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A Transfer Learning-Based Approach
for Lysine Propionylation Prediction

Ang Lit, Yingwei Deng*t, Yan Tan and Min Chen*

School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China

Lysine propionylation is a newly discovered posttranslational modification (PTM) and
plays a key role in the cellular process. Although proteomics techniques was capable
of detecting propionylation, large-scale detection was still challenging. To bridge this
gap, we presented a transfer learning-based method for computationally predicting
propionylation sites. The recurrent neural network-based deep learning model was
trained firstly by the malonylation and then fine-tuned by the propionylation. The trained
model served as feature extractor where protein sequences as input were translated
into numerical vectors. The support vector machine was used as the final classifier. The
proposed method reached a matthews correlation coefficient (MCC) of 0.6615 on the
10-fold crossvalidation and 0.3174 on the independent test, outperforming state-of-the-
art methods. The enrichment analysis indicated that the propionylation was associated
with these GO terms (GO:0016620, GO:0051287, GO:0003735, GO:0006096, and
G0:0005737) and with metabolism. We developed a user-friendly online tool for
predicting propoinylation sites which is available at http://47.113.117.61/.

Keywords: propionylation, malonylation, deep learning, transfer learning, recurrent neural network, long short
term memory, support machine vector

INTRODUCTION

No machine is more sophisticated than the cell. This is because there are too many sophisticated
mechanisms in the cell, including transcription, gene splicing, translation, and posttranslational
modification (PTM). All constituted the sophisticated life. As a key mechanism, PTM increases not
only diversities of protein structures and functions but also make regulation more sophisticated.
Many studies indicated that aberrant of PTM was always implicated in many human diseases
including cancer (Martin et al., 2011; Nakamura et al., 2015; Junqueira et al., 2019). Propionylation,
one of more than 400 types of PTM, was firstly discovered in histone in 2007 (Chen et al., 2007),
and later in nonhistone (Cheng et al., 2009). The propionylation was a dynamic process where
propionyl group was conjugated by some acetyltransferases to substrate proteins which was thus
propionylated and could be removed by Sirtl and Sirt2 (Chen et al., 2007; Leemhuis et al., 2008;
Zhang et al., 2008; Cheng et al., 2009). Although it was known that lysine propionylation played a
regulating role in the metabolism (Yang et al., 2019) and was a mark of active chromatin (Kebede
etal., 2017), many of its unknown functions were still not uncovered.
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Identifying propionylation sites was crucial to further explore
functions of propionylated proteins. The mass spectrometry has
been developed to detect propionylation sites in the past decades
and obtained vast achievements (Chen et al., 2007). However,
this technique was time consuming and labor intensive. Another
alternative was computational methods which learned a model
from the known data and then gave the predictions for unknown
data. The process was similar with learning of human. In the past
30 years, more than 100 computational methods or tools have
been developed for predicting PTM sites (Huang and Zeng, 2016;
Zhou et al,, 2016; Ai et al., 2017; Wei et al., 2017, 2019; Xiang
et al,, 2017; Chen et al., 2018; de Brevern et al., 2018; Ning et al,,
2018, 2019; Xie et al., 2018; Huang et al., 2019, 2020; Luo et al,,
2019; Malebary et al., 2019; Wang et al., 2019; Lv et al.,, 2020;
Qian et al., 2020; Thapa et al., 2020). For example, Malebary et al.
(2019) proposed a computational model for lysine crotonylation
prediction by integrating various position and composition
relative features along with statistical moments, and reached the
average accuracy of 0.9917 in the experimental dataset. Chen
et al. (2018) presented a computational tool named ProAcePred
to predict prokaryote lysine acetylation sites by extracting
sequence-based, physicochemical property and evolutionary
information features. Wei et al. (2017, 2019) used sequence-
based information to build computational models for predicting
phosphorylation sites and protein methylation sites, respectively.
Although propionylation was a newly discovered PTM, there
still were two computational methods developed to detect
propoinylation sites. One was that the biased support vector
machine (SVM) model (Ju and He, 2017) which incorporated
four different sequence features into Chou’s pseudo-amino acid
composition. Another was the PropSeek which was also a SVM
model and which exploited evolutionary information, sequenced-
derived information, predicted structural information, and
feature annotations (Wang et al., 2017). Advance in deep learning
techniques could accelerate development of propionylation
prediction. A well-known example was that the AlphaFold, a
deep-learning-based method, accurately determined a protein’s
3D shape from its amino-acid sequence (Callaway, 2020). The
detection of protein structure especially in more than two
dimensions was one of biology’s grandest challenges and to
date no better technique can solve this issue. In this paper,
we attempted to build a deep learning model to predict
propionylation sites. However, the accumulated propionylation
data was too small to better train deep learning model. Lysine
propionylation has in situ crosstalk with lysine malonylation.
Wang et al. (2017) statistically compared 1,471 propionylation
sites in 605 proteins with the dataset of 1,745 malonylation
sites in 595 proteins and found that 600 (40.8%) of 1,471
propionylation sites are overlapped with malonylation. What
is more, the number of malonylation was much more than
that of propionylation sites. Inspired by this, we proposed a
transfer learning method for predicting propionylation sites. We
firstly constructed a recurrent neural network (RNN)-based deep
learning model, which was trained by the malonylation data. The
model was then fine tuned by the propionylation data. The model
served as feature extractor. Finally, the SVM-based classifier was
trained to discriminate propionylation from nonpropionylation.

