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ABSTRACT We examined the nucleated polymerization of actin from the two ends of filaments 
that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. 
Three different in vitro preparations were used to nucleate the polymerization of muscle G- 
actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by 
shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders 
demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate 
filament growth from both ends with a strong bias for one end. Here we identify the barbed 
end of the core fragment as the fast growing end by decoration with myosin subfragment one. 
Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the 
barbed but not the pointed end of MV core fragments. To examine actin assembly from the 
naturally occurring, membrane-associated ends of MV core filaments, isolated membrane- 
intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 
mM KCI, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G- 
actin induced the formation of 0.2-0.4/~m "growth zones" at the tips of microvilli. The dense 
plaque at the tip of the MV core remains associated with the membrane and the presumed 
growing ends of the filaments. We also observed filament growth from the pointed ends of 
core filaments in the terminal web. We did not observe filament growth at the membrane- 
associated ends of core filaments when the latter were in the presence of 2/~M CB or if the low 
ionic strength incubation step was omitted. Addition of G-actin to demembranated brush 
borders, which retain the dense plaque on their MV tips, resulted in filament growth from both 
ends of the MV core. Again, 2/ IM CB blocked filament growth from only the barbed (tip) end 
of the core. The dense plaque remained associated with the tip-end of the core in the presence 
of CB but usually was dislodged in control preparations where nucleated polymerization from 
the tip-end of the core occurred. Our results support the notion that microvillar assembly and 
changes in microvillar length could occur by actin monomer addition/loss at the barbed, 
membrane-associated ends of MV core filaments. 

The arrangement of actin filaments within the microvilli of 
intestinal epithelial cells is precisely determined with respect to 
filament length and polarity. Each microvillus contains a bun- 
dle or core of approximately 20 filaments of the same length. 
The "barbed" ends of the core filaments are embedded in a 
dense plaque which effects the attachment of the core to the 
plasma membrane at the tip of the microvillus. The "pointed" 
ends of the filaments are at the rootlet-end of the core in the 
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terminal web (the barbed/pointed terminology is based on the 
arrowhead morphology of actin filaments decorated with heavy 
meromyosin [HMM] or myosin subfragment 1 [$1]; see refer- 
ence 22 for a review on brush-border cytoskeletal structure and 
function). Actin polymerization may play an important role in 
the formation of this precise array of actin filaments. This 
notion is based on the observations of Tilney and Cardell (29) 
on the reformation of microvilli in salamander intestinal epi- 
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thelium exposed to high hydrostatic pressure. These investiga- 
tors observed that pressure treatment induced a complete 
breakdown of  the brush-border surface which then reformed 
within 30 rain after returning the tissue to atmospheric pressure. 
Ultrastructural analysis of the reformation process indicated 
that microviUi first appeared as short protrusions on the apical 
surface which presumably elongated to form microvilli. Each 
protrusion contained a membrane-associated dense plaque 
with short core fdaments protruding from it. Presumably, the 
dense plaque is the same structure found at the tip of the 
reassembled microvillus. From these observations, Tilney and 
Cardell (29; see also references 14, 30) suggested that microvilli 
form from the nucleated polymerization of core filaments from 
the membrane-associated dense plaques. 

Once the microvillus is formed, actin assembly/disassembly 
may also be responsible for the changes in microvillar length 
which occur in vivo. For example, microvilli gradually elongate 
as epithelial cells migrate from the crypt to the tip of the 
intestinal villus. Reversible shortening of microvilli occurs in 
fasted animals (1, 19) and in intestinal tissue treated in organ 
culture with cycloheximide (16). 

Assembly of  microviUar core filaments and changes in fda- 
ment length may be regulated by controlling the aetin mon- 
omer concentration in the cell. In addition, the rates of  mon- 
omer association and/or  dissociation at the two ends of  core 
fdaments may be regulated by the presence of actin binding 
proteins which can affect the addition or loss of  actin monomer 
at either the barbed or pointed end of the core filament (for 
further discussion, see references 8, 14). This is a potentially 
powerful mode of control because an actin filament grows, at 
least in vitro (10, 15, 31), with a strong bias for monomer 
addition onto its barbed end. In the microvillus, the presumed 
fast-growing ends of core filaments are "attached" to the 
plasma membrane. Recently, several laboratories have char- 
acterized actin-binding proteins from a variety of cell types 
that can either block monomer addition onto the barbed or 
pointed end of the actin fdament (reviewed in reference 8). In 
fact, such a "capping" function has been postulated for the 
dense plaque at the tip of the microviUus core (24, 30). 

