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Exogenous IL-2 Controls the Balance in Thl, Th17, and Treg
Cell Distribution in Patients with Progressive Rheumatoid
Arthritis Treated with TNF-Alpha Inhibitors

Agata Kosmaczewska,'* Lidia Ciszak," Jerzy Swierkot,2 Aleksandra Szteblich,’

Katarzyna Kosciow,” and Irena Frydecka'

Abstract—Interleukin-2 (IL-2) has been suggested to control Treg/Th17 balance. Recently, we reported
a relationship of rheumatoid arthritis (RA) activity/progression with irreversible systemic Treg and Thl
defects including serum IL-2 shortage. Herein, we explore the role of in vitro stimulation with rIL-2 in
the observed immune alterations reversal. Patients with stable or progressive RA were assigned to
methotrexate (MTX) group or to TNF-alpha inhibitors (iTNF) group, respectively. Flow cytometric
analyses were performed before and after 6 months of treatment. Circulating Th1, Th17, and Treg cells
were determined before and after 72-h culture with anti-CD3 + rIL-2. Before therapy, 72-h stimulation
restored recently observed phenotypic Th cell alterations, except for the enriched Th17 subset normal-
ized as late as after therapy in all patients. Under 6-month therapy, anti-CD3 stimulation changed the Th
cell distribution only in progressive RA; despite Thl enrichment, it revealed Treg population defects,
which were completely reversed by exogenous IL-2 added to the stimulating culture. Our paper shows
that in aggressive RA patients exhibiting serum IL-2 shortage despite iTNF therapy, exogenous rIL-2 is
capable of promoting Treg differentiation affected by chronic activation, thus supporting its use in the

combined strategy of biologic treatment of the progressive form of RA.
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INTRODUCTION

The development and progression of rheumatoid ar-
thritis (RA) is associated with several alterations in both the
proportions of peripheral blood (PB) Thl, Th17, and Treg
cells and their counter-regulatory effects [1-3]. A major
role in the pathogenesis of RA is attributed to the immune
dysregulation depending on the imbalance between anti-
inflammatory Treg cells and pro-inflammatory Th17 cells
[1, 2]. The effect on Tregs may be a consequence of the
inflammatory conditions in the course of RA, suggesting
an impact of the cytokine milieu. Tregs in the presence of a
pro-inflammatory environment such as TNF-alpha, IL-6,
and IL-1-beta become unstable with respect to the affected
forkhead box P3 (Foxp3) gene expression and convert to
pathogenic Th17 cells, which expand into the sites of
inflammation [4]. In addition, serum IL-6 overexpression
in RA is capable of conferring on pathogenic Th17 cells
resistance to Treg-mediated suppression [5], thus
supporting the shift towards inflammatory conditions.
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Th17 and Treg cell distribution and function may also be
affected by different types of RA treatments [6—8].

In animal model of autoimmune diseases, such as RA,
anti-inflammatory action of Thl cytokines, including IFN-
gamma and/or IL-2, has been recently demonstrated [9,
10]. In particular, IL-2 has been suggested to be a cytokine
playing a key role in controlling the balance between Treg
and Th17 cells in the periphery [10—14]. This Th1 cytokine
strongly promotes the differentiation and/or function of
Foxp3+ Treg cells, being required for the maintenance of
Foxp3 expression by both natural and inducible Tregs [ 10—
13]. It is also responsible for Treg cell survival and homeo-
stasis [14, 15]. Inducible Tregs could differentiate from
CD4+CD25- cells in response to IL-2 and TGF-beta [16].
In addition to generation of Tregs, an important aspect of
IL-2 function is to constrain IL-17 production by CD4+ T
cells, thus inhibiting Th17 polarization [17]. Recently,
selective improvement of the levels and function of Tregs
has been demonstrated as a result of the low-dose IL-2
immunotherapy in the experimental model of autoimmune
disorders [18-23] as well as in the phase I/II clinical trial in
patients with type 1 diabetes [24].

