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Abstract: Since their inception, biosensors have frequently employed simple regression models to
calculate analyte composition based on the biosensor’s signal magnitude. Traditionally, bioreceptors
provide excellent sensitivity and specificity to the biosensor. Increasingly, however, bioreceptor-free
biosensors have been developed for a wide range of applications. Without a bioreceptor, maintaining
strong specificity and a low limit of detection have become the major challenge. Machine learning
(ML) has been introduced to improve the performance of these biosensors, effectively replacing the
bioreceptor with modeling to gain specificity. Here, we present how ML has been used to enhance
the performance of these bioreceptor-free biosensors. Particularly, we discuss how ML has been
used for imaging, Enose and Etongue, and surface-enhanced Raman spectroscopy (SERS) biosensors.
Notably, principal component analysis (PCA) combined with support vector machine (SVM) and
various artificial neural network (ANN) algorithms have shown outstanding performance in a
variety of tasks. We anticipate that ML will continue to improve the performance of bioreceptor-free
biosensors, especially with the prospects of sharing trained models and cloud computing for mobile
computation. To facilitate this, the biosensing community would benefit from increased contributions
to open-access data repositories for biosensor data.

Keywords: label-free biosensor; machine learning; support vector machine; artificial neural network;
principal component analysis

1. Introduction

The field of biosensing has exploded into nearly all areas of research, from medical
applications [1] to environmental monitoring [2]. Some of the greatest appeals of biosensors
are their specificity and sensitivity. These properties are primarily due to bioreceptors,
which are selected for their inherent specificities such as enzymes [3], antibodies [4], and
aptamers [5]. However, the very aspect that makes biosensors so specific and sensitive can
also limit the sensor stability due to the degradation of the bioreceptor [6]. Additionally, as
the bioreceptor is specific to an individual analyte, the particular sensor’s scope is limited
to the specific analyte to which the bioreceptor can bind.

To obviate these issues, many nature-inspired sensors have emerged that are bioreceptor-
free. Some of the most notable examples that have made great progress include the electronic
nose (Enose) [7–11] and electronic tongue (Etongue) [12–16]. Additionally, surface enhanced
Raman spectroscopy (SERS)-based sensors have demonstrated incredible chemosensing
ability [17–21]. Without a bioreceptor, however, there is the risk of significantly com-
promised biosensor performance including the limit of detection (LOD) and specificity.
Researchers have introduced machine learning (ML) to bioreceptor-free biosensors to
bridge this trade-off gap, improving the LOD and specificity [22]. In a sense, ML can be
used to take the place of a bioreceptor by reintroducing specificity during data analysis.
This is made possible by powerful ML techniques capable of detecting subtle patterns in
sensor responses.
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While this approach has demonstrated success, there are still several challenges that
these systems must overcome. A major challenge being faced is model generalizability.
Since many models rely on subtle patterns in the data, they can be quite sensitive to
underlying data changes. This can make the models susceptible to error when faced with
sensor drift or replacing parts of the system [14].

Since the scope of this review is quite large and covers all bioreceptor-free biosensors
that utilize ML, there are a few points to clarify. Many subsets of our scope have received
thorough attention and review. For instance, the use of ML for Enose and Etongue [23–27]
and SERS-based biosensors [28] have previously been described. Since the literature is rich
in these areas, we realize that all recent original research cannot be adequately covered here.
Rather, our intent is to provide a unified discussion of the relevant methods and challenges
to give a bigger picture. We also would like to acknowledge that there is a complementary
review in the literature discussing the use of ML in biosensing in general [29], but not for
biosensors that are bioreceptor-free.

In this review, we will give the current state of using ML to enhance the performance
of bioreceptor-free biosensors. Section 2 briefly introduces the types of biosensors that
have most benefited from ML. Section 3 provides some background on machine learning
algorithms and how their performance can be assessed. Section 4 covers electrochemical
biosensors, with particular emphasis on Enose and Etongue. Successful methods are
discussed as well as some of the challenges and how they are being addressed with ML.
Section 5 discusses optical biosensors, notable for imaging- and SERS-based biosensors.
Additional considerations and future perspectives are discussed in Section 6 including
what currently prevents many of these systems from being commercialized and what
directions may be taken. We also present some considerations on best practices for ML in
biosensing, especially regarding communication of methods and reproducibility.

2. How Biosensors Can Benefit from Machine Learning

Biosensors in the classic definition are sensors that utilize a bioreceptor such as anti-
body, enzyme, peptide, nucleic acid, etc. A bioreceptor binds to a target biological molecule
and generates a signal when coupled with a transducer. Biosensors have evolved to a wide
range of transducer types including electrochemical, optical, and spectroscopic biosensors.
Traditionally, it is the bioreceptor that provides specificity and sensitivity to the biosensor.
Increasingly, however, researchers are developing biosensors that lack a specific bioreceptor.
A typical example is a semi-specific chemical sensor array, termed Enose (from gas), or
Etongue (in solution). Since such a sensor’s specificity is not provided by the bioreceptor,
a fingerprinting technique is used to recognize signal patterns indicative of a particular
analyte. Frequently, machine learning techniques are employed to detect these patterns
and provide specificity.

The use of machine learning to enhance the performance (e.g., specificity, sensitivity,
and LOD) of bioreceptor-free biosensors is not limited to chemical sensor arrays. It has
been employed in various biosensor mechanisms. Some of the most famous examples
aside from Enose and Etongue are imaging-based biosensors and SERS-based biosensors.
Additionally, the use of machine learning for biosensors is not limited to those that lack
bioreceptors. Cui et al. [29] cover several examples of traditional biosensors employing
machine learning to enhance performance.

Table 1 provides an overview of the tasks for which machine learning has been
applied, the specific algorithms used, and the relevant papers. More information on the
algorithms themselves can be found in Section 3. Additionally, Table 2 gives a comparison
of each of the major biosensing mechanisms including data type and appropriate feature
engineering and ML methods. All information in Table 2 comes from Table 1 and serves as
a higher-level summary.
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Table 1. Machine learning tasks and algorithms used in biosensing.

Biosensing Mechanism Task Target Algorithm Ref.

