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Quasi‑spectral characterization 
of intracellular regions 
in bright‑field light microscopy 
images
Kirill Lonhus*, Renata Rychtáriková, Ganna Platonova & Dalibor Štys

Investigation of cell structure is hardly imaginable without bright-field microscopy. Numerous 
modifications such as depth-wise scanning or videoenhancement make this method being state-of-
the-art. This raises a question what maximal information can be extracted from ordinary (but well 
acquired) bright-field images in a model-free way. Here we introduce a method of a physically correct 
extraction of features for each pixel when these features resemble a transparency spectrum. The 
method is compatible with existent ordinary bright-field microscopes and requires mathematically 
sophisticated data processing. Unsupervised clustering of the spectra yields reasonable semantic 
segmentation of unstained living cells without any a priori information about their structures. 
Despite the lack of reference data (to prove strictly that the proposed feature vectors coincide with 
transparency), we believe that this method is the right approach to an intracellular (semi)quantitative 
and qualitative chemical analysis.

List of symbols
Bmn	� Set of pixels that form lines between pixels m and n
c	� Colour of a camera filter or an image channel; for colour camera c = {red, green, blue}
C	� Number of image channels
Dk	� Central intensity gradient in pixel k ∈ Bmn in calculation of Gmn

E	� Energy absorbed by a camera sensor during an exposure time te
Ek	� Parameter in computation of Gmn which indicates if the pixel k is classified as an region edge
f	� Variable which reflects a dependence between the spectral energy and the sensor response; f = 1
Fc(�)	� Spectral quantum efficiency of a camera filter c
Fm	� Spectral quantum efficiency of a pixel m
Gmn	� Measure of discontinuousness between pixels m and n
i	� Label of a discrete wavelength; i = {1, 2, . . . ,w}
iter	� Iteration
it_max	� Maximal iteration (predetermined)
Ic	� Pixel intensity at colour channel c
k	� Pixel in the set Bmn

Lc	� Light effectively incoming onto a camera sensor, i.e. onto a camera filter
m, n	� Pixel labels
Mi	� Intensity value in the image
N	� Number of pixels in the set Nm

Nm	� Set of pixels with the Euclidean distance to the pixel m equal or less than TED
q	� Parameter related to the degree of discontinuousness in spectral regions
�r	� Position vector for a pixel at coordinates (x, y)
S	� Integral of the spectrum measured by the fibre spectrophotometer in each point Si
S(�)	� Light spectrum of a light source
te	� Camera exposure time
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T	� Thermodynamic temperature; kelvin [K]
Tm(�i)	� Transparency spectrum of pixel m at wavelength �i
Tn(�i)	� Transparency spectrum of pixel n at wavelength �i
T(x, y, �)	� Transparency spectrum of a medium at each pixel in general
Tb	� Bias parameter in computation of Gmn ; Tb = 0.9
TED	� Threshold for the selection of the neighbourhood of pixel m, i.e., the Euclidean distance between 

pixels m and n; TED = 1
�u	� Change of a pixel position vector
w	� Number of discrete wavelengths
x, y	� Vertical and horizontal pixel coordinates
ǫ	� Parameter which reflects the studied pixel’s neighbourhood size in general
�	� Light wavelength; nanometer [nm]

Bright-field microscopy in videoenhancement mode shows an unprecedented success as a method of living object 
investigation since it is cheap and non-intrusive in preparation of samples, and, in its innovative set-up1, has 
an excellent spatial and temporal resolution, which opens many possibilities for automation. Classical image-
processing techniques such as feature extraction or convolution neural networks do not work so well due to 
huge variability in microworld data. It calls for image pre-processing techniques that would utilize all available 
information to supply rich, physically relevant feature vectors in subsequent methods of analysis.

Indeed, classical bright-field microscopy measures properties of incoming light affected by a sample. If multi-
photon processes are negligible and, then, intensities are reasonable, a linear response model can be used. Then, 
a medium observed in such a model can be fully characterized by a transparency spectrum T(�r) defined for 
each pixel. Such a spectrum can give ultimate information about the medium and boost subsequent machine 
learning methods significantly.