In our preliminary data, we reported that the
extent of PB Th cell abnormalities and their rever-
sion depended on the duration of the active RA and
clearly correlated with progression of the disease
[25]. In particular, we found that patients with pro-
gressive and, in the most cases, long-term RA
remained with quantitative and qualitative Thl sys-
temic defects as well as a decreased population of
functional CTLA-4+ Treg cells in PB despite TNF-
alpha inhibitor (iTNF) treatment [25]. Herein, we
have extended the study and have performed stimu-
lation assays specific for T cells using anti-CD3
monoclonal antibody to examine the effect of
in vitro chronic stimulation through the T cell
receptor/CD3 complex on the proportions of the
Thl, Th17, and Treg cell subpopulations before and
after 6 months of treatment with MTX and/or iTNF.
Based on our recent demonstration of serum IL-2
shortage during RA progression [25], we decided to
verify whether the addition of rIL-2 to anti-CD3
stimulating culture could overcome the observed im-
balance between anti- and pro-inflammatory helper T
cells. The impact of anti-CD3+rIL-2 stimulation is a
novelty in RA patients and has provided much infor-
mation about the reactivity of their PB CD4 T cells
to chronic activation either before or after the thera-
peutic interventions.

MATERIALS AND METHODS

Ethics Statement

The study was approved by the local Ethics Commit-
tee at Wroclaw Medical University (Poland). According to
the 1964 Declaration of Helsinki and its later amendments,
written informed consent was obtained from each patient
and healthy donor after a full explanation of the procedure.

Study Populations

The main characteristics of RA patients and healthy
volunteers were shown in Table 1. A total of 36 patients
diagnosed with RA based on the 1987 revised classifica-
tion criteria of the American College of Rheumatology
(ACR) [26] and 13 healthy individuals were enrolled in
the study. The clinical evaluation of RA was based on the
medical history, and number of painful and swollen joints;
pain intensity was assessed by the patient on a 100-mm
visual analog scale (VAS); 28-joint disease activity score
(DAS28) was calculated according to the patient as well as
physician and laboratory tests (erythrocyte sedimentation
rate (ESR), C-reactive protein (CRP)) at the time when the
blood samples were obtained. The clinical and laboratory
tests were completed before and after 6 months of the
therapy.

All the patients were classified as having active dis-
ease if they fulfilled the following criteria: for methotrexate
(MTX) treatment, ESR>30 mm/h and/or CRP>1.5 mg/dl,
DAS28>3.2; for treatment with inhibitors of the human
tumor necrosis factor alpha (iTNF), ESR>30 mm/h and/or
CRP>1.5 mg/dl, DAS28>5.1. Also, the parameters
allowed determination of the improvement according to
the criteria suggested by the European League Against
Rheumatism (EULAR) [27]: no response (reduction of
DAS28<0.6), moderate efficacy of the therapy (reduction
of 0.6<DAS28<1.2), and good efficacy of the therapy
(reduction of DAS28>1.2). The other accepted inclusion
criteria were as follows: age over 18 years, women and
men with reproductive potential had to use reliable contra-
ception, the use of non-steroidal anti-inflammatory drugs
(NSAIDs) and glucocorticoids in stable doses was allowed.
For the iTNF to be used, treatment failure with at least two
traditional disease-modifying anti-rheumatic drugs
(DMARD:s), including MTX, was required. Therefore,
iTNF patients enrolled in the study presented clinical and
laboratory signs of advanced and progressive disease, in-
cluding statistically significant differences in regard to
active RA duration (p=0.0000001), DAS28 score (p<
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Table 1. The Main Characteristics of RA Patients and Healthy Volunteers

Characteristics MTX group iTNF group Healthy controls
(n=19) (n=17) (n=13)
Before After Before After

Age, mean+SD (years) 54.7+16.4 50.1£6.9 53.5+£9.6

Sex, female/male 12/7 14/3 10/3

Duration, mean (range) (months) 15.2 [2.0-79.0] 123.7 [13.0-300.0]

Steroid, +/— 12/7 712 16/1 16/1

NSAID, +/— 15/4 15/4 13/4 13/4

Prior DMARDS, +/— 10/9 10/9 16/1 16/1

DAS28, mean+SD 5.6+0.9 33+1.2 6.2+0.8 4.8+1.1

RF, positive/negative 16/3 16/3 13/4 13/4

CRP (mg/l) 24.4+38.1 10.1+26.7 24.4420.6 19.94+22.4

ESR (mm/h) 31.2422.0 18.1+10.5 29.9+16.0 27.2+18.9

NSAID non-steroidal anti-inflammatory drugs, DMARDs disease-modifying anti-theumatic drugs, DAS28 disease activity score rated by the 28-joint count,
RF rheumatoid factor, CRP C-reactive protein, ESR erythrocyte sedimentation rate

0.02), and post-treatment CRP (p=0.05) compared to the
MTX group.