ELECTROCHEMICAL

CV Regression Maleic hydrazide ANN [30]

CV Classification Industrial chemicals LSTM, CNN [31]

Enose

Feature extraction

Harmful gases

PCA

[32]Classification DT, RF, SVM

Regression SVR

Enose Regression Formaldehyde BPNN [33]

Enose
Classification Chinese wines BPNN [34]

Target task change Chinese liquors Transfer learning

Enose Sensor drift compensation for
classification

Gases

JDA [35]

DTBLS [36]

TrLightGBM [37]

ELM [38]

Enose Sensor drift compensation &
noise reduction Bacteria ELM [39]

EIS Classification Breast tissue ELM + SVM [40]

EIS Classification Milk adulteration k-NN [41]

EIS Classification Breast tissue RBFN [42]

EIS
Feature extraction

Avocado ripeness
PCA

[43]
Classification SVM

EIS & EIT Classification Prostatic tissue SVM [44]

Etongue
Taste classification

Tea storage time
CNN

[45]
Increase generalizability Transfer learning

Etongue
Feature Extraction

Beverages
t-SNE

[46]
Classification k-NN

Etongue Classification Cava wine age LDA [47]

Etongue Regression Black tea theaflavin Si-CARS-PLS [48]

OPTICAL

Colorimetric Classification Plant disease VOCs (blight) PCA [49]

Diff. contrast microscopy Digital staining &
domain adaptation Leukocytes GAN [50]

Fluorescence
imaging Classification Microglia ANN [51]

FTIR imaging Digital staining H&E stain Deep CNN [52]

Lens-free
imaging

Image reconstruction
Blood & tissue

CNN
[53,54]

Herpes [55]

Lens-free
imaging

Image reconstruction &
classification Bioaerosol CNN [56]

Multi-modal multi-photon
microscopy

Digital staining &
modal mapping Liver tissue DNN [57]

Multispectral imaging Classification Pollen species CNN [58]

Quantitative phase imaging Digital staining Skin, kidney & liver tissue GAN [59]

Raman
spectroscopy

Feature extraction Thyroid dysfunction
biomarker

PCA
[60]

Classification SVM
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Table 1. Cont.

Biosensing Mechanism Task Target Algorithm Ref.

TLC-SERS
Feature extraction

Histamine
PCA

[61]
Quantification SVR

SERS
Exploratory analysis Malachite green & crystal

violet

PCA
[37,62]

Quantification PLSR

SERS Quantification Methotrexate PLSR [63]

SERS

Classification
Oil vs lysate spectra
Leukemia cell lysate

k-means clustering

[64]Dimension reduction PCA

Classification SVM

SERS
Dimension reduction

Levofloxacin
PCA

[38,65]
Regression PLSR

SERS Quantification Potassium sorbate & sodium
benzoate PLSR [66]

SERS Dimension reduction &
regression Congo red PCR [39,67]

SERS
Dimension reduction

Mycobacteria
PCA

[40,68]
Classification LDA

SERS Quantification Biofilm formation PLSR [41,69]

SERS
Feature extraction Non-structural

protein 1

PCA
[70,71]

Classification BPNN, ELM

SERS
Exploratory analysis

Pollen species
PCA, HCA

[72]
Classification ANN

SERS
Feature extraction

Human serum
KPCA

[73]
Classification SVM

Note. CV = cyclic voltammetry; ANN = artificial neural network; LSTM = Long short-term memory; PCA = principal component analysis;
DT = decision tree; RF = random forest; SVM = support vector machine; SVR = support vector regression; BPNN = back-propagation
neural network; JDA = joint distribution adaptation; DTBLS = domain transfer broad learning system; GBM = gradient boost machine;
ELM = extreme learning machine; EIS = electrical impedance spectroscopy; EIT = electrical impedance tomography; k-NN = k-nearest
neighbor; RBFN = radial basis function network; CNN = convolutional neural network; t-SNE = t-distributed stochastic neighbor
embedding; Si-CARS-PLS = synergy interval partial least square with competitive adaptive reweighted sampling; FTIR = Fourier transform
infrared; VOC = volatile organic compound; GAN = generative adversarial network; DNN = deep neural network; TLC = thin layer
chromatography; SERS = surface enhance Raman spectroscopy; PLSR = partial least squares regression; PCR = principal component
regression; LDA = linear discriminant analysis; HCA = hierarchical cluster analysis; KPCA = kernel principal component analysis.

Table 2. Summary of data types and useful ML methods for biosensing mechanisms.

Biosensing
Mechanism Description of Data Feature

Extraction ML Model

CV Cyclic voltammogram ANN, LSTM, CNN
EIS Nyquist plot PCA k-NN, ELM, SVM, RBFN

Enose Multivariate PCA DT, RF, ELM, SVM, BPNN
Etongue Multivariate PCA, t-SNE LDA, k-NN, CNN, PLS

Lens-free imaging Image CNN
Digital staining Image Deep learning, GAN

SERS Spectrum PCA, KPCA PLSR, LDA, SVM, SVR, BPNN, ELM

3. A Brief Tour of Machine Learning

In simple terms, machine learning aims to learn patterns in data to make predictions
on new data. Generally, this prediction is either categorical classification (into one of a set
of classes) or regression (continuous numerical output). In machine learning terms, the
data used for prediction (i.e., biosensor data) are termed features or predictors. The set
of features associated with one “observation” (e.g., biosensor data from one sample) is
termed the feature vector.
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3.1. Feature Engineering

Frequently, the predictor variables (feature vector) are not the raw biosensor data.
One of the most challenging parts of using machine learning is the construction of the
feature vector from the raw data. This process is termed feature engineering and mostly
entails finding the relevant information from the data to aid the machine learning algo-
rithm’s performance. Common feature engineering steps include denoising, normalization,
and rescaling.