In this and a companion study (26) we have addressed three 
questions regarding the assembly properties of microvillar core 
fdaments. First, we have used fragments of microvillar cores to 
nucleate the polymerization of actin. These studies were done 
to determine ff core filaments, like St-decorated fdaments (10, 
15, 31), exhibit a bias for monomer addition onto their barbed 
ends. Secondly, we have used isolated, membrane-intact and 
demembranated brush borders, which, unlike core fragments, 
contain the naturally occuring ends of  core fdaments to nu- 
cleate the polymerization of actin. These experiments allowed 
us to examine for the presence of capping proteins associated 
with either the barbed ends of core fdaments at the tip of the 
microvillus, or at the pointed ends of core fdaments in the 
terminal web. Finally, we have examined the effects of the 
drug, cytochalasin B (CB), an inhibitor of actin assembly (4--7, 
9, II,  17, 18) and Acanthamoeba capping protein (13) on the 
nucleated assembly of actin from the two ends of microviUar 
core t'daments. 

From our results reported here, we suggest the possibility 
that microvillar core t'dament assembly and changes in core 
fdament length may occur by actin monomer addition/loss at 
the membrane-associated ends of core filaments as well as at 
their "free," slow-assembly-ends in the terminal web. Prelimi- 
nary accounts of some of the results described here have 
appeared elsewhere (20, 25). 
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MATERIALS AND METHODS 

Isolation of Brush Borders and Microvilli 

Brush borders were isolated from the small intestines of  chickens by the 
method of Mooseker et al. (23). Demembranation of brush borders with Triton 
X-100 was accomplished by the methods described in Mooseker and Tihiey (24), 
except that 0.1 mM phenylmethylsulfonyl fluoride was included in the detergent 
solution. Microvillar core fragments were isolated by extensive homogenization 
of brush borders followed by differential centrifugation as described in Howe et 
al. (12). This homogemzation procedure breaks the underlying filament core at 
the base of the microvillus, leaving behind the rootlet portion of the core still 
embedded in the terminal web. Thus the pointed ends of the core filaments are 
"fresh" ends generated by shear. The microvillar membrane was removed from 
these filament bundles, which will be referred to in this report as core fragments, 
by several washes with Triton X-100 as described in Howe et al. (12). Unlike the 
situation with intact brush borders (24), complete demembranation of microvillar 
core fragments required extensive shearing in a 9-in Pasteur pipette. This proce- 
dure generates core fragments that are free of membrane and usually have little, 
if any, detectable dense plaque material associated with either end, as determined 
by electron microscopy of negatively stained preparations. 

Nucleated Assembly of Actin Filaments from 
Microvillus Core Fragments, Membrane-intact 
Brush Borders and Demembranated 
Brush Borders 

Nucleation of actin polymerization from the two ends of microvillus core 
fragments and subsequent decoration with St was conducted by analysis of 
negatively stained specimens exactly as prepared by methods described in Pollard 
and Mooseker (26). Nucleation of  actin from the two naturally occurring ends of 
the microvillus core filaments was analyzed by addition of actin monomer to 
isolated membrane-intact and demembranated brush borders. Small pellets (25- 
50 #1) of intact or demembranated brush borders were suspended in 1.0 ml of 
brush-border buffer (BB buffer) consisting of 75 mM KC1, 1 mM MgSO4, 1 mM 
EGTA, 0.2 mM dithiothreitol (D'I"£), 10 mM imidazole-C1, pH 7.2. Monomerlc 
actin prepared by the method of  Spudich and Watt (27) was added from a 
concentrated stock ( l - t 0  mg/ml) in buffer G consisting of 2.0 mM Tris-HCl, pH 
8.0, 0.2 mM ATP, 0.2 mM CaC12, 0.5 mM DTT. After 3-5 mm of incubation at 
room temperature, 1.0 ml of  cold 4.0% glutaraldehyde in double strength BB 
buffer was added with very gentle mixing. The brush borders or demembranated 
brush borders were collected by centrifugation for 5 min at 1,000 g. The 
superaates were removed and fresh fLxative consisting of 2.0% glutaraldehyde, 
0.2% tannic acid, 0.1 M sodium phosphate buffer pH 7.0, was added for an 
additional 45 rain on ice. The remainder of the fixation protocol is exactly as 
described in Begge t  al. (2). The samples were embedded in Epon and thin 
sections were examined with a Philips 201 electron microscope. 