In the MTX group, 19 patients with a mean (range)
RA duration of 15.2 (2 to 79) months received a stable dose
of MTX (10-15 mg once a week orally). If at least mod-
erate improvement was not achieved and there were no
significant adverse effects, the dose was up-titrated to a
maximum level of 25 mg/week. All MTX patients received
5-15 mg folic acid 24 to 48 h after MTX administration.

In the iTNF group with a mean (range) disease dura-
tion of 123.7 (13 to 300) months, patients were adminis-
tered with recommended doses of iTNF: 3 mg/kg body
weight of infliximab, which was given as an intravenous
infusion at weeks 0, 2, and 6 and every 8 weeks thereafter
(11 patients), subcutaneous injection of adalimumab at
40 mg every other week (two patients), and subcutaneous
injection of etanercept at 50 mg every week (four patients).
The iTNF patients were allowed to continue treatment with
DMARDs; 13 patients with MTX, two patients with
sulfasalazine (SSZ), glucocorticoids (prednisone equiva-
lent 10 mg/day), and/or non-steroidal anti-inflammatory
drugs, if the treatment regimens were not modified for 4
weeks before the study. The course of the above therapies
lasted for at least 6 months.

Among the 19 patients treated with MTX, 14
achieved improvement and 5 a partial response (good and
moderate efficacy, respectively). However, among 17 pa-
tients who were administered iTNF, 12 achieved improve-
ment, 2 a partial response, and in 3 cases, the treatment was
ineffective.

Thirteen healthy controls were free of chronic dis-
eases, including autoimmune, inflammatory, and neoplas-
tic disorders and matched with patients for age and sex
with no statistically significant differences in comparison
with RA patients.

Cell Preparation

All blood samples were collected into collection tubes
containing 0.2 ml of sodium heparin. Peripheral blood
mononuclear cells (PBMCs) were prepared by density
gradient centrifugation over Lymphoflot (Biotest, Germa-
ny) for further procedures, including stimulation assays
and flow cytometric analysis of CD4+ T cell subsets
examined.

Flow Cytometric Analysis of Th1l and Th17 Cells

Before incubation of the cells with phorbol 12-
myristate 23-acetate (PMA), CD4+ T cells were purified
by negative selection with CD4+ T cell isolation kit by
magnetic cell sorting (Miltenyi Biotec) to avoid PMA-
mediated internalization and degradation of the CD4 mol-
ecule, which would affect the identification of Thl
(CD4+IL-17-IFN-gamma+) and Th17 (CD4+IFN-
gamma-IL-17+) cells [28]. Then, the cells were stimulated
with 25 ng/ml PMA and 1 pg/ml of ionomycin (Ion)
(Sigma-Aldrich) in the presence of 10 pg/ml of brefeldin
A (BFA, protein transport inhibitor) and cultured for 4 h at
37 °C in a humidified 5 % CO, incubator followed by the
cells’ fixation and permeabilization with BD
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Permeabilizing Solution 2 (Becton Dickinson) according
to the manufacturer’s instruction. Next, the cells were
stained with phycoerythrin (PE)-labeled anti-human IL-
17 (eBioscience) and fluorescein isothiocyanate (FITC)-
labeled anti-human IFN-y (Becton Dickinson) monoclonal
antibodies (mAbs).

Flow Cytometric Analysis of Treg and Functional
CTLA-4+ Treg Subpopulations

Regulatory T cell subsets were defined as
CD4+CD25"2"FoxP3+ and CD4+FoxP3+CTLA-4+
cells. Directly after isolation, PBMCs were first aliquoted
into tubes without PMA+ion stimulation, and then
surface-stained with PerCP anti-human CD4 and FITC
anti-human CD25 or FITC anti-human CTLA-4 mAbs.
After fixation with 2 % PFA and permeabilization with
BD Permeabilizing Solution 2 (Becton Dickinson), the
cells were incubated with PE anti-human FoxP3 mAb.

After staining, the cells were washed and immediately
analyzed with a FACScan cytometer equipped with Cell
Quest software (BD Bioscience Pharmingen). In each case,
staining was compared with that of the appropriately la-
beled isotype control. Lymphocytes were gated on the
basis of forward- and side-scatter properties, and at least
30,000 CD4+ T cells were analyzed.