One of the most powerful feature engineering processes is dimension reduction. This
reduces a large number of features to a smaller number of features while minimizing
information loss. Perhaps the most common method of dimension reduction is principal
component analysis (PCA) [74], which reduces the original set of variables to a smaller set
of independent variables termed principal components (PCs). The effectiveness of PCA to
represent the data can be assessed by the amount of variance in the data explained by the
PCs. Since PCA determines the PCs based on the eigenvectors’ directions in the feature
space, data must first be centered and rescaled to avoid bias toward those variables with a
larger magnitude. Another common dimension reduction algorithm is linear discriminant
analysis (LDA), which also produces a smaller number of variables but is supervised and
optimally maximizes class separation [75]. Other more complex dimension reduction
methods exist including artificial neural networks (ANN), as discussed in Section 3.3. ANN
is typically used as a supervised machine learning method, while it has occasionally also
been used for dimension reduction.

3.2. Unsupervised vs. Supervised

The two broad categories of machine learning algorithms are unsupervised and
supervised [76]. In unsupervised methods, data labels are not provided during model
training, while in supervised methods, they are. An example of an unsupervised algorithm
is cluster analysis, used to group similar data. Unsupervised methods are less common in
biosensing since we generally know what kind of prediction(s) we would like the model
to make. A notable exception is PCA, as mentioned in Section 3.1. While PCA may be
considered an unsupervised machine learning method, its use has recently been limited to
dimension reduction (one of feature engineering processes) prior to supervised machine
learning analyses.

3.3. Classification Algorithms

Among the supervised methods, classification algorithms are some of the most well-
known. Classification gives prediction in the form of a class label (e.g., which bacteria
species is present), thus, the output is inherently categorical. Briefly, some of the most
common classification algorithms are presented in the following.

k-nearest neighbors (k-NN): One of the simplest classification algorithms, k-NN is a
distance-based classifier. Class is predicted as the most common class of the k-nearest
neighbors in the feature space [77]. In the example shown in Figure 1, the feature space is
two dimensional (with variables x1 and x2) and the value of k is 4. In k-NN, the number of
neighbors used for assignment, k, is a hyperparameter (i.e., a model parameter that is not
optimized during the training process itself). As with most ML models, hyperparameter
selection may strongly influence performance [78].

Support vector machine (SVM) is a non-probabilistic, binary, linear classifier [79]. SVM
relies on the construction of hyper-plane boundaries in the feature space to separate
data of different classes. Although SVM itself only accounts for linear separation of
classes (i.e., hyper-plane boundaries must be “flat”), the data may be mapped to a higher-
dimensional feature-space using the “kernel trick” [80]. Some of the most common kernels
are radial basis function and Gaussian. When the hyperplane boundaries are projected back
into the original feature space, they allow for non-linear boundaries, as shown in Figure 1.
Additionally, there are methods allowing SVM to be used for multi-class prediction [81].
The placement of hyperplanes is determined by minimizing the distance between the
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hyperplane and several of the points closest to the boundary between classes. SVM’s
robustness against outliers is improved by a soft margin. This allows for a certain quantity
of misclassifications, which are presumably outliers, to improve the separation of the
other observations [82]. While SVM shows resilience against outliers and performs well in
high-dimension feature spaces, it is prone to over-fitting, especially when using non-linear
kernels [83]. Overfitting is when the model performs well on training data but performs
poorly when generalized to unseen data.
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Figure 1. Comparison of classification technique using k-NN and SVM. In k-NN, four nearest
neighbors are shown contributing to the gray point’s assignment. Classification of the gray point
is the blue star class. In hypothetical SVM with nonlinear kernel, new data are classified in which
region the point lies. In both examples, the feature space consists of two dimensions. Classification
could be, for example, bacterial species like E. coli, Salmonella spp., Pseudomonas spp., Staphylococcus
spp., Enterococcus spp., etc. In practical applications, the feature space has many more dimensions,
where decision boundaries for SVM are hyperplanes in the (n−1) dimension for an n-dimensional
feature vector.

Linear discriminant analysis (LDA): In addition to dimension reduction, LDA can be
used for classification. Other related algorithms allow for non-linear classification such as
quadratic discriminant analysis (QDA) [84]. One of the limitations of LDA and its relatives
is that they assume the data are normally distributed.

Decision tree (DT) and random forest (RF): In tree-based models such as decision tree
(DT), the feature vector starts at the tree’s “trunk,” and at each branching point a decision
is made based on the learned decision rules. The end classification would then be at the
terminal or “leaf” node that the instance results. DTs can be used for classification and
regression [85]. When the target variable is categorical, it is referred to as a classification
tree; when the target variable is numerical and continuous, it is referred to as a regression
tree [86]. Random forest (RF) is so called because it can be considered a forest of decision
trees (Figure 2) [87]. There are many RF architectures, but in all instances, the classification
from each decision tree contributes to the overall classification for an observation.

Artificial neural network (ANN) draws inspiration from biological neural networks
(i.e., neurons in the brain) and is composed of a collection of connected nodes called
artificial neurons (see Figure 3). ANNs can be used for classification and regression. As
mentioned earlier, ANN can be used for dimension reduction prior to supervised machine
learning. There are a large variety of ANN structures such as (1) recurrent neural network
(RNN) [88], (2) extreme learning machine (ELM) [89], and (3) deep learning algorithms
such as the convolutional neural network (CNN) [90], deep belief network [91], and
back-propagation neural network (BPNN) [92]. “Deep” indicates several hidden layers.
ANN architectures have many hyperparameters such as the number of hidden layers,
connectedness, and activation functions [93].
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One of the aspects that makes ANN so powerful is that features do not need to be
well-defined real numbers. This allows them to excel at working with data such as images
for which extracting numerical features would be difficult and inefficient. One limitation
of ANNs is that they require a large amount of data for effective training. In some settings,
training data sparsity can be mitigated through a generative adversarial network (GAN)
using back propagation [94].

Common classification model performance metrics are accuracy, precision, sensitivity
(also known as recall), specificity, and F1. For binary classification with labels “positive”
and “negative”, they are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(1)

precision =
TP

TP + FP
(2)

sensitivity =
TP

TP + FN
(3)



Sensors 2021, 21, 5519 8 of 27

speci f icity =
TN

TN + FP
(4)

F1 =
2 × precision × sensitivity

precision + sensitivity
(5)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

3.4. Regression Algorithms

In contrast to classification, the prediction made by a regression algorithm is a numeric
value from a continuous scale (e.g., glucose concentration in blood). A simple regression
example fits a linear model of the form y = mx + b, where a model is built for the prediction
of the output variable y based on the input variable x, and the coefficients m and b are
“learned” from the data. The learning is typically done by the least-squares regression
approach, minimizing the sum of the squared residuals. The following are some of the
most common regression algorithms.

