi.org/10.1371/journal.pcbi.0010042
http://dx.doi.org/10.1016/j.neuroimage.2013.09.044
http://dx.doi.org/10.1007/s00521-013-1362-6
http://dx.doi.org/10.1007/s00521-013-1362-6
http://dx.doi.org/10.1002/hbm.20210
http://dx.doi.org/10.1002/hbm.20210
http://dx.doi.org/10.1002/hbm.20022
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
http://dx.doi.org/10.1016/j.neuroimage.2013.09.071

	Multi-View Ensemble Classification of Brain Connectivity Images for Neurodegeneration Type Discrimination
	Abstract
	Introduction
	Methods
	Ethics Statement
	Participants
	MRI Data Acquisition and Pre-Processing
	Overview of the Methodology
	Feature Agglomeration
	Decision Tree Classifier
	Random Forest Classifier
	Model Settings and Classification
	Performance Evaluation

	Results
	Brain Parcelation
	Random Forest Parameters
	Performances

	Discussion
	Information Sharing Statement
	References