The most convenient, classical way of obtaining such a spectrum is to modify a measuring device (micro-
scope). It is mostly done using single scanning interferometers2, matrices of them3, matrices of color filter arrays4, 
or other adjustable media5,6. Such technical arrangements can be further successfully coupled with machine 
learning methods as well7. Purely instrumental methods are certainly the most correct but require sophisticated 
equipment and are not fully compatible with typical bright-field techniques like depth-wise z-scanning. Due to 
both hardware and algorithms, this makes these methods rather a separated group than a subtype of the bright-
field methods.

For classical bright-field microscopy, the most approaches rely on trained (or fitted) models based on a set 
of reference images with known properties8. Most mature methods rely on the principal component analysis9 
or sparse spatial features10. Some of such techniques do not aim to full-spectral reconstruction but rather to a 
more effective colour resolution (which has been very useful in distinguishing fluorescence peaks)11. The main 
disadvantage of such methods is the global approach, which is feasible only for homogeneous images. Most 
“local” methods include different artificial neural networks12. and can work well if they are trained with a refer-
ence dataset that is similar to the observed system. The data of this kind almost never occurs in microscopy due 
to bigger variability of objects in microworld (for the reason that, e.g., known objects are artificial, an investigated 
system is living, or the in-focus position can be ambiguous). This gives a cutting edge to physically inspired 
methods which make no assumption about type of observed object and does not use special equipment except 
of a classical bright-field microscope.

Theoretical model
For most biologically relevant objects multi-photon interactions can be neglected13. Thus, a linear response model 
can be used for description of the measurement process. The model consists of four entities (Fig. 1) which are 
physically characterized as follows: 

1.	 Light source gives a light spectrum S(�) , which is assumed constant and spatially homogeneous.
2.	 Medium is, in each point of the projection onto a camera sensor plane, characterized by an unknown trans-

parency spectrum T(x, y, �).
3.	 Camera filter, where each camera channel c is characterized by a quantum efficiency curve Fc(�).
4.	 Camera sensor is described (by purely phenomenological approach) by exposure time te and energy load 

curve Ic = f (E) , where Ic is the pixel sensor output (intensity) and E is energy absorbed by the pixel sensor 
during the exposure time. We assume that the image is not saturated and, thus, f(E) can be approximated 
linearly.

Mathematically, it can be expressed as

where Ic is the image intensity at a given pixel. All observable, biologically relevant, processes are slow compared 
with the camera exposure time (usually in a few ms) and, therefore, the outer integral can be eliminated. More 
importantly, let variable f, which reflects the dependence between the spectral energy and the sensor response, 
be 1. The multiplication inside the internal integral is commutative, which allows us to introduce an effective 
incoming light Lc(�) = S(�) · Fc(�) . These all mathematical treatments give the reduced equation for the meas-
urement process as

(1)Ic = f ·

∫ te

0

∫
�max

�min

S(�) · T(�) · Fc(�) · d� · dt,
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Intentionally, this simple model does not include any properties of optics, sophisticated models of light-
matter interactions, and spatial components (focus, sample surface, etc.). The aim of the method is to describe 
an observed object in the best way, with minimal assumptions on its nature or features.

Model extension for continuous media
In order to extract a transparency profile from the proposed model, one has to solve an inverse problem for a 
system of three integral equations (in case of a 3-channel, RGB, camera). This cannot be solved directly, since 
the model is heavily underdetermined. (In this text, by terms “transparency” and “spectrum” we mean “quasi-
transparency” and “quasi-spectrum” since this method determines only the properties of a microscopy image 
which are similar to the transparency spectra but not the transparency itself).