Multilinear regression (MLR) is a simple regression model, which expands the above
linear model example, accounting for multiple input variables. This model shows how
it can be difficult to determine when an algorithm becomes sophisticated enough to be
considered “machine learning”.

Support vector regression (SVR) is an adaptation of SVM used for regression problems.
Like SVM, SVR can utilize kernels to allow for non-linear regression. An advantage of SVR
over traditional regression is that one need not assume a model that might not be accurate.
For instance, with linear regression, there is an assumption that the data distribution is
linear. SVR does not require such pre-determined assumptions [95].

Regression tree is an adaptation of DT for regression. Regression tree has the advantage
that it is non-parametric, implying that no assumptions are made about the underlying
distribution of values of the predictors [86].

Artificial neural network (ANN) is also widely used for regression problems, and many
varieties exist, some of which were mentioned previously.

A large variety of metrics exist for regression model performance. Since there are
too many to define here, for further reading, we suggest the study by Hoffman et al. [96]
to learn more. Some of the most common metrics are briefly presented here. Root mean
squared error (RMSE) and mean absolute error (MAE) have the benefit that their units are
the same as the output (predicted) variables, but this makes the metrics less universally
understandable. Normalized root mean squared error (NRMSE) partially resolves that.
Coefficient of determination, R2, on the other hand, is unitless and R2 ≤ 1, where a value
near 1 is generally considered good performance (although this is a bit oversimplified).

3.5. Model Performance Assessment

Frequently, researchers will try various models and compare their performance. The
value of the performance metrics listed above can be treated as random variables and sta-
tistical analyses can be used to test hypotheses regarding which model is better [96]. While
this sounds simple, it can be nuanced: for instance, when working with a classification
model, which metric is most important for your application? In some cases, specificity may
be more important than accuracy, for instance. Additionally, when using statistical tests to
compare model performances, certain assumptions are made, and their validity should be
assessed such as when using NRMSE, as it is assumed that noise affecting the output is
random and normally distributed.

The best practice for model selection, tuning, and performance assessment is to split
the data into 3 sets: training, testing, and validation. For example, if the database consists of
1000 observations, 100 (10%) are assigned to the validation set and the remaining 900 (90%)
are split between the training and test sets as 810 (90%) for training, 90 (10%) for testing.
The model is then trained on the labeled training set. Model selection and hyperparameter
tuning is conducted based on model performance when challenged using the test set.
In addition to train–test splitting, cross-fold validation can be used on the training set
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when tuning hyperparameters or comparing models [97]. Train–test splitting and cross-
validation are most important when you intend to generalize the model to predict new,
unseen data [96]. Final model performance validation is conducted on the validation
set, which should not be used until all model selection and hyperparameter tuning have
been completed.

4. Electrochemical Bioreceptor-Free Biosensors

Since their inception, electrochemical biosensors have become extremely popular. In
traditional electrochemical biosensors, the bioreceptor interacts with the target to generate
a signal at the electrical interface. A widespread scheme is an enzyme (e.g., glucose dehy-
drogenase or glucose oxidase) interacting directly with the target analyte (e.g., glucose),
catalyzing a redox reaction that generates a signal at the electrical interface [98]. Electrical
interfaces include metal electrodes, nanoparticles, nanowires, and field-effect transistors
(FET) [99].

It is also possible to eliminate the biorecognition element (=bioreceptor, e.g., an en-
zyme) in electrochemical biosensors. Voltametric sensors described in Section 4.1 can
detect biomolecules based on direct interaction with the electrical interface [30]. Electrical
impedance spectroscopic biosensors can also detect subtle differences in a solution or mate-
rial’s electrical impedance, as discussed in Section 4.2. Alternatively, we can use an array
of chemical or physical sensors varying the electrical interface to create multi-dimensional
data. Machine learning-based pattern recognition is used to identify the target analyte.
Two of the most common sensor arrays are termed Enose and Etongue, which are covered
in Section 4.3.

4.1. Cyclic Voltammetry (CV)

Voltammetry sensors apply electric potential to a “working” electrode and measure
the current response, which is affected by analyte oxidation or reduction [100]. Cyclic
voltammetry (CV) is a specific voltammetry technique in which the potential is swept
across a range of values, and current response is recorded. These CV curves (cyclic
voltammograms) can serve as a fingerprint of the sensor response. A typical CV curve is
shown in Figure 4A.
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CV biosensors often employ bioreceptors to provide specificity in the interaction be-
tween target analyte and electrode surface. However, there has also been research on utiliz-
ing more complex electrode surface structures and modifications to allow for semi-specific
interaction with the target analyte without the need of a bioreceptor. Sheng et al. [30]
describe a compound electrode utilizing Cu/PEDOT-4-COOH particles for CV detection of
the phytoinhibitor maleic hydrazide. They found that several regression models had poor
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performance for modeling the sensor current response with respect to target concentration.
However, they employed an ANN with great success for the same regression task. The
result is that their detection range is broader than comparable methods by an order of
magnitude at each extreme (detection range = 0.06–1000 µM and LOD = 0.01 µM).

4.2. Electrical Impedance Spectroscopy (EIS)

Electrical or electrochemical impedance spectroscopy (EIS) is an analytical technique
that provides a fingerprint of the electrical properties of a material. EIS is performed by
applying a sinusoidal electric potential to a test sample and recording the impedance (both
resistance and reactance expressed in a complex number) over a range of frequencies [101].
Frequently, an equivalent circuit model is fitted to EIS data to provide a fingerprint of
the material properties [101]. Figure 5 shows an equivalent circuit diagram for EIS being
performed on a single cell suspension. An example EIS spectrum is shown in Figure 4B. It
is the classification and regression on such fingerprints that machine learning tends to be
well suited.
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A simple example of this is the use of k-NN on EIS data for the detection of adulteration
in milk [41]. In this work, the feature space was composed of resistance at a certain
temperature and pH. They demonstrated good accuracy of 94.9%. However, the data
were highly imbalanced, and in the example classification plot [41], one of the three
unadulterated samples were misclassified, a 66% specificity.