DATA

All lysine propionylation sites were both from the protein
lysine modifications database (PLMD) (Xu et al, 2017) and
Uniprot database (UniProt Consortium, 2018). The PLMD
was devoted to collect lysine modification, currently hosting
284,780 modification events in 53,501 proteins for 20 types
of lysine modification such as ubiquitination, methylation,
and sumoylation. The Uniprot was a comprehensive database
of protein sequence and function annotation. We firstly
downloaded 192 proteins containing 413 propionyllysine sites
from the PLMD http://plmd.biocuckoo.org/download.php. We
then retrieved 18 propionylation proteins from the Uniprot
database. After merging two dataset of proteins and removing
repeated proteins, we obtained 207 unique proteins. Functions of
protein including protein modification would rely more or less on
homology. To reduce or remove influences of homology on the
proposed method, we applied the sequence clustering software
CD-HIT (Li and Godzik, 2006) to perform sequence clustering.
The sequence identity was set to 0.7. Finally, we obtained 189
proteins as experimental data, of which sequence similarities
between any two was less than 0.7. We selected randomly 4/5 of
189 proteins (151) as positive training samples which containing
304 sites, the remaining (38) as positive testing ones containing
104 sites. Lysine sites largely outnumbered lysine propionylation
sites, so positive and negative samples were unbalanced, i.e.,
negative samples extremely outnumbered positive ones. The
unbalance between positive and negative samples would cause
the trained model to prefer to negative samples. Therefore, we
randomly selected sites of lysine which does not undergo PTM
from these proteins as negative samples at a ratio of positive to
negative 1:1. The training set consisted of 304 positive and 304
negative lysine sites, while the testing set of 104 positive and 104
negative lysine sites. All the positive and the negative sites are
listed in the Supplementary Material.

We also downloaded 3,429 malonylated proteins containing
9,584 malonylation sites. Similarly, we randomly chose the same
number of lysine sites as nonmalonylation sites, These lysine
sites did not undergo malonylation events as negative samples.
Therefore, the malonylation set contained 9,584 malonylation
sites and 9,584 nonmalonylation lysine sites.

MATERIALS AND METHODS

As shown in Figure 1, the proposed method consisted
of three main steps: feature encoding, training classifier,
and predicting propionylation, or eight modules: segmenting
sequences, constructing a deep RNN model, training the deep
RNN model, extracting features, constructing SVM model,
optimizing the window size and the super-parameters in the SVM
model, training the SVM model, and predicting propionylation
with trained SVM model. We used the malonylation dataset to
train the RNN model and then fine tuned the trained model by
the training set of propionylation data. Propionylation sequences
were inputted into the fine-tuned and trained deep RNN model
and the outputs in its last second layer were viewed as features of
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FIGURE 1 | The workflow of the proposed method.
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the propionylation sequences. The subsequent workflow was the
same as the common machine learning method.

Segmenting Sequences

As shown in Figure 2A, protein sequences were segmented
into peptides where lysine was the center and n residues were
located in its downstream and upstream, respectively. If the
number of residues in the downstream or the upstream was
less than n, the corresponding number of character X were
supplemented, as shown in Figure 2B. The peptides were a
window of residues in fixed size (2xn + 1). We obtained 816
peptides, and 9,584 + 9,584 = 19,168 peptides for propionylation
dataset and for malonylation dataset above, respectively.