Additional information can be squeezed from the physical meaning of the observed image—neighbouring 
pixels are not fully independent. The observed object usually has no purely vertical parts (which is quite typical 
for cell-like structures) and other Z-axis related changes are not fast14. If this holds, the image can be treated 
as a continuous projection of the object’s surface (in optical meaning) onto the camera sensor. In this case, the 
neighbouring pixels correspond to neighbouring points in the object.

In addition, let us assume that the object’s volume can be divided into subvolumes in a way that the transpar-
ency spectra inside a subvolume will be spatially continuous (in L2 meaning). This assumption is quite weak, 
because it can be satisfied only if the volumetric image has a subvolume of the size which is equal to the voxel size.

For biological samples which show almost no strong gradients of structural changes holds that the pixel 
demarcates the projected image. Formally, this criterion can be expressed as

where �u is a random vector and q, ǫ are small numbers. This equation closely resembles the Lyapunov stability 
criterion. The ǫ reflects the neighbourhood size and q is related to the degree of discontinuousness. It can be 
violated, if �u crosses a border between objects, but not inside a single object.

Optimization procedure
For pixel m, the combination of optimization criteria in Eqs. (2) and (3) gives (in discrete form)

where C is the number of channels, w is the number of discrete wavelengths, Gmn is a measure of discontinuous-
ness between pixels m and n. The Nm is a set of points, which have the Euclidean distance to the pixel m equal or 
less than TED . Authors used TED = 1 , but a larger neighbourhood may improve convergence speed. The integral 
in the first part of Eq. (4) is supposed to be solved numerically. Authors used the Simpson integration method15 
with discretization ||�i|| = 48.

The trickiest issue in Eq. (4) is calculation of discontinuousness measure Gmn . We defined it as

where Dk is a central gradient in pixel k, Tb is a bias parameter (authors used Tb = 0.9 ), and Bmn is a set of points, 
which form lines between pixels m and n. The set of such points is calculated using the Bresenham algorithm16. 
The Ek indicates whether pixel k is classified as an edge. For this we used the Canny edge detection algorithm17 
applied to a gradient matrix smoothed by a 2D Gaussian filter with the standard deviation equal18 to 0.5.

(2)Ic =

∫
�max

�min

Lc(�) · T(�) · d�.

(3)
∫

�max

�min

|T(�r, �)− T(�r + �u, �)|2d� < q, ∀|�u| < ǫ,

(4)Fm =

C∑
c=1

e
|
∫
�w
�0

Lc(�)·Tm(�)d� − Im| − C +
1

N

∑
n∈Nm

Gmn

w∑
i=1

[Tm(�i)− Tn(�i)]
2,

(5)Gmn =
1

Lmn

∏
k∈Bmn

{[Ek = 0] + [Ek �= 0] · (1− Tb) · (1− Dk)},

Figure 1.   Measurement process model.
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The gradient calculation is different for the first and further iterations. In the first iteration, there is no valid 
spectral guess, and the gradients and the edge detection are calculated for the original image. The used edge 
detection algorithm requires a single-channel (grayscale) image, however, the input image is RGB. We used the 
principal component analysis (PCA)19,20 and retained only the first principal component in order to obtain the 
maximal information on the grayscale representation of data.

In the non-first iterations, there is a spectral guess and, instead of the gradient, we used the cross-correlation 
with zero lag: Dk = Tk−1(�) ⋆ Tk+1(�) . The vertical and horizontal gradient were merged by the Euclidean norm.

For numerical optimization of Eq. (4), the covariance matrix adaptation evolution strategy (CMA-ES)21 was 
proved to be a suitable robust global optimization method22. Due to the mean-field nature of the second part 
of Eq. (4), the method is iterative with, usually, 20–40 iterations to converge. In each iteration step and for each 
pixel, the minimization is conducted until a predefined value of loss function is achieved. Different schedules 
of tolerance changes can be applied, authors used the simplest one—linear decrease. The algorithm flow chart 
is presented in Fig. 2.