Activation of Human T Cells In Vitro

To determine the effect of in vitro stimulation on the
populations studied, PBMCs were resuspended to 1x10°
cells/ml in RPMI 1640 medium (Gibco, Paisley, UK)
supplemented with 10 % fetal calf serum (Flow Labs,
UK), L-glutamine, and 50 pg/ml gentamycin (Gibco),
and cultured with 10 ng/ml of anti-CD3 mAb OKT3 (Or-
tho, Neckargemund, Germany) in the presence or absence
of 500 U/ml of rIL-2 (Eurocetus, Amsterdam, The Nether-
lands) with subsequent labelling as described above. Con-
trol cultures without stimulants were included in each
experiment. The cultures were incubated at 37 °C in a
humidified atmosphere containing 5 % CO, for 72 h.

Statistical Analyses

One-way ANOVA test was used to determine signif-
icant differences between groups. Paired data were com-
pared by the Wilcoxon signed rank test. Results were
considered statistically significant when p<0.05. Data
were presented as the mean+SD. STATISTICA 5.5 (edited
in 1999) was used in the statistical calculations.

RESULTS

Pre-treatment Distribution of Th1, Th17, and Treg
Cells in the Peripheral Blood

We confirm our recent observation that circulating
Th1 cell population was significantly lower in the progres-
sive RA patients compared to the MTX group and controls
(Fig. la) [24]. PB Th17 populations in both groups of
patients were similar and significantly higher than in
healthy subjects (Fig. 1b). Compared to controls, Treg cells
in patients before iTNF treatment were downregulated,
whereas in the MTX group, they reached similar levels
(Fig. 1c). Also, circulating CTLA-4+ Treg population in
the most advanced RA patients was markedly lower com-
pared to controls (Fig. 1d).

The Influence of 72-h Culture with Anti-CD3+rIL-2
on the Proportions of Thl, Th17, and Treg Cells in RA
Patients Before Therapeutics Administration

Anti-CD3 stimulation resulted in a decrease of the
Th1 subpopulation in the non-aggressive RA patients
(MTX group) and controls, whereas in the iTNF group,
the Thl cell proportion was unchanged. Co-stimulation
with rIL-2 did not influence the Thl subset in patients; in
contrast, a marked Th1 decrease was observed in controls.
We did not find any differences in the percentages of Thl
cells between studied groups in both culture conditions
(Fig. 1a).

We observed that stimulation with anti-CD3 mAb led
to no obvious changes in the percentages of Th17 cells in
the studied groups. Recombinant IL-2 co-stimulation di-
minished the Th17 population in controls, only; hence, the
Th17 subset remained enriched in all patients at each
stimulation condition (Fig. 1b).

Also, anti-CD3 stimulation resulted in no Treg chang-
es in all groups. In contrast, stimulation with anti-CD3+
rIL-2 markedly increased Treg values in all individuals.
Considering both stimulating conditions, there were no
differences in proportions of Tregs between studied groups

(Fig. 1c).

Fig. 1. The effect of in vitro stimulation with anti-CD3 and anti-CD3+
rIL-2 on helper T cell subpopulations from RA patients before (left panel)
and after (right panel) 6 months of the therapy with MTX and/or iTNF.
Results are shown as the mean percentage (mean+SD) of a Thl (CD4+
IL-17-IFN-gamma+) T cells, b Th17 (CD4+IFN-gamma-IL-17+) T cells,
¢ Treg (CD4+CD25++Foxp3+) cells, and d functional Treg (CD4+
Foxp3+CTLA-4+) cells. Markers are as follows: '0.05<P<0.08, *0.001
<P<0.05, ¥*¥0.0001<P<0.001, and ***P<0.0001.
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Stimulation with anti-CD3 mAb resulted in a signif-
icant decrease of the proportions of CTLA-4+ Treg cells
only in controls, whereas there were no changes in RA
patients. Co-stimulation with rIL-2 led to increase of the
proportions of functional Tregs in progressive RA patients
and controls; in MTX patients, its increase was of border-
line significance compared to anti-CD3-stimulated cells. In
both culture conditions, CTLA-4+ Tregs from all individ-
uals reached similar values (Fig. 1d).

Post-treatment Distribution of Th1, Th17, and Treg
Cells in the Peripheral Blood

We observed no impact of the treatment with MTX
and/or iTNF on circulating Thl cells; hence, the Thl
population remained defective in the iTNF group com-
pared to others (Fig. 1a). We observed a post-treatment
decrease of the PB Th17 cell population to normal levels in
both groups of patients (Fig. 1b). After iTNF therapy, there
was a slight increase of the PB Treg population to a normal
level; therefore, no obvious differences in the proportions
of PB Treg cells between studied groups were found
(Fig. 1c). The treatment did not change the CTLA-4+ Treg
subset in all patients; thus, we still observed defective
proportions of these functional Tregs in the iTNF patients
compared to controls (Fig. 1d).