Deep RNN Model

As shown in Figure 3, the deep RNN model was made up
of one embedding, two long short-term memory (LSTM), one
Gated Recurrent Unit (GRU), one dropout, one flatten, one fully
connected, and one output layer. The embedding layer translated
integer indices of amino acid characters into embedding vectors.
In general, the embedding layer was regarded as a bridge from
text to numerical vector in field of natural language process.
The LSTM (Hochreiter and Schmidhuber, 1997) was a RNN
(Pearlmutter, 1989; Giles et al., 1994). The RNN shared network
weights where output at current step not only depended on the
input at current step but also on output at previous steps. Due
to its effect and efficiency, the RNN has widely been applied
in the field of sequence analysis or time-series analysis. The
RNN could not remember information about previous inputs
which was away from the current input. The LSTM was one of
better solutions to it. The typical LSTM included three gates:
forget gate, input gate, and output gate. The forget gate was to
forget some past information selected, and the input gate was
to remember some current information. All three gates adopted

the sigmoid as the activation function, whose output ranged
from 0 to 1. The output was 0, meaning that no information
was passed and 1 meant all information was passed. The LSTM
also included a candidate memory cell which fused current and
past memories. The GRU was a variant of the LSTM. Compared
with the LSTM, the GRU included only two gates: reset gate
and update gate, dropping the candidate memory cell. The reset
gate was to determine which past information to be forgotten,
and the update gate to drop some past information and to add
some new information. The number of operations in the GRU
was less than that that in the LSTM, so the GRU was computed
faster than the LSTM. For the purpose of detecting bidirectional
semantic information, we used the bidirectional LSTM and the
bidirectional GRU.

Deep learning model would cause overfitting and be time
consuming. Hinton et al. (2012) proposed a dropout operation
as a solution to prevent neural networks from overfitting. The
dropout operation was to drop some neurons whose weights were
not updated during training at a certain rate of dropout, while
all the neurons were used during testing. Since the dropout was
created, it is becoming a more prevalent trick in the deep learning
models (Srivastava et al., 2014).

Flatten layer was a bridge between the LSTM layer and fully
connected layer, and its aim was only to transform the shape
of input so that it could be connected to the subsequent fully
connected layer. The fully connected layer corresponded to the
hidden layer in the multiple layer perception. The number of
neurons in the output layer was responsible for the number
of class labels.

Support Vector Machine

The SVM proposed by Vapnik et al. (Boser et al., 1992;
Cortes et al. 1995; Vapnik et al. 1998) is a statistical learning
algorithm. Due to mathematically theoretical foundation, the

Frontiers in Physiology | www.frontiersin.org

April 2021 | Volume 12 | Article 658633


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Lietal

Lysine Propionylation Prediction

peptide 2

A 0l\I/IADGGSERII{DGRI\/KIVETVDYSATVIIDQRLPECAII(LAKEGRL?EV[ETLLSLE

peptide 1

B e XXXI\/[RLAVKDYIRTQII‘S TNNIN TRPFQE]TNTERLRLI[{YIINX'XX‘T'

|

peptide 1

FIGURE 2 | lllustration of segmenting protein sequences. (A) is normal segment; (B) is segment when the number of residues is less than 8.
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SVM has been applied to a wide range of fields from handwritten
digit recognition (Matic et al, 1993), text categorization
(Joachims, 1999), face images detection (Osuna et al., 1997), to
protein/gene structure or function prediction (Caragea et al,
2007; Plewczynski et al., 2008; Li et al., 2009; Pugalenthi et al,,
2010; Li et al.,, 2011; Sun et al., 2015; Ning et al., 2018). Take,
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FIGURE 3 | The RNN-based deep learning model.

for example, a binary classification with the » training samples
{(xi,y)li =1,2,...,n} where y; € {1, —1}. The SVM aimed
to find a hyperplane f (x) = wx + b to separate samples with
positive label 1 from ones with label —1. That is to say, the
hyperplane made positive samples satisfy f (x) = wx+b > 0
and negative ones satisfy f(x) =wx+0b < 0. In fact, there
would be many hyperplane meeting the requirement above. The
SVM was to find such a hyperplane that maximizes the separating
margin. This question was modeled as minimizing the following
formulas:

1
Lw) = EwTW, (1)
subject to the constraints:
yilwxi+b) >1,i =1,2,3,...,n. (2)

In the real world, the training samples were not always completely
separable by any hyperplane. That is to say, there were some
samples which were separated as another category. To address
this issue, the SVM introduced the slack variables ¢&. The
objective function (1) was rewrote as