Microscopy system and camera calibration
In order to obtain reasonable local spectra, we must ensure that camera sensor pixels have homogeneous 
responses. From hardware point of view, they are printed as semiconductor structures and cannot be changed. 
Therefore, we introduced a spectral calibration in the form of post-processing routine, which is designed for 
obtaining equal responses from all camera pixels.

The first part of calibration is experimental and aimed at measuring each pixel’s sensitivity. We took a pho-
tograph of the background through a set of gray layers with varying transparency, covering a 2-mm thick glass 
(type Step ND Filter NDL-10S-4). After that, we replaced the microscope objective by a fibre of a spectropho-
tometer (Ocean Optics USB 4000 VIS-NIR-ES) to record spectra corresponding to each of the filters, see Fig. 3a.

The second part is computational. For each pixel, we constructed a piece-wise function S(M), where S is an 
integral of the spectrum measured by the fibre spectrometer in each point Si and Mi is an intensity value in the 
image. Between these points, the function S(M) is linearly interpolated, see Fig. 3d. For a colour camera that 
we used, the algorithm is slightly different. Most of the RGB cameras are equipped with a Bayer filter, which 
effectively discriminates 3 sorts of pixels. Each ‘sort’ has a different dependence of the quantum efficiency on 
the wavelength, see Fig. 3b. These dependencies are usually supplied by the camera producer. In this case, the 
recorded spectrum should be multiplied by the corresponding efficiency curve prior to the integration. The result 
of the multiplication is shown in Fig. 3c.

The proposed method of calibration is universal, applicable to any camera producing raw data, and is not 
based on any assumption about nature of image or underlying acquisition processes. The algorithm itself is 
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Figure 2.   The flow chart of the method. The magenta lines denote the routes for the 1st iteration. The red and 
blue lines show the direct and indirect feedback between iterations, respectively.
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Figure 3.   (a) Light spectra of grayscale layers measured by a fibre spectrophotometer, (b) declared spectra 
of RGB camera filters, (c) calculated spectra of incoming light reaching the blue camera channel. The integral 
under the curve (c) was used as a calibration value for the construction of the calibration curve. (d) Calibration 
curves for selected blue camera pixels lying in the same column (pixel indices are depicted).
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post-processing technique and requires calibration images and data from spectrometer. All results described 
below were obtained after this image correction. The calibration and correction routines are implemented as a 
native application and are freely available.

Results
The method essentially requires only three specific inputs: an image, incoming light spectrum, and camera filter 
profiles. The camera filter profiles are usually supplied with the camera or can be measured directly using an 
adjustable monochromatic light source. The incoming light spectrum is less straightforward, because the light 
emitted by the source is somehow altered by the light path. A convenient way is to replace the objective inlet 
by a cosine corrector with a spectrometer and measure the incident light spectrum. This implies that, in case of 
any substantial changes in the optical path (e.g., like the objective replacement), the incoming light spectrum 
has to be remeasured. In practice, it makes no problem to measure a set of spectra corresponding to a different 
objective, iris settings, etc.

The proposed method appears to be quite robust to parametrization inaccuracies and errors. We used the 
quantum efficiency curves supplied by the vendor and measured the spectrum, which is reaching the sample, 
and obtained practically feasible results. The method can be applied to any bright-field microscope set-up. The 
only condition is to access the camera primary signal immediately after the analog-to-digital conversion, before 
some kind of thresholding, white-balancing, gamma correction, or another visual improvement is employed.

The sample has to obey three assumptions: localized gradients, reasonable flatness, and linear response. 
If these assumptions hold, the obtained results will be in agreement with physical properties of the medium. 
Most of relatively flat biological samples (e.g., a single layer of cells) fulfil all these criteria. In order to show 
the capacity of the method, we used it for analysis of images of unstained live L929 mouse fibroblasts recorded 
using a video-enhanced bright-field wide-field light microscope in time lapse and with through-focusing. For 
determination of the best focal position in the z-stack, we used the graylevel local variance23. The effective light 
spectrum as the result of multiplication of the light source spectrum by the camera filter transparency curves is 
shown in Fig. 4b. The original raw image is shown in Fig. 4a and looks greenish due to the prevalence of green 
colour in incoming light spectrum.