To allow access of actin monomer to the "tip" end of  the microvillus core in 
membrane-intact brush borders, small pellets of  isolated brush borders were 
suspended in 1.0 ml of a low ionic strength buffer consisting of I mM EGTA, 0.2 
mM DTT, 10 mM imidazole-Cl, pH 7.2. Actin monomer was added (or an 
equivalent volume of buffer G in control samples) to a concentration of 48/~M. 
The brush borders were "soaked" in actin monomer, on ice, for 3 0 ~ 0  rain, and 
the polymerization of actin was then induced by addition of 1.0 ml of double 
strength BB buffer. The brush borders were incubated for 5 rain at room 
temperature and then processed as above for electron microscopy. 

To test the effects of CB on nucleated assembly of actin filaments from the 
two ends of  the microvillus core, the above experiments were conducted exactly 
as describe, d with the inclusion of  2 #M CB (Sigma Chemical Co., St. Louis, MO) 
in the initial suspension buffer. To insure that the newly formed filaments 
protruding from the ends of  the microvillus cores were the result of  nucleated 
assembly and not annealing of preformed actin filaments to the ends of the core 
filaments, brush borders and demembranated brush borders were incubated for 
5 rain, at room temperature, in the presence of 24 ~M F-actin. The samples were 
then processed for thin-section electron microscopy exactly as described above. 
A partially purified preparation of Acanthamoeba "capping" protein was made 
by the methods of Isenberg et at. (13). This fraction contains two polypeptides of 
31,000 and 28,000 daltons. 

RESULTS 

Nucleated Assembly of Actin from the Ywo Ends 
of Microvillus Core Fragments 

As we reported previously (26), addition of O-actin (1.2-7.2 
/~M) to microvillar core fragments in the presence of buffers 



containing either 20 or 75 mM KC1 and 5 mM MgSO4 results 
in the growth of fdaments from both ends of the core fragments 
(see Fig. 2, reference 26). However, filaments grow much faster 
from one of the two ends of the core fragment. Unfortunately, 
it is usually impossible to determine by direct examination 
which end of  the core fragment is the fast growing end (i.e., 
barbed or pointed end). Occasionally we have observed, how- 
ever, what appears to be remnants of the dense plaque material 
associated with the fast growing end of such core fragments 
(Fig. 1), suggesting that the tip or barbed end of the core is the 
preferred assembly end. This is confirmed by decoration of 
nucleated fdaments with myosin, S~ (Fig. 2). The decoration 
with S~ also demonstrates that the polarity of the newly formed 
fdaments is identical to the core filaments which nucleated 
their assembly. 

In the presence of 2 #M CB (Fig. 3), nucleated assembly 
from the barbed end of core fragmentg is blocked but growth 

FIGURE 1 A negatively stained microvillus core fragment used to 
nucleate the polymerization of 2.8/xM actin for 20 s in the presence 
of 75 mM KCl, 5.0 mM MgSO4. There is a strong bias for filament 
growth from the upper end of the core fragment. Remnants of 
dense plaque material (arrow) remain associated with the fast 
growing end. Bar, 0.5 p.m. x 31,000. 