Lond) = wiw+CY G, )

i =1

where C was called penalty factor, a user-specified hyper-
parameter, while the constraint (2) was rewrote as

yilwxi+b) =1-¢, i =1231/4n & =0 (4
The objective function was composed of the structural risk
(the first term in Eq. 3) and empirical risk (the second term
in Eq. 3). The penalty factor controlled trade-off between two
risks. Another superiority of the SVM was that it absorbed
the kernel function. There existed a case that samples could
be not discriminable in the low-dimensional space, but they
became discriminable. The SVM firstly exploited the kernel
function to transform these undistinguishable samples from low-
dimensional into high-dimensional shape, and then found a high-
dimensional hyperplane to separate them, which was expressed
by

F(x) = wlf(x)+b (5)
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where ¢ (x) was a kernel function. There are more than
ten kernel functions such as linear kernel ¢ (xi,xj) = xl-ij,

polynomial kernel ¢ (x,-, xj) = (axiT X+ c)d, Gaussian Kernel
¢ (xi,xj) = exp (—%) , etc. The corresponding constraint
were updated as

yiwd(xi) +b) =1-¢, i

The SVM was soluble by the dual theory and the Lagrange
optimization algorithm. Readers can refer to the relevant
scientific references.

=192a33~--an3 61‘ ZO (6)

CROSSVALIDATION AND METRICS

In the case of regression or classification question, there are
generally four types of validations: hold-out validation, k-fold
crossvalidation, leave-one-out, and independent test. In the hold-
out validation, the training set was splitted into two parts: one for
training and another for validation. In the k-fold cross validation,
the training set was divided into k parts. Each part was tested by
the model trained over other k — 1 parts. Leave-one-out was an
extreme cross validation, where the number of samples is equal
to k. We used 10-fold cross validation and independent test to
examine the proposed method.

To quantitatively compare performance of methods, the
following metrics: sensitivity (SN), specificity (SP), accuracy
(ACC), and Matthews correlation coefficient (MCC), were used,
which were computed by

TP
N=——
TP + FN
TN
P=—
FP + TN
TP + TN
ACC =
TP + FN + FP + TN

TP x TN —FP xFN

MCC =
/(TP + EN) (TP + EP) (IN + EN)(IN + EP)

In the equations above, TP is the number of the true positive
samples, TN the number of the true negative samples, FN
the number of false-negative samples, and FP the number of
false-positive samples. SN, SP, and ACC ranges from 0 to 1,
0 meaning completely wrong and 1 completely correct. For
example, SN = 0 implied that all the positive samples were
predicted as negative ones. MCC ranges from —1 to 1, 1 meaning
perfect prediction, 0 random prediction, and —1 the prediction
completely opposite to the true.

The receiver operating characteristic (ROC) curve was used to
depict performance, which plotted true positive rate against false
positive rate under various thresholds. The area under the ROC
curve (AUC) was used to quantitively assess the performance.
The AUC ranged from 0 to 1, 0.5 meaning random guess and 1
perfect performance.

RESULTS

Parameter Optimization

The size of peptide window was generally set to one of
the interval [21, 41]. We conducted 10-fold crossvalidations
over the training set to search for better window size. The
performances under various window size were listed in Table 1.
The crossvalidation of window size 29 obtained the better
performance. Therefore, we set window size to 29 in the
subsequent experiments. We also optimized super parameters
in the SVM classifier, i.e., C, kernel, and gamma. We searched
combination space of C = [0.5, 1, 1.5, 2, 2.5, 3, 10, 100,
1,000], kernel = [“linear,” “poly,” “rbf”], and gamma = [“scale,”
“auto”]. Table 2 shows the best 15 combinations. The best

TABLE 1 | Performance of various window size in the 10-fold crossvalidation.

Size SN SP ACC MCC

21 0.6579 0.7862 0.7220 0.4478
23 0.7631 0.8421 0.8026 0.6072
25 0.7697 0.8553 0.8125 0.6273
27 0.7533 0.7763 0.7648 0.6297
29 0.8355 0.8158 0.8257 0.6514
31 0.7697 0.8059 0.7878 0.5760
33 0.7928 0.8553 0.8240 0.6493
35 0.7664 0.7796 0.7730 0.5461
37 0.7500 0.7697 0.7599 0.5198
39 0.7467 0.7336 0.7401 0.4803
41 0.7697 0.7434 0.7566 0.5133

Bold values mean the best in the column.