As clearly seen in Fig. 4d and e, the method has a non-trivial convergence behaviour of the variation coef-
ficient (with the local maximum at iteration 2 and the local minimum at iteration 4) and of the cost. The behav-
iour of the iteration computing process is not related to changes in the schedule of tolerances. This behaviour in 
iteration process is linearly decreasing until iteration 10, and then is kept constant and the iteration process is 

Figure 4.   The method of quasi-spectra extraction was applied to a raw image of a live cell from a bright-
field wide-field light microscope (a) combined with the effective light spectra (b). The cost (d) and variation 
coefficient (e) demonstrate a quite non-monotonous behaviour. This implies a self-organization of the model. 
After the reconstruction of the transparency spectra, the image can be viewed under arbitrary illumination such 
as the absolute black body with T = 5800 K (c). Comparison of the quality of U-Net supervised segmentation 
for original (raw), contrast-enhanced, and quasi-spectral images (f) shows advantages of the proposed quasi-
spectral approach.
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stopped if the value of change is 0.01. We have not investigated the reason for this course deeply, but it is definitely 
repeatable for all the tested measurements (e.g., Fig. S3b,c). A natural way of visual verification of an image of 
transparency spectra is artificial illumination. We used a spectrum of the black body at T = 5800 K according 
to the Planck Law (Figs. 4c, S3a). The transformed image is quite similar to the raw data, which supports the 
method validity. To obtain such an image, we multiplied each pixel’s transparency spectra by the illumination 
spectrum and the CIE standard matching curves. The integrals of the corresponding curves gave coordinates 
in the CIE 1931 colour space.

Evaluation of the asset of the proposed method of the quasi-spectral reconstrunction (Fig. 5a–e) for clusteriza-
tion against the raw data is quite tricky, because we have no ground truth. But, nevertheless, there are numerous 
methods of quality estimation for unsupervised learning24. Such methods are usually used for determination of 

Figure 5.   A live cell L929 in time lapse (a–c) at k-means clusterization, k = 10 . The corresponding mean 
spectra of classes for images (a,c) are shown in (d,e). These spectra are pretty much similar, despite the 
different images. The gap criteria for the raw data and the relevant spectral counterparts are presented in (g). 
Dimensionality reduction techniques, e.g., PCA, can be used for better visualization and digital staining (f).
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the optimal number of clusters in datasets. Our aim is slightly different—to compare the accuracy of the clus-
terization for two datasets with different dimensionality. This naturally yields a choice of metric—cosine—since 
this metric is normalized and not affected by magnitude to such an extent as the Euclidean metric. Another 
fact that can be utilized from the data is that each single image provides 105–106 points. It enables us to use a 
distribution-based method for estimation of clustering accuracy. One of the most general method from this fam-
ily is gap statistics25, which is reported to perform well and robust even on noisy data, if a sufficient number of 
samples is present24. As the clusterization method itself, we used k-means with 10 clusters and the cosine metric. 
Figure 5g shows gap criteria for time-lapse raw images and relevant spectral counterparts. The proposed method 
leads to better and more stable clustering concurrently. We also investigated different dimensionality reduction 
techniques (namely PCA19, Factor Analysis26, and NNM27), which can be applied before the clustering, but these 
techniques did not bring any improvement in cluster quality. Despite that, these techniques can be used, e.g., for 
digital staining and highlighting the details in objects, see Fig. 5f.