FIGURE 2 (a and b) St-decoration of core fragments which have 
nucleated the polymerization of 7.2 ~M actin in the presence of 20 
mM KCI for 2 min. "Arrowheads" on the "fast" assembly end of the 
core fragments contain the barbed ends of the filaments. The 
"arrowheads" on the short filaments nucleated by the lower ends 
of the core fragment point away from the core identifying the 
pointed end of the microvillus core as the slow assembly end. 
Arrows indicate filament polarity. Bar, 0.2 p,m. (a) x 78,000. (b) x 
98,000. 

from the pointed end is still observed. Thes results confirm 
those of Maclean-Fletcher and Pollard (18), who have noted a 
similar inhibitory effect of CB on the nucleated polymerization 
of actin from St-decorated actin fdament "seeds." 
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FIGURE 3 and 4 Fig. 3: 
Nucleated polymeriza- 
tion in the presence of 
cytochalasin B. St-deco- 
rated core fragment 
which has nucleated po- 
lymerization of 2.8 #M 
actin for 40 s in the pres- 
ence of 75 mM KC[, 5 mM 
MgSO4, and 2 #M CB. No 
filament growth from the 
upper, barbed end of the 
core fragment has oc- 
curred but nucleated as- 
sembly from the pointed 
ends of core filaments 
has not been blocked. 
Bar, 0.2 #m. x 74,000. Fig. 
4: Nucleated polymeriza- 
tion in the presence of 
Acanthamoeba capping 
protein. Sl-decoration of 
core fragment which has 
nucleated polymeriza- 
tion of actin (conditions 
as in Fig. 3) in the pres- 
ence of 2 p,g/m[ Acantha- 
moeba capping protein. 
Like CB, capping protein 
blocks monomer addi- 
tion onto the barbed, but 
not pointed end of the 
core fragment. Bar, 0.2 
/~m. × 64,000. 

To test the utility of  core fragments for assaying the effects 
of actin-binding proteins on aetin assembly, we examined the 
effect of Acanthamoeba "capping" protein on the nucleation of 
filaments from core fragments. Like CB, this actin-binding 
protein blocks monomer growth from the barbed end of S1- 
decorated actin seeds (13). As expected, the capping protein 
blocks monomer addition onto the barbed, but not pointed 
ends of microviUar core fdaments (Fig. 4). 

Nucleated Assembly of Actin from the Two Ends 
of Microvillus Core Filaments in Membrane-free 
Brush Borders 

These studies with isolated microvillus core fragments dem- 
onstrated the potential of the filaments in the core as nucleating 
sites for actin polymerization, but the two ends of such frag- 
ments are exposed artificially by shear during isolation. To 
assay for the presence of assembly capping proteins it is nec- 
essary to examine the "nucleating potential" of the naturally 
occurring filament ends on intact microvillus cores. To accom- 
plish this, we used isolated brush borders demembranated with 
Triton-X 100 to nucleate the polymerization of actin. Detergent 
treatment removes the microviUar membrane without disrupt- 
ing the structural integrity of the core or the dense plaque 
bound to its tip-end (24; see Fig. 6 a). The assumption here is 
that the functional as well as structural properties of the 
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plotein(s) which comprise the dense plaque are not affected by 
the detergent treatment. 

Incubation of membrane-free brush borders with 4.8-24/~M 
G-actin for 5 min results in the growth of actin filaments from 
both ends of their microvillar filament bundles (Fig. 5). Ex- 
amination of the terminal web region at high magnification 
(Fig. 5 b) indicates that most filament ends on the rootlet 
portion of the microviUus cores have nucleated assembly of 
actin filaments. Although the number of actin filaments nu- 
cleated by the basal ends of the cores appears to be greater 
than that from the tip-ands, this is an artifact of  thin sectioning. 
Like a bouquet of flowers, the microvillar bundles of the 
isolated brush border are more tightly packed at their bases in 
the terminal web region. Consequently, within a thin section 
the number of filament ends attributable to the rootlet portion 
of the microvillar cores is considerably greater than that from 
the tip-ends. It is also important to note that lengths of fila- 
ments grown from the two ends of microvillus cores cannot be 
determined in thin-sectioned material. 

The nature of nucleated assembly from the tip-ends of 
microvillus cores is more difficult to interpret because several 
distinct morphologies have been observed, examples of which 
are found in Fig. 5 a and c. As is the case for basal growth, the 
site of nucleation is readily determined because the filaments 
of the core remain tightly packed, and the newly formed 
filaments fan out from the presumed site of nucleation on the 