The Influence of 72-h Culture with Anti-CD3+rIL-2
on the Proportions of Th1, Th17, and Treg Cells in RA
Patients After 6 Months of Therapy

Anti-CD3 stimulation resulted in no Th1 cell popula-
tion changes in the MTX group, its increase in iTNF
patients, and a decrease in controls. In all RA patients,
the anti-CD3-stimulated Th1 cell population was enriched
compared to controls. Co-stimulation with rIL-2 signifi-
cantly increased the Thl subset in all RA patients. In
contrast, in controls, the addition of rIL-2 led to a decline
in the Thl population. In consequence, the proportions of
Thl cells co-stimulated with rIL-2 in all RA patients were
markedly higher than in controls (Fig. 1a).

Also, we found no influence of anti-CD3 as well as
anti-CD3+rIL-2 stimulation on the Th17 population in
RA. Co-stimulation with rIL-2 diminished the Th17 subset
in controls, only; nevertheless, the in vitro stimulated Th17
cell values were comparable in all subjects (Fig. 1b).

Anti-CD3 stimulation did not significantly change the
Treg cell population in all individuals; however, a non-
significant decrease, revealing a marked Treg defect, was
noted in the iTNF group, only. Co-stimulation with rIL-2
resulted in an increase of the Treg population in the iTNF

group as well as in controls; thus, co-stimulated Treg
values in patients reached a normal level (Figs. 1¢ and 2a).

We did not find any changes in the percentages of
anti-CD3-stimulated CTLA-4+ Tregs in the MTX group.
In controls and in the iTNF group, stimulation with anti-
CD3 alone diminished the CTLA-4+ Treg population,
which reached normal values after co-stimulation with
rIL-2. Therefore, the CTLA-4+ Treg proportions after
anti-CD3+rIL-2 stimulation were similar in all individuals
studied (Figs. 1d and 2b).

DISCUSSION

In the present paper, we report that chronic anti-CD3
stimulation possess a normalizing effect on CD4 T cell
subpopulations by overcoming Thl and Treg cell defects
seen mainly in progressive disease [25]. With this respect,
our finding contradicts the previous demonstration of im-
paired Thl responses following stimulation with
immobilized OKT3 in RA [29], which may result from
substantial differences in the experimental procedures. The
mechanisms leading to the partial restoration of both the
anti-inflammatory subpopulations under stimulating con-
ditions in advanced RA are not clear. The possibility that
Thl downregulation may become reversible due to the
withdrawal from the culture of PB factors which are capa-
ble of affecting the Thl population, such as MTX or
statins, cannot be neglected [30, 31]. Moreover, under
in vitro conditions, selective migration of Thl cells into
the sites of inflammation normally observed in active RA is
avoided [32—-34]. Therefore, when activated through TCR/
CD3, Thl cells could expand to the normal levels and
secrete suitable amounts of 1L-2, playing a major role in
the generation, survival, and function of Treg cells [10, 13,
17, 35, 36]. In contrast, in untreated patients with non-
aggressive RA, anti-CD3 stimulation diminished the Thl
population similarly to the control group, probably due to
proper inhibitory function of Tregs and higher consump-
tion of endogenous IL-2 by these cells.

We observed that the only population remaining in-
tact after anti-CD3+IL-2 stimulation in untreated RA was
Thl7, its proportion being similarly expanded in all pa-
tients. This effect could be attributed to Th17 resistance to
the suppressive function of Tregs and is in agreement with
other studies [37-39]. The lack of Th17 normalization
might contribute to the maintenance of the inflammation
despite reversal of other Th cell populations under stimu-
lating conditions. An unexpected observation, however,
was the lack of inhibitory effect of exogenous IL-2 on
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(medium panel) and with addition of exogenous IL-2 (right panel).

Th17 differentiation in active disease, which just apparent-
ly contradicted previous reports [17, 38]. It is likely that
in vitro activated PBMCs from patients could secrete into
the culture abundant amounts of IL-1, exhibiting opposite
and decisive effects on Th17 polarization compared to IL-2
[40, 41]. This finding seems to rule out the clinical rele-
vance of IL-2 supplementation until Th17 normalization.
In fact, the reversion of Th17 cell expansion in all RA

patients was the main immune advantage of the therapy
irrespectively of the therapeutics used. Although the iTNF
therapy of the most advanced RA partially corrected also
the proportion of Tregs, consistently with our and other
reports [7, 25], their qualitative impairment and Th1 sys-
temic defects were still maintained.