In order to verify the benefits of the clusterization of the obtained spectra using k-means against the direct 
image clusterization, simple phantom experiments on microphotographs of oil-air and egg protein–air interface, 
respectively, were conducted. These phantom experiments showed that the spectral clusterization resulted in 
both a higher cluster accuracy and a lower variation. Moreover, in order to prove the capacity of the method, we 
applied supervised segmentation, namely a classical semantic segmentation network, U-Net28. It is a symmetric 
encoder-decoder convolution network with skip connections, designed for pixel-wise segmentation of medical 
data. One of the strongest advantage of this network is a very low amount of data needed for successful learn-
ing (only a few images can be sufficient for this purpose). We employed 6 images for the network training and 
1 image for the method validation. To avoid the data overfitting in the training phase, aggressive dropout (0.5, 
after each convolution layer) and intensive image augmentation (in detail in Suppl. Material 1) was rendered. 
We compared the performance of the U-Net network for the original raw images, contrast-enhanced images, 
and spectral images (Fig. 4f). The results of segmentation for the spectral images showed a significantly ( > 10% ) 
increased accuracy, intersection over union (IoU) 0.9, and a faster convergence speed (8 epochs vs. 40 epochs 
for contrast-enhanced images). The results were stable to changes in the training and test sets (even when using 
a single validation image or a set of augmented images derived from validation as mentioned above).

Discussion
The primary aim of the method is, in the best possible way, to characterize individual cell parts physically (by 
a colour spectrum) and, consequently, identify them as different cell regions. Currently, the standard approach 
for the recognition of organelles is fluorescent (or other dye) staining. In unstained cells, identity of an organelle 
is guessed from its shape and position. Our approach gives the promise to be able to identify the organelles 
according to their spectra. However, in order to obtain the same spectra for cells of different samples, full repro-
ducibility of the whole experiment such as optical properties of a Petri dish, thickness and colour of cultivation 
medium has to be ensured.

An important issue that we have not investigated yet is the influence of sample thickness. The question 
remains what is the identity of the spectrum if the sample has a non-zero thickness. In Rychtáriková et al.1, we 
showed that the position of the effective focus differs even with the usage of a fully apochromatic lens. This is 
the biggest complication in interpreting the spectrum. In case of a relatively thick and homogeneous organelle it 
can be assumed that, in the centre of the focus, the contribution from geometrically different levels are similar. 
The full answer to this question would be given by a complete 3D analysis that has to be theoretically based on 
completely new algorithms and is currently out of the possibilities of our computing capacity. To this point, 
however, we allow to claim that the thickness of the sample affects mainly the integrals below the spectra, not the 
shapes of the spectra themselves. The usage of the cosine metric, which is, in effect, the angle between distance 
vectors and is insensitive to the magnitude, would help to mitigate this problem.

It is worth mentioning that, for some real-life biological samples, the measurement model can be violated. 
We implicitly assume that light intensity reaching the camera chip is always lower than at the time of its produc-
tion by a light source. The transparency coefficient is bounded by the range [0, 1]. Indeed, this is not always true 
because the sample can contain light-condensing objects (most of these objects are bubbles or vacuoles) which act 
as micro-lenses. It does not break the method generally but, due to inability to fulfil Eq. (2), the local optimiza-
tion gives an abnormally high cost. Such objects should be eliminated from a subsequent analysis because their 
quasi-spectra are unreliable. After excluding those dubious regions (which occupy only a very small part of the 
image, provided they are present at all), the rest of the image can be analysed in an ordinary way.

The obtained quasi-spectra should not be considered as object features but are rather imaging process fea-
tures. Due to the model-free nature of the method, the obtained classes reflect the observed data, not the internal 
structures of the objects. We think that the convenient bridge between the observed, phenomenological, spectra 
and the structure is machine learning, since it shows advantage of enormously good statistics ( 105–106 samples 
per image) and compensate influence of the complicated shape.