TABLE 2 | The best 15 combinations in the searching space.

C Gamma Kernel Average accuracy
1 Scale rbf 0.8389

1 Auto rbf 0.8389

0.5 Scale rbf 0.8356

0.5 Auto rbf 0.8356

1.5 Scale rbf 0.8307

1.5 Auto rbf 0.8307

2 Scale rbf 0.8258

2 Auto rbf 0.8241

2.5 Scale rbf 0.8143

2.5 Auto rbf 0.8143

3 Auto rbf 0.8093

3 Scale rbf 0.8093

0.5 Auto Sigmoid 0.7960

0.5 Scale Sigmoid 0.7960

1 Auto Sigmoid 0.7664
TABLE 3 | Performances of the PropPred method.

SN SP ACC MCC

10-fold 0.7928 0.7599 0.7763 0.5529
Independent 0.4904 0.6442 0.5673 0.1362
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FIGURE 4 | Receiver operating characteristic curves of (A) 10-fold cross validation and (B) independent test.

performance was SN = 0.8454, SP = 0.8158, ACC = 0.8306,
and MCC = 0.6615, slightly better than previous, and the
corresponding parameter was that C = 1, kernel = rbf, and
gamma = scale. The predictive performance in the testing set
was a SN of 0.6731, a SP 0.6442, an ACC of 0.6587, and
a MCC of 0.3174.

Comparison With Other Methods

To the best of my knowledge, there were two computational
methods for propionylation prediction. One was the PropPred
(Ju and He, 2017) and another was the PropSeek (Wang et al,,
2017). However, to date, these two webservers stopped work. The
performance of the PropPred with 250 optimal features and a
window size of 25 residues in the 10-fold crossvalidation was a SN
of 0.7003, a SP 0.7561, an ACC of 0.7502, and a MCC of 0.3085,
inferior to that of the proposed method. The performance of the
PropPred in the testing set was a SN of 0.6604, a SP of 0.7504,
an ACC of 0.7431, and a MCC of 0.2495, inferior to that of the
proposed method in terms of SN and MCC. It must be pointed
out that the training and the testing set used by two methods
were different. To perform fair comparison, we implemented the
PropProd with the 250 optimal features and a window size of
25 residues. Both performances of 10-fold crossvalidation on the
training set and of independent test on the testing set are listed
in Table 3. Obviously, the proposed method outperformed the
PropPred. We also compared the presented method with the
deep RNN model. The performance of the deep RNN model
over the testing set obtained a SN of 0.5962, a SP of 0.6731, an
ACC of 0.6346, and a MCC of 0.2700. The presented method
outperformed the deep RNN model.

Figure 4A shows performances of 10-fold crossvalidation for
the presented method and the PropPred. Although the AUC
of the presented method was inferior to that of the PropPred,

the best performance at the most up-left was better than that
of that of the PropPred. In the independent test (Figure 4B),
the presented method outperformed the PropPred and the
deep RNN method. Obviously, the presented method occupied
advantage of the deep learning and avoided artificial design of
feature extraction.

Functional Analysis

We used the DAVID web application (Huang da et al., 2009)
for functional analysis which included a comprehensive set of
functional annotation tools to uncover and understand biological
meaning behind studied genes. Firstly, we exploited the gene
functional classification tool in the DAVID to cluster 183 proteins
from Thermus thermophilus HB8. As shown in Table 4, only
29 proteins clustered into four similar function groups, while
other proteins showed no similarity of functions. The proteins
leucyl-tRNA synthetase (leuS) and the protein histidyl-tRNA
synthetase (hisS) appeared simultaneously in two groups. We
also used the function annotation tool in the DAVID perform
enrichment of GO and KEGG pathway. Because 183 of 207
proteins were from Thermus thermophilus HBS, genes of
Thermus thermophilus HB8 were used as background. Under the
condition of ease less than or equal to 0.01, the enriched GO terms
of molecular function were GO:0016620 (oxidoreductase activity,
acting on the aldehyde or oxo group of donors, NAD or NADP
as acceptor), GO:0051287 (NAD binding), and GO:0003735
(structural constituent of ribosome). The enriched GO terms
of biological process and cellular component was GO:0006096
(glycolytic process) and GO:0005737 (cytoplasm), respectively, as
shown in Table 5. The enriched pathways are listed in Table 6.
In the nine enriched pathways, four was related to metabolism,
and two to biosynthesis, implying involvement roles of the
propionylation in the metabolism. Some researchers reported

Frontiers in Physiology | www.frontiersin.org

April 2021 | Volume 12 | Article 658633


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles

Lietal

Lysine Propionylation Prediction

TABLE 4 | Function groups of proteins.