FIGURE .5 Nucleated polymerization of actin from the two ends of microvillar core filaments in membrane-free brush borders. (a) 
Demembranated brush border incubated for 5 min in the presence of 24 #M actin monomer. Both ends of the microvillar core 
filaments have nucleated assembly of actin. Bar, 0.4 gm. x 36,000. (b) Terminal web region of a demembranated brush border 
which has nucleated actin polymerization. Newly assembled actin filaments fan out from the basal ends of microvillus cores. Bar, 
0.2 #m. x 71,000. (c) Nucleated polymerization of actin from the tip-end of microvillus cores. Most microvilli have nucleated 
filament growth from their tip-ends. Only those microvilli which retain a sleeve of membrane surrounding the tip of the core fail 
to nucleate actin polymerization (double arrows). The dense plaques, are, in most instances, partially "dislodged" from the former 
tip-end of the cores. Bar, 0.2 #m. X 67,000. (d) Demembranated brush border incubated for 5 min. with 24 #M preassembled F- 
actin. Neither the tip or rootlet ends of microvillus cores have exogenously added F-actin annealed to their filament ends. Bar: 0.4 
#m, X 48,000. 

distal ends of the core filaments. In most instances, there are 
remnants of the dense plaque associated with the core at the 
site of nucleation, but usually it appears to have been partially 
dissociated from the filament ends of  the core either before 
nucleation had occurred, or has been "pushed aside" as a result 
of the new filament growth. Occasionally, we observed tips of 

microvilli from which no detectable assembly of filaments has 
occurred. Invariably, these microviUus cores have an intact 
dense cap and remnants of  the microvillar membrane sur- 
rounding the tip end of  the core (Fig. 5 e; double arrows). The 
remaining membrane may act as a diffusion barrier which 
either prevents or restricts monomer access to the filament 
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FIGURE 6 Effect of CBon thenu-  
cleated assembly of actin from the 
two ends of microvillar core fila- 
ments in demembranated brush 
borders. (a) Demembranated 
brush border treated with 2 #M 
CB with no actin monomer added. 
The morphology of the demem- 
branated brush borders is unaf- 
fected by treatment with CB (for 
a control micrograph see Fig. 4, 
reference 24). Note that the mi- 
crovillar core retain dense plaques 
associated with their tip-ends. 
Bar, 0.2 #m. x 46,000. (b) Mem- 
brane-free brush border which 
has nucleated polymerization of 
24 #M actin monomer in the pres- 
ence of 2 #M CB. The basal, 
pointed ends of core filaments 
have nucleated filament assem- 
bly, but no growth from the tip- 
ends of core filaments is observed. 
The microvillar cores retain dense 
plaques on their tip-ends. Bar, 0.3 
#m. x 34,000. 

ends, or alternatively, the lack of  filament growth from these 
cores could represent a functionally intact plaque-membrane 
complex which in an undamaged state can prevent the assem- 
bly of actin. Another type of  tip-nucleation observed in these 
preparations is from the ends of microviUus cores that had 
probably been broken before addition of actin monomer. Such 
cores are always present in preparations of demembranated 
brush borders and can be identified because the dense plaque 
is absent from the tip-end of the core, and the core is shorter 
than adjacent filament bundles. The broken microvillar bun- 
dles, as expected, nucleate the assembly of  filaments, but in 
thin-sectioned material, it is difficult to determine if there are 
any qualitative or quantitative differences in the effectiveness 
of nucleated assembly from broken cores vs. cores with intact 
dense plaques. 

The results of the nucleating studies using membrane-free 
brush borders indicate that the dense plaque associated with 
the microviUus tip does not prevent the nucleated assembly of  
actin from the barbed ends of  core filaments under these in 
vitro conditions. However, the structural integrity of the dense 
cap is disrupted considerably in brush-border preparations 
which have been used as nucleating seeds when compared to 
that observed in control preparations (see Fig. 6 a). The dis- 
lodgement of dense plaque material may in fact be causally 
related to the assembly reaction. Support for this notion comes 
from nucleation experiments conducted exactly as above but 
in the presence of 2.0 #M cytochalasin B. When nucleated 
assembly of actin from the tip-end of cores is prevented by 
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addition of CB, most cores retain a structurally intact dense 
plaque at their tips (Fig. 6 b). As expected, CB does not block 
the nucleated assembly of actin from the basal ends of the 
microviUus cores. These results demonstrate that the dense 
plaque does not interfere with the inhibitory effect of  CB on 
the assembly of actin from the barbed ends of the core fila- 
ments, and conversely, CB does not appear to have an effect 
on the interaction of the dense plaque protein(s) with those 
filament ends (Fig. 6 a). 