Conclusions
This novel method of extraction of quasi-spectra aims at a very challenging problem, which cannot be solved 
precisely even in theory: some information is irrecoverably lost. The method arises from very general assump-
tions on the measurement system. The method does not rely on any light-media interaction model or physi-
cal properties of the system, which makes this method quite universal. The obtained spectra are applicable in 
practice for visualization and automatic segmentation task. We intentionally did not consider questions of voxel 
spectrum, Z-stack spectral behaviour, and meaning of the compromised focus in order to keep the method and 
its application simple. We pose the described method as an ultimate information squeezing tool, which is a 
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nearly model-free way how to compress the colour and spatial information into representation of the physically 
relevant features. We believe that, in the future, the method will find its use in robust, mainly qualitative, (bio)
chemical analysis.

Microscopy data acquisition
Sample preparation.  A L929 (mouse fibroblast, Sigma-Aldrich, cat. No. 85011425) cell line was grown at 
low optical density overnight at 37 °C, 5% CO2 , and 90% RH. The nutrient solution consisted of DMEM (87.7%) 
with high glucose ( >1 g L−1 ), fetal bovine serum (10%), antibiotics and antimycotics (1%), L-glutamine (1%), 
and gentamicin (0.3%; all purchased from Biowest, Nuaillé, France).

Cells fixation was conducted in a tissue dish. The nutrient medium was sucked out and the cells were rinsed 
by PBS. Then, the cells were treated by glutaraldehyde (3%) for 5 min in order to fix cells in a gentle mode (with-
out any substantial modifications in cell morphology) followed by washing in phosphate buffer ( 0.2mol L−1 , 
pH 7.2) two times, always for 5 min. The cell fixation was finished by dewatering the sample in a concentration 
gradient of ethanol (50%, 60%, and 70%) when each concentration was in contact with the sample for 5 min.

The time-lapse part of the experiment was conducted with living cells of the same type.

Bright‑field wide‑field videoenhanced microscopy.  The cells were captured using a custom-made 
inverted high-resolved bright-field wide-field light microscope enabling observation of sub-microscopic objects 
(ICS FFPW, Nové Hrady, Czech Republic)1. The optical path starts by two Luminus CSM-360 light emitting 
diodes charged by the current up to 5000 mA (in the described experiments, the current was 4500 mA; accord-
ing to the LED producer, the forward voltage was 13.25 V which gave the power of 59.625 W) which illuminate 
the sample by series of light flashes (with the mode of light 0.2261 s–dark 0.0969 s) in a gentle mode and enable 
the videoenhancement29. The microscope optical system was further facilitated by infrared 775 nm short-pass 
and ultraviolet 450 nm long-pass filters (Edmund Optics). After passing through a sample, light reached an 
objective Nikon (in case of the live cells, CFI Plan Achromat 40× , N.A. 0.65, W.D. 0.56 mm; in case of the fixed 
cells, LWD 40× , Ph1 ADL, ∞/1.2 , N.A. 0.55, W.D. 2.1 mm). A Mitutoyo tubus lens ( 5× ) and a projective lens 
( 2× ) magnify and project the image on a JAI camera with a 12-bpc colour Kodak KAI-16000 digital camera chip 
of 4872× 3248 resolution (camera gain 0, offset 300, and exposure 293.6 ms). At this total magnification, the size 
of the object projected on the camera pixel is 36 nm. The process of capturing the primary signal was controlled 
by a custom-made control software. The z-scan was performed automatically by a programmable mechanics 
with the step size of 100 nm.

Microscopy image data correction and visualization.  The acquired image data were corrected by 
simultaneous calibration of the microscope optical path and camera chip as described in Suppl. Material 1. In 
this way, we obtained the most informative images on spectral properties of the observed cells.

For visualization, very bright pixels which correspond to light-focusing structures in the sample (mostly bub-
bles that act as micro-lenses) and violate the assumptions of the model of the proposed quasi-spectral method 
were detected (as 99% percentile of intensities) and treated as saturated. After their elimination, the rest of 
intensities was rescaled to the original range.

Data availability
The software for quasi-spectral characterization of images, the relevant Matlab codes, the software for image 
calibration, the U-Net segmentation package, and testing images are available in the supplementary materials 
at the Dryad Data Depository30.
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