TABLE 6 | Significant KEGG pathways.

UNIPROT Gene name Enrichment score
_ACCESSION
Q5SIR5 Ribose-5-phosphate isomerase A 3.8325
(TTHA1299)
Q5SIC8 Fructose 1,6-bisphosphatase Il (glpX)
Q5SM35 Transketolase (TTHAO0108)
Q5SHF7 Fructose-1,6-bisphosphate aldolase
(TTHA1773)
Q58M37 Ribulose-phosphate 3-epimerase
(TTHAO106)
Q5SLJ4 Glucokinase (TTHA0299)
Q5SJM8 Hypothetical protein (TTHA0980)
P56194 Histidyl-tRNA synthetase (hisS) 3.2378
Q5SLY2 Leucyl-tRNA synthetase (leuS)
Q5SJX7 Seryl-tRNA synthetase (TTHA0875)
P56881 Threonyl-tRNA synthetase (thrS)
P56206 Glycyl-tRNA synthetase (TTHA0543)
P56690 Isoleucyl-tRNA synthetase (ileS) 2.5835
P23395 Methionyl-tRNA synthetase
(TTHA1298)
P56194 Histidyl-tRNA synthetase (hisS)
Q5SLY2 Leucyl-tRNA synthetase (leuS)
Q5SJ45 Valyl-tRNA synthetase (valS)
Q5SIHO Tyrosyl-tRNA synthetase (TTHA1399)
P80380 30S ribosomal protein S20 (rpsT) 1.8414
Q5SHQ2 30S ribosomal protein S8 (rpsH)
Q5SHP6 50S ribosomal protein L29 (TTHA1684)
Q5SHQ5 30S ribosomal protein S5 (rpsE)
Q5SLP7 508 ribosomal protein L1 (rplA)
Q5SHQO 50S ribosomal protein L5 (rplE)
P80377 30S ribosomal protein S13 (rpsM)
Q5SHN3 30S ribosomal protein S12 (rpsL)
P35871 508 ribosomal protein L33 (rpmG)
Q8VVE2 508 ribosomal protein L7/L12 (rplL)
Q5SLY1 308 ribosomal protein S1 (rpsA)
P17291 30S ribosomal protein S7 (TTHA1696)
Q9Z9H5 508 ribosomal protein L17 (rplQ)
Bold values mean repeat.
TABLE 5 | Significantly enriched GO terms.
Category Term Count P value
GOTERM_CC_DIRECT  GO:0005737 cytoplasm 38  1.07E-05
GOTERM_MF_DIRECT  GO:0016620 oxidoreductase 5 1.91E-03

activity, acting on the aldehyde or
oxo group of donors, NAD or NADP
as acceptor

GOTERM_BP_DIRECT  GO:0006096 glycolytic process 6 3.07E-03
GOTERM_MF_DIRECT  G0:0051287 NAD binding 3.09E-03
GOTERM_MF_DIRECT  GO:0003735 structural constituent 13  9.83E-03

of ribosome

that lysine propionylation was involved in metabolism (Okanishi
etal., 2014, 2017; Yang et al., 2019).

Term Count P value
1j01200:Carbon metabolism 35 2.18E-09
ttj01120:Microbial metabolism in 44 1.49E-07
diverse environments

1j01130:Biosynthesis of antibiotics 43 4.16E-06
ttj00010:Glycolysis/gluconeogenesis 15 3.92E-05
j00020:Citrate cycle (TCA cycle) 12 1.52E-04
1j00620:Pyruvate metabolism 14 5.84E-04
ttj00710:Carbon fixation in 8 5.95E-04
photosynthetic organisms

1j01110:Biosynthesis of secondary 50 7.43E-04
metabolites

tj01100:Metabolic pathways 85 8.13E-04
CONCLUSION

We presented a transfer learning-based method and an online
webserver' for computationally predicting propionylation. The
method took advantage of crosstalk between propionylation
and malonylation. The advantage of the method was to avoid
artificially designing features. Statistical enrichment analysis
implied that propoinylation was associated with metabolism.
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