We have conducted a series of  control experiments in which 
F-actin, rather than G-actin, was added to demembranated 
(Fig. 5d)  or membrane-intact brush borders (results not 
shown). This was done to insure that the observed nucleation 
of filament assembly onto the two ends of the microvillus core 
was the result of monomer addition rather than annealing of 
preassembled filaments. No annealing of F-actin onto either 
end of the microvillus core was observed (Fig. 5 d). 

Nucleated Assembly of Actin from Naturally 
Occurring, Filament Ends in Membrane-intact 
Brush Borders 

Since it is possible that the detergent treatment used to 
remove the brush border membrane may also remove or de- 
stroy the function of capping proteins associated with the ends 
of microvillus core filaments, we also used membrane-intact 
brush borders to nucleate actin filament polymerization. Direct 
addition of  actin monomer (2.4-24 #M) to isolated brush 



borders in assembly buffer containing 75 mM KCI and 1 mM 
Mg ++ results in nucleated polymerization from the basal 
(pointed) ends of core filaments in the terminal web (Fig. 7). 
This demonstrated the absence of an endogenous inhibitor of 
actin assembly associated with the basal, pointed ends of core 
Filaments, at least after brush border isolation. No detectable 
nucleation of  actin from the tip-end of the core was observed-- 
nor was it expected since there was probably not sufficient time 
for actin monomer to diffuse underneath the microvillar mem- 
brane to the core tip. (This interpretation is based on obser- 
vations from Sl-decoration experiments on which it was noted 
that at least 30--60-rain incubation of brush borders with $1 was 
required to obtain adequate decoration of  core filaments within 
the sleeve of the microvillar membrane. The rootlet portion of 
the core becomes decorated with $1 much more readily [Moo- 
seker, unpublished observations] presumably because the brush 
borders are open at the terminal web side.) 

To obviate the problem of monomer access to the tip-end of 
the microviUus core, we conducted a series of experiments in 
which brush borders with intact membranes were "pre-soaked" 
in actin monomer, at low ionic strength so that diffusion of 
actin monomer up to the microvillus tip could occur. After 30- 
60 rain of incubation, the salt concentration was raised to 

FIGURE 7 Nucleated polymerization of actin from the rootlet-ends 
of microvillar core filaments in an isolated brush border. G-actin (24 
p,M) was added to brush borders suspended in polymerization 
buffer (75 mM KCI, 1 mM MgSO4). Numerous actin filaments fan 
out from the basal ends of microvillar bundles as a result of 
nucleated polymerization of actin. No detectable assembly of actin 
onto the tip-ends of core filaments is observed. Bar, 0.5 ~tm. x 
48,000. 

induce actin assembly. As in the previous experiment (Fig.7), 
actin fdaments grew from the basal ends of the microvillus 
cores (Fig. 8 a). There is also strongly suggestive evidence that 
growth from the tip ends, at the site of membrane-fdament 
attachment, occurs in these preparations. This conclusion is 
based on the unusual morphology of the tip-region of  microvilli 
in these preparations (Fig. 8) as compared to that in control 
preparations (Fig. 9) or in preparations in which actin mon- 
omer was added in the presence of CB (Fig. 10). In both 
control and CB-treated preparations (CB should prevent mon- 
omer addition onto the tip-ends of  core Filaments), the tip 
regions of microviUi have normal morphology; that is, the 
filaments within the microviUus are closely packed along the 
full length of the microvillus to the point of termination in the 
dense plaque. In most instances one can also observe numerous 
radial links between the core and the surrounding membrane 
along the entire length of the microvillus (Figs. 9 and 10). In 
contrast, brush borders treated with actin monomer in these 
pre-soak experiments have at many of their microvillus tips a 
0.2-0.4/fin presumptive "growth zone" (Fig. 8). This zone is 
characterized by a sharp discontinuity in the microviUus core 
above which the filaments are loosely packed and lacking 
radial links to the membrane. However, the distal ends of the 
filaments terminate in a dense plaque at the membrane which 
is of normal morphology. It is also important to note that 
microvilli in control preparations (Fig. 9) are quite uniform in 
length. In brush borders which have nucleated actin polymer- 
ization, the microvilli have irregular lengths and the longest 
microvilli also have the longest growth zones (Fig. 8), suggest- 
ing that elongation of microvilli has occurred. Since this type 
of "tip morphology" is never seen in control or CB-treated 
preparations, where monomer addition onto the tip-ends of 
core filaments should not occur, the most likely explanation is 
that monomer has added onto the barbed ends of the core 
f'daments at the junction between those filament ends and the 
dense plaque on the membrane. Most importantly, this polym- 
erization, and resultant microvillus elongation occurs without 
disrupting the structural integrity of this apparent membrane- 
fdament attachment site. 