More robust classification has been performed using SVM. One example is for the
assessment of avocado ripeness [43]. This work describes using PCA for feature extraction,
resulting in two PCs that explain >99.3% of the variance. SVM is then used for classification
based on the first two PCs. SVM for EIS was also described by Murphy et al. [44] for
classification of malignant and benign prostatic tissue. However, instead of using PCA for
feature extraction, equivalent electrical circuit model parameters were used as predictors.
The feature vector size was 2160, consisting of four electrical features for each of eleven
frequencies across multiple electrode configurations. Classification was also performed
on electrical impedance tomography (EIT) data from the same samples using SVM. Both
showed good classification performance, though the authors mention that EIT may be
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preferable since the measurements are not dependent on probe electrical properties, and
thus can be compared more easily to other studies.

While SVM is renowned for its tolerance of outliers, this is a trade-off in that data
points not near the boundary between classes do not contribute to defining class attributes.
However, ANNs preserve more of this information for prediction. When the number of
observations or predictors are small, this can lead to overfitting. However, with suffi-
cient data size, ANNs can preserve predictive information and be robust against outliers
and overfitting. These attributes have been utilized for EIS based classification of breast
tissue [40,42]. Both works use the same publicly available dataset of EIS measurements
from freshly excised breast tissue [103], made available on the University of California,
Irvine (UCI) Machine Learning Repository [104]. The dataset contains nine spectral fea-
tures from EIS. Daliri [40] describes using three ELMs, each with different numbers of
nodes, and feeding the output of the three ELMs (extreme learning machines) into SVM
for classification. This method showed improved performance over previous methods for
the same dataset such as LDA [105]. Helwan et al. [42] compared both BPNN and radial
basis function network (RBFN) for the same task. Both methods showed an improvement
over ELM-SVM as described by Daliri [40], with RBFN performing better than the BPNN
including improved generalizability (i.e., classification performance on new data).

It is seen that in the case of EIS classification, node-based models have shown im-
proved performance over other models. This can be seen most clearly when comparing
classification accuracy for those methods that utilized the same dataset. The RBFN and
BPNN had the highest classification accuracy, with 93.39% and 94.33%, respectively [42].
The next best performance was achieved by the ELM-SVM, achieving 88.95% accuracy [40].
These results show marked performance increase over LDA [105]. Model performance is
greatest in those models that do not utilize distance for classification (i.e., SVM and LDA).
While distance-based classifiers are robust to outliers, in these EIS datasets, performance
benefitted by node-based classification.

4.3. Enose and Etongue

Enose and Etongue are named in analogy to their respective animal organs. Both
sensor types rely on an array of semi-specific sensors, each of which interacts to a different
degree with a wide range of analytes. Figure 6 shows a comparison between Enose and
Etongue alongside the analogy to their respective biological systems [27,106]. The sensor
arrays can be composed of any variety of sensors. The following chemical gas sensors
have been used in Enose systems: metal oxide (MOX) gas sensor, surface or bulk acoustic
wave (SAW and BAW) sensors, piezoelectric sensor, metal oxide semiconductor field-effect
transistor (MOSFET) sensor, and conducting polymer (CP) based sensor [107]. Similarly, a
variety of sensors can be employed in Etongue systems such as ion-selective field-effect
transistor (ISFET) and light-addressable potentiometric sensor (LAPS) [108].

Analyte presence, or a more general attribute such as odor or taste, is detected through
pattern recognition of the sensor array response. For pattern recognition on this naturally
high-dimensional data, machine learning techniques are an obvious choice. Scott et al.
provided a relevant and succinct paper on data analysis for Enose systems [23]. As
discussed in Section 3 of this review, feature engineering is critical in any machine learning
pipeline. Yan et al. [24] provide a review article on the feature extraction methods for Enose
data. For non-linear feature extraction of Etongue data, Leon-Medina et al. [46] give a great
comparison of seven manifold learning methods.

A vast number of papers exist detailing such systems and their use of machine learning.
As such, it would be infeasible to cover all of them adequately. For this review, a higher-level
analysis is presented by looking at the conclusions reached in the review papers covering
this topic as well as a few notable examples of specific papers. Of particular interest is
which algorithms had the most success with Enose and Etongue sensors or applications.

A common task of Enose is the prediction of “scent”, which is a classification problem.
Before the application of the classification algorithm, it is common to perform dimension
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reduction. PCA is the most common choice for this task, although independent component
analysis (ICA, a generalization of PCA) has shown success [25]. PCA has been shown
to improve the performance over classification algorithms alone for the piezoelectric
Enose [25]. The two classifiers most commonly in use are SVM [109,110] and various ANN
methods [25,111]. In addition to classification problems, Enose may be used for analyte
concentration prediction. One example is the use of MOS (metal oxide semiconductor)
gas sensors for formaldehyde concentration assessment. In this case, the back-propagated
neural network (BPNN) outperformed radial basis function network (RBFN) and SVR [33].
In another instance, with the single nickel oxide (NiO) gas sensor, PCA with SVR was
utilized for harmful gas classification and quantification [32]. In cases where the amount
of data are not large, SVM may be advantageous over node-based models (ANNs) for its
resilience against outliers and overfitting.
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While Enose and Etongue systems have shown great promise for non-destructive
analytical devices, there are challenges that have limited their use in commercial settings.
Several challenges involve changes in the sensor data, which affect the performance of the
trained model. A common phenomenon is when the sensor array response changes over
time or upon prolonged expose under identical conditions. Such change in sensor response
is referred to as sensor drift and can greatly affect the trained models’ performance [14].
Another way in which the sensor response may change is if a sensor in the array becomes
defective and must be replaced, as it is difficult to replace it with one that responds
identically, largely due to variability in manufacturing [112,113]. For both challenges, time
consuming and computationally expensive recalibration may be necessary.