In the current study, we demonstrate that therapeutic
interventions in RA could change, in addition, the
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reactivity of CD4+ T cells to stimulation in the disease
severity-dependent manner. In particular, we observed
that the population of Thl cells from progressive pa-
tients responded to anti-CD3 stimulation more vigor-
ously, which was consistent with the finding of Thl
hyporesponsiveness reversion after iTNF administration
[29]. Furthermore, in vitro activated Th17 cells
remained normal in all patients under the treatment,
thus suggesting the long-lasting inhibitory effect of the
therapeutics used. The only distinction concerned the
Treg cell population from patients with advanced dis-
ease, where anti-CD3 stimulation resulted in a marked
decrement of Treg population, confronting the lack of
such response in both the non-aggressive MTX-treated
group and controls. The mechanism underlying the
observed downregulatory effect of stimulating condi-
tions on Tregs in the iTNF-treated progressive RA
patients is not clear. However, it suggests similarity to
the acute responses to the infection agents associated
with a limited amount of available 1L-2 [42, 43]. The
infection-induced Treg cell deficiency found in those
studies was essential for the initiation of potent Thl
protective responses in the chronic disease [42, 43]. It
cannot be excluded that iTNF administration in the
most advanced RA contributes to the development of
such a compensating mechanism that includes down-
regulation of the Treg population. At this stage of the
study, it is uncertain whether the activation-induced loss
of Tregs in progressive patients is only transient or
remains long-lasting, but it should be noted that it
might promote the restoration of the anti-inflammatory
Thl population. In fact, when the influence of anti-
CD3 stimulation on Thl cell values was analyzed, a
significant impact was found just after the biologic
therapy.

When the influence of exogenous IL-2 on the selected
CD4+ T cell subsets among the patients under the treat-
ment was analyzed, no significant impact in the MTX
group was demonstrated, probably due to the fact that
patients with stable RA entered the treatment with no PB
Thl defects. It should be stressed, however, that only in the
progressive and iTNF-treated patients, the same who ex-
hibited irreversible systemic loss of IL-2 [25], did supple-
mentation of the culture with this cytokine correct the Treg
cell population, which confirms its dependence on the
sufficient amounts of IL-2 in the microenvironment. Re-
sistance of IL-2-induced Treg cells to Th17 conversion by
IL-6 abundantly concentrated in patients’ sera even after
the iTNF administration was demonstrated as well [25, 44].
Recent studies have linked defects in Tregs found both in

mouse and human autoimmune disorders to reduced avail-
ability of IL-2 [18, 45-48]. As such, IL-2 seems to be a
protective rather than pro-inflammatory cytokine that
could be involved in the downregulation of chronic inflam-
mation related to RA progression by shifting the balance
from Thl7-mediated inflammatory conditions to a Treg-
mediated tolerant state. Such a normalizing IL-2 potential
for effector and regulatory T cell distribution has already
been described in the tumor and the infection microenvi-
ronment [19-22, 42, 49-57]. In particular, IL-2 adminis-
tered at low doses to mice [18-22] and humans [53-57]
increased the levels of circulating Tregs, improved their
regulatory activity, and protected against chronic inflam-
mation, contrasting with the lack of such responses in
effector T cells. Our reports confirms that the Treg popu-
lation rather than effector T cell subset is dependent on 1L-2
availability and points to the possibility that low-dose IL-2
immunotherapy may provide a mechanism for recovering
the selective expansion of Tregs for the suppression of
autoimmune disorders, especially those ongoing with IL-
2 systemic deficit. However, the overall reasoning in RA
has to be cautious due to the lack of other data on that
subject.

In conclusion, our study revealed for the first time that
progression of RA is associated with altered responses of
Thl, Th17, and Treg cells to stimulation through TCR/
CD3. Addition of exogenous IL-2 to the stimulating cul-
ture in untreated patients has no considerable impact on the
biology of the populations examined. However, in progres-
sive RA patients still lacking IL-2 despite iTNF treatment,
it contributes to maintaining a balance between Treg and
effector T cells required for the immune control of disease
progression. Therefore, our study indicates that exogenous
IL-2 may be of potential clinical relevance in the most
advanced RA. Further studies on the impact of chronic
stimulation with addition of rIL-2 need to be performed
to ascertain its usefulness in the treatment of the progres-
sive form of this disease.
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