DISCUSSION 

Microvillar Core Filaments Exhibit Biased 
Growth in Vitro 

In the first paper of this series (26) we demonstrated the 
utility of microviUar core fragments as nucleating "seeds" for 
quantitative analysis of actin assembly. Over the range of actin 
monomer concentrations (1.2-7.2 #M) we measured rates of 
assembly from the fast and slow growing ends of core fragments 
that increased linearly as a function of actin monomer concen- 
tration. This enabled us to calculate, by the method of Bergen 
and Borisy (3), the polymerization rate constants for the two 
ends of an actin fdament under two conditions--one barely 
permissive for polymerization (20 mM KCI) and the other (75 
mM KCI, 5 mM Mg ++) optimal for assembly. Here we have 
completed our previous analysis (26) by identifying the fast 
and slow growing ends of the microvillus core Filaments as the 
barbed and pointed ends, respectively. We also have demon- 
strated the usefulness of core fragments for qualitative analysis 
of the effects of actin-binding proteins (e.g., Acanthamoeba 
capping proteins) and drugs (e,g., cytochalasin B) on actin 
assembly. Most importantly, given the context of this current 
study which focuses on the assembly properties of the micro- 
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FIGURE 9 (a) Isolated 
brush border treated as 
in Fig. 8, except that ac- 
tin monomer was omit- 
ted from the low ionic 
strength "pre-soak." 
Microvill i have uniform 
lengths and have nor- 
mal tip morphology. 
The close packing of 
the core filaments is 
continuous along the 
entire length of the core 
to the point of insertion 
in the dense plaque at 
the tip of the microvillar 
membrane. Bar, 0.4/xm. 
X 43,1900. (b and c) 
Higher magnification of 
some of the microvillar 
tips on the brush border 
in a. The normal mor- 
phology of the fila- 
ment-membrane at- 
tachment site at the tips 
of microvilli is structur- 
ally unaffected by the 
low-ionic strength pre- 
soak. Bar, 0.2 ~m. x 
108,000. 

viUar core ftlaments, we demonstrate that "native" microvillar 
fdaments exhibit a bias for monomer addition onto their 
barbed ends. This is an important point, because although the 
core fragments used do not contain the original fdament ends 
of the core, and thus are free of any capping proteins which 
might be present, these filaments do contain various binding 
proteins along their length (e.g., microvillar 95 and l 10 kdalton, 
ftmbrin and calmodulin; reviewed in reference 22) which could 
affect monomer addition. In fact, these accessory proteins along 

the length of the core filaments may inhibit monomer addition, 
particularly at the pointed end. At the relatively low actin 
monomer concentrations used in these nucleation studies (low 
concentrations are required to detect biased growth rates by 
EM), we invariably observed fewer filaments nucleated from 
the pointed end of these core fragments (Fig. l; see also Fig. 2 
in reference 26). The incomplete participation of microvillar 
fdament ends in nucleating polymerization could be due to the 
presence of core accessory proteins, but it is also plausible that 