The issue of needing retraining due to underlying data distribution changes is com-
monly addressed through transfer learning in many machine learning settings. Transfer
learning is a computational method for minimizing the need for retraining when either the
data distributions change (e.g., sensor array response to an analyte) or the task changes
(e.g., new classes of analytes are being detected).

Transfer learning has been extensively employed to counter Enose sensor drift and
reduce the need for complete retraining [35–38]. It has also been used to reduce the
deleterious effect of background interference [39,114]. Although several of the above
papers [35,36,38,39] demonstrate the efficacy of their approach on a shared sensor drift
dataset shown in Figure 7 [115], ranking of the methods is difficult due to inconsistent
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benchmarking metrics. As mentioned previously, the data distribution may also change
due to replacing a sensor with a new sensor, or when attempting to apply a trained model
to a theoretically identical array with differences due to manufacturing variability. Transfer
learning, specifically using ANN, has demonstrated decent recalibration [116].
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One instance of utilizing transfer learning for target task change was demonstrated by
Yang et al. by training an Enose classifier on wines (source task) and applying it to classify
Chinese liquors (target task) while only retraining the output layer [34]. Interestingly,
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transfer learning has been used much less commonly for Etongue systems, although they
also face sensor drift. However, Yang et al. utilized transfer learning to improve the
generalizability of their Etongue [45]. In this work, they demonstrate the superiority of
their transfer learning trained CNN over other methods such as BPNN, ELM, and SVM for
tea age classification.

A trend that has been gaining traction is data fusion to combine Enose and Etongue
systems. The value of this can again be appreciated in how closely the senses of smell and
taste are linked in animals [117], complementing each other to provide the most accurate
assessment. Similarly, by using information from both Enose and Etongue, better analysis
can be conducted. As illustrated in Figure 8, data fusion can be performed at three levels:
low, mid, and high [118]. Recently, mid-level fusion schemes have shown promising
results for fusion of Enose and Etongue data [119,120], especially when performing PCA
on the two systems and using those features for fusion before model training [121–123].
Such systems have also benefitted from the inclusion of a computer vision system in data
fusion [121,124].
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Currently, another class of systems exist with the same goals as Enose and Etongue
that utilize biochemical recognition elements, termed bioelectronic nose (bEnose) and
tongue (bEtongue). These devices utilize biological elements such as taste receptors, cells,
or even tissues for sensing [106,125]. These systems show impressive selectivity and sensi-
tivity, especially when coupled with nanomaterials to aid in signal transduction from the
biochemical recognition element [106,126]. Their major challenges, as with most biosensors,
is stability and reproducibility of the biological element [106]. For these reasons, Enose
and Etongue remain popular for their sensor stability. Continued efforts are necessary to
improve sensitivity closer to their bioelectronic counterparts, especially regarding sensor
design and feature extraction methods.

With such a large variety of sensors in use for Enose and Etongue systems, data
processing can vary significantly. Of particular interest is finding appropriate feature
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extraction methods [23,24]. A huge variety of machine learning classification and regression
methods have been employed, both on unsupervised dimensionally reduced feature vectors
and classically extracted features. Transfer learning methods have been successful in
allowing target task change with minimal retraining, especially when using node-based
models. However, the challenges posed by sensor drift and manufacturing variability are
still significant and will likely remain a focus for researchers over the next several years.

4.4. Summary of Electrochemical Bioreceptor-Free Biosensing

Many electrochemical bioreceptor-free biosensors employ chemical or physical sensor
arrays coupled with machine learning. These are most obvious in Enose and Etongue
systems, inspired by nature (humans and animals). Other systems generate multivariate
spectral data also coupled with machine learning. In both cases, machine learning models
can aid in analyte classification or quantification. Especially when using distance-based
models, choice of feature extraction method is important to optimally capture the features
relevant to the task (i.e., classification or regression). Node-based models, primarily ANNs
often require less feature extraction pre-processing as this step is built into the model
learning. Additionally, node-based models offer a great solution to target task change
and noise elimination through transfer learning, often aided by integration through the
back-propagation step so that only the final layer needs to be refined [34].

5. Optical Bioreceptor-Free Biosensors

The mechanisms of optical detection in biosensing are diverse. A classic example
is the colorimetric lateral flow assay [127–129]. Mechanisms beyond colorimetry include
fluorescence [130–132], luminescence [133], surface plasmon resonance [134], and light
scattering [135,136].

Machine learning has been widely employed in optical biosensors. An example
with similarities to Enose and Etongue is the bacterial bioreporter panel. Each bacterial
bioreporter responds to target analytes in a semi-specific manner. Machine learning is used
to discover patterns in the bioreporter panel response and relate them to analyte presence
or concentration [137,138]. However, this review’s focus is to discuss cases in which the
bioreceptor is absent, so such sensors are not covered in detail.

Another prevalent use of machine learning for analyzing images as biosensor data is
for image processing, especially segmentation [139–142]. The literature is rich in reviews
on machine learning for image segmentation, and this technology is in no way specific to
biosensors, so this review will not discuss those examples. However, the topic is essential
to many biosensors, so it must be mentioned.

5.1. Imaging

Imaging sensors utilize an array of optical sensors such as a CMOS array (complemen-
tary metal-oxide-semiconductor array; the most used image sensor for digital cameras).
Images of the specimen can be used to identify the target presence and concentration as
the molecules exhibit different coloration, fluorescence, or light scattering, with varying
morphology and spatial distribution. In this manner, several imaging biosensors have been
developed to eliminate the need for labels and bioreceptors.

A growing field of imaging-based biosensors utilizes lens-free imaging techniques [143,144].
Since the images from lens-free imaging are not in focus, computational techniques are needed
for image reconstruction, the most common of which is deep learning (mostly based on ANN
with “deeper” layers) [53,54,145]. Lens-free imaging may be used to detect the aggregation of
particles caused by bioreceptor–analyte interaction [55] (Figure 9). However, an exciting appli-
cation is the direct, label-free classification of particles by lensless holography. Wu et al. [56]
presented a lensless holography biosensor for classifying pollen and spores. As with many
of these systems, a CNN was used for image reconstruction. In this work, another CNN
was used to classify the particles, yielding > 94% accuracy.
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Another work on the imaging classification of pollen utilizes multispectral imag-
ing [58]. Again, a CNN was trained for classification, and a species-averaged accuracy of
96% was achieved for 35 plant species.

Artificial neural networks (ANNs) have also found great success in the developing
field of digital staining. Hematoxylin and eosin (H&E) stain is the most common stain
for histology [146]. However, the quality of tissue staining is subject to many factors
that can affect the diagnosis. Digital staining is an alternative in which tissue sections
are imaged unstained, and a trained model generates an image simulating stained tissue
(Figure 10). Deep learning has been applied for digital staining on images acquired from
a variety of methods including quantitative phase imaging [59], Fourier transformed
infrared spectroscopy (FTIR) [52], and multi-modal multi-photon microscopy [57]. To
overcome the issue of data scarcity and overfitting, researchers have frequently employed
generative adversarial neural network (GAN) for medical imaging [147], which has shown
promising results for digital staining model training [148]. Additionally, transfer learning
has improved the model’s generalizability to multiple domains [50].

Fluorescence-based imaging biosensors are also worthy of mention. Sagar et al. [51]
presented a microglia classification based on fluorescence lifetime utilizing ANN.

The applications of imaging biosensors are extensive. Indeed, the scope is too large to
analyze all papers in this review. However, of particular importance to imaging biosen-
sors is the ANN, especially the CNN. This preference is expected since CNN has shown
exceedingly good performance in a variety of image classification contexts [149,150].

5.2. Colorimetry

One class of optical biosensors is the colorimetric biosensor. Currently, the applications
of machine learning to enhance the performance of bioreceptor-free colorimetric biosensors
are limited. This limitation is because the colorimetric biosensors (most notably lateral
flow assays) mostly utilize bioreceptors (e.g., antibodies, enzymes, and aptamers) [98]. One
example of such a bioreceptor-free biosensor is non-invasive plant disease diagnosis by
Li et al. [49]. They utilized an array of plasmonic nanocolorants and chemo-responsive
organic dyes that interact with volatile compounds from the plant. Their technique is
similar to Enose and Etongue since it is a fingerprinting approach to the array response
for classification. They used PCA, but do not cite an actual classifier, although they give
performance metrics such as accuracy. At this time, it is unclear how the classification was
performed on the PCA-transformed data.

Most colorimetric biosensors do not require machine learning due to their simplicity
for readout. However, the arrays of bioreceptor-free (semi-specific) colorimetric sensors
require machine learning-based classification in a way similar to Enose and Etongue.
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In these instances, they will likely benefit from the same treatment, namely dimension
reduction by PCA and SVM classification.
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Figure 10. A quantitative phase image of a label-free specimen is virtually stained by a deep
neural network, bypassing the standard histological staining procedure that is used as part of
clinical pathology. Reproduced from [59] without modification under Creative Commons Attribution
4.0 License.

5.3. Spectroscopy

Of the spectroscopic biosensing techniques, surface-enhanced Raman spectroscopy
(SERS) has shown great success [151,152]. SERS is a vibrational surface sensing technique
that enhances Raman scattering based on surface characteristics. Briefly, SERS utilizes
incident laser light to induce inelastic scattering (Raman scattering) from the target analyte.
The intensity of the Raman scattering is enhanced by interaction with the conduction elec-
trons of metal nanostructures (SERS substrate). The enhancement of the Raman scattering
is what makes SERS so sensitive. Researchers have reported enhancement factors of up to
ten or eleven orders of magnitude [153]. Figure 11 illustrates a SERS sensor for the analysis
of breath volatile organic compound (VOC) biomarkers [154]. Due to the complex nature
of the obtained spectral signal, various machine learning algorithms have been used to
process SERS data in multiple contexts [28].
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permission from [154] without modification. Copyright 2016 American Chemical Society.

Although bioreceptors may be used to allow for specific binding of the target analyte
to the SERS sensing surface [155,156], direct detection is also possible. Robust classification
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and regression algorithms can bring specificity and sensitivity to these biosensors. A simple
yet effective method for SERS based quantification is partial least squares regression (PLSR).
PLSR has been used for a variety of quantification applications such as biofilm formation
monitoring [69], blood serum methotrexate concentration [63], aquaculture toxins [62],
and food antiseptics [66]. PLSR has the advantage of model simplicity with well-defined
parameters, but it may be insufficient in modeling data with significant sources of noise.

Since the spectra have high dimensionality, dimension reduction is a frequent prepro-
cessing step (Figure 12). PCA is again popularly used as a dimension reduction or feature
extraction step [60,61,64,65,68,70,71,73], or for exploratory analysis [62,72,157]. Once the
spectra are remapped using PCA, a classifier or regression model is employed such as an
extreme learning machine (ELM) [71], LDA [68], SVM [60,64,73], PLSR [65], or ANN [70].
An alternative to dimension reduction is utilizing the high dimensionality spectral data
directly with a node-based algorithm such as ANN [72,158,159] and CNN [160,161].
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Figure 12. PCA results using the spectral range of 400–1700 cm−1 of 112 average SERS spectra from
14 different commercially available pollen species. Loadings of the first four PCs (a) as well as the
scores of the first and second (b), first and third (c), and first and fourth PC (d) are shown. PCA
was done with standardized first derivatives of the mean spectra of 500 vector-normalized spectra.
Reprinted with permission from [72] without modification. Copyright 2016 John Wiley and Sons.

The reusability and generalizability of the trained models are often limited. Spectral
response is affected not just by analyte presence but surface structure. Therefore, for the
model to be reused on a new SERS biosensing dataset, the surface characteristics must be
very similar. In terms of transfer learning, this is an issue of changes in the underlying data
distributions. However, if the surface structure methods are well documented and repro-
ducible, transfer learning could be employed on a spectral library [28]. Ideally, researchers
could contribute to this library in an open-access manner and use these spectra for model
training. In this case, the quality of the attached metadata would be a crucial factor.

Clearly, machine learning has been used extensively in the context of SERS sensors.
The most common pipeline is to perform unsupervised dimensionality reduction/feature
extraction for which PCA is generally the preferred method. Less consistency is seen in the
algorithms used for classification and regression. Alternatively, ANNs can be used directly
on the data, and the advantage of one approach over the other is not clearly illustrated
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in the literature. We anticipate, however, that like in the case of electrochemical sensors,
node-based models would allow for more efficient transfer learning to accommodate target
task change.

5.4. Summary of Optical Bioreceptor-Free Biosensing

A variety of optical sensing methods have benefited from machine learning techniques,
with the preferred method being dependent on the data type. For image type data, CNN
is the most obvious choice for its ability to detect features as well as reconstruct images
obtained by lensless systems. For spectral data, the approach is similar to spectral data
obtained with electrochemical sensors. In those instances, dimensionality reduction cou-
pled with a classification/regression algorithm may perform nearly as well as node-based
methods. Indeed, they may be preferable in instances where the quantity of training data
is small.

6. Considerations and Future Perspectives

Biosensor research has shown great success and promise. For both systems with and
without bioreceptor, ML has demonstrated huge success in going from large, complex sen-
sor datasets to getting meaningful measurements and classification of analytes. However,
in many of these systems, a key challenge is consistency in device manufacturing. This
manifests itself regarding sensor reproducibility for Enose and Etongue, or as substrate
reproducibility for SERS. Since the models used to process these data often rely on subtle
signals in the data, even small changes in sensor response characteristics can lead to poor
performance. These issues have effectively limited widespread commercial adoption of
these technologies. There has been some success in accommodating these inconsistencies
through computational methods, notably with transfer learning for Enose. More work,
both from a manufacturing and computational standpoint, needs to be done before many
of these systems are robust enough for widespread adoption.

One area in which these systems have pushed to increase commercial potential is
through miniaturization and modularity. There have been efforts with several of the
methods presented here to develop compact standalone devices that rival their bulkier
counterparts in terms of performance [16,47,162–166]. We believe that cloud computing
may be a key element to the success of these endeavors. Some of the models in use,
especially for image-based sensors, are computationally expensive. By offloading the
computational work to cloud computing, the device footprint imposed by processing and
memory needs is greatly reduced.

A central question is what the relative advantages and disadvantages are between
systems that utilize a bioreceptor and those that do not. A key advantage of those that
eliminate the bioreceptor addresses one of the barriers to commercialization—manufacture
variability. By eliminating the bioreceptor, device manufacture is simplified, and may
decrease manufacture variability. Additionally, sensor longevity is generally improved
because the long-term stability of the bioreceptor is often limited [6]. However, to match
LOD and specificity of bioreceptors, improvements must be made. Nanomaterials show
promise for improving device performance [167].

There have been studies that attempt to gain the advantages of both systems by
creating artificial bioreceptors, notably nanomaterials with enzymatic properties referred
to as nanozymes [168,169]. While exciting progress has been made in this field, current
nanozyme-based biosensors have inferior catalytic activity and specificity to their biological
alternatives [170,171]. Nanozyme catalytic activity is also currently limited to oxidase-like
activity [171]. If researchers can broaden nanozyme activity and improve selectivity, these
biosensors may become a competitive alternative for biological bioreceptors.

In addition to device considerations, there are computational challenges to consider.
Although some ML algorithms have been in use for decades such as PCA and SVM, the
field of ML is advancing rapidly with new algorithms being described frequently. While
many areas are quick to adopt the new methods, improper usage is common and certainly
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not limited to biosensing. Some common mistakes are inappropriate data splitting, hidden
variables serving as bad predictors, and mistaking the objective of the model [172]. Great
emphasis must be placed on the importance of reporting appropriate performance metrics.
A great example of a misleading metric is reporting accuracy on highly imbalanced data
such as in Durante et al. [41]. It can often be difficult to determine if the proper pre-
processing and model assumption checks are being performed. This may be centering and
re-scaling prior to PCA, or normality checks for LDA.

Some of these issues can be solved with better methods reporting, especially regarding
computational methods. Certain key details are frequently left out, making critical evalua-
tion difficult and reproducibility impossible [173]. One of the most striking examples from
the literature described herein is reporting classification metrics, without reporting what
classifier was used on PCA processed data [49]. Perhaps the best way to make methods
clear and reproducible is to release all associated code, preferably publicly.

Increased availability in general can greatly improve this field. More open access
repositories of training sets may allow researchers to improve model robustness by ex-
posing them to more diverse datasets [16]. Some examples currently exist such as the gas
sensor drift dataset [115] and the EIS breast tissue dataset [103], both available in the UCI
Machine Learning repository [104]. One vision would be to have large repositories of gas
sensor responses to many analytes under various experimental conditions. Models could
be trained on such repositories to improve generalizability. Ideally, with such repositories
and improved manufacturing consistency, trained models could be shared directly and
need only minimal recalibration.

7. Conclusions

In this review we have explored the ways in which bioreceptor-free biosensors can
benefit from ML methods. Robust ML models bring specificity and accuracy to array-based
biosensors such as Enose and Etongue by learning the patterns in the sensor responses.
Notably, PCA has shown great performance as a feature extraction technique for these
systems. Similar power of PCA has been demonstrated for optical biosensors that generate
spectra such as Raman spectra or SERS. ANNs using deep learning generate impressive
results for imaging-based sensors including lensless holography and digital staining. ML
has also been used in creative ways such as for data fusion of multiple biosensors, and
transfer learning for noise correction, sensor drift compensation, and domain adaptation.

However, many practical challenges still exist. Many of the methods presented
here are not widely used in commercial settings. This is due to many reasons including
variability in manufacturing and the ability to make compact versions of the biosensors
while maintaining performance. ML models that can adapt to differences in sensor response
are at an advantage, and transfer learning shows promise to be part of the solution.

In recent years, ML has garnered strong research interest in many fields including
biosensing, as evidenced in this review. If this review has inspired interest to learn more
about how machine learning is being used for one of the methods presented here, we
encourage you to seek more specific reviews for the subject. There are great reviews in the
literature, many of which were referenced, that take a closer look at the methods presented
in this review.
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