FIGURE 8 Elongation of microvilli in, isolated brush borders induced by polymerization of actin from the membrane-associated 
ends of core filaments. (a) Isolated brush border "pre-soaked,'" at low ionic strength, with 24 ~M G actin before addition of salt to 
induce actin assembly. As in Fig. 7, the rootlet ends of core filaments have nucleated filament assembly. Several microvilli have 
unusual tip morphology, possibly resulting from nucleated polymerization of actin onto the membrane-associated ends of core 
filaments (see text). The dense plaques at the tips of microvilli remain associated with the presumed growing ends of the newly 
formed filaments. Note that, unlike brush borders in control preparations (Fig. 9) microvilli have nonuniform lengths, and the 
longest microvilli have the longest "growth zones" at their tips. The arrow indicates a microvillus in which elongation may have 
caused the membrane to slide up the core. Bar, 0.4 p.m. x 56,000. (b) Higher magnification of the tip region of the brush border in 
a. The junction between the presumed ends of the core filaments and the newly assembled filaments nucleated from those ends 
is indicated by arrows. Bar, 0.2 ~m. x 108,000. (c and d) Other examples of "growth zones" at the tips of microvilli in brush borders 
treated as in a. Note that the microvillar membrane appears to be pulled " taut"  over the newly assembled filaments. (c) Bar, 0.1 
#m. x 113,000. (d) Bar, 0.2 ~m x 88,000. 
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FIGURE 10 Isolated brush border treated as in Fig. 8 with the 
addition of 2 #M CB. The rootlet ends of core filaments have 
nucleated filament assembly, but "growth zones" at the tips of 
microvillar are not present, presumably due to the inhibition of 
filament growth on the membrane-associated ends of core filaments 
by CIB. Bar, 0.4 #m. X 35,000. 

the high shear forces used to isolate core fragments damaged 
some of the filament ends. This explanation is supported by 
observations on nucleated assembly of actin from intact mi- 
crovillus cores in membrane-free brush borders (Fig. 5). As 
well as can be determined from thin-sectioned material, most, 
if not all core filaments nucleate polymerization from both 
ends even at low (2.4 ~M) actin monomer concentrations 
(results not shown for 2.4/~M). 

The "'Rootlet" Ends of Microvillar Core 
Filaments Are Not Capped In Vitro 

We have shown that the rootlet (pointed) ends of core 
filaments nucleate polymerization in both membrane-intact 
and demembranated brush borders (Figs. 5, 7, and 8). However, 
we do not feel that this constitutes convincing evidence for the 
absence of capping proteins on the pointed ends of core fila- 
ments in vivo. Unlike the membrane-associated end of the 
core, whose structural, if not chemical integrity can be judged 
morphologically (see discussion below), we have no similar 
assay for intactness of the rootlet ends of core filaments in 
isolated brush borders. In addition, this end of the core is 
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constantly exposed to the imbibing media used for isolation. It 
is plausible that dissociation of capping protein(s) present on 
the rootlet ends of core filaments could occur. 

The Membrane-associated Ends of Microvillar 
Core Filaments Are Not Capped In Vitro 

The main focus of this study was to determine if actin 
monomer can add onto the membrane-associated ends of 
microvillar core filaments. Our task would have been much 
simpler if the barbed ends of microvillar core filaments in 
membrane-free brush borders had failed to nucleate actin 
polymerization. The postulated "capping" function for the 
dense plaque at the tip of  the microvillus core would have been 
demonstrated. Instead, the dense plaque does not inhibit actin 
monomer addition under these in vitro conditions (Fig. 5 a and 
c). Does this mean that core filaments are not capped at their 
membrane-associated ends, or have we simply removed or 
destroyed the endogenous capping proteins once present in 
vivo by the procedures used for isolation and demembranation 
of the brush borders? 

Obviously the question raised above remains an open one. 
Nevertheless, the results of nucleation studies using membrane- 
intact brush borders provide at least suggestive evidence that 
core filaments can elongate (or shorten) by monomer exchange 
at their membrane-associated ends. We have shown that elon- 
gation of the tip-end of microvilli can be induced by nucleated 
polymerization of actin from the barbed ends of core filaments 
without disrupting the structural organization of filament- 
membrane attachment site at the microviIlus tip (Fig. 8). This 
attachment site consists of 20-30 filament ends embedded in a 
dense plaque which in turn is attached to the plasma mem- 
brane. Given this structural complexity, which is unaltered in 
microvilli with elongated tips, it seems unlikely that monomer 
addition onto the barbed ends of  core filaments occurred 
because the "native" configuration of this attachment site was 
disrupted during brush-border isolation. 

We have interpreted the results of nucleation studies using 
membrane-intact brush borders (Fig. 8) as a demonstration 
that actin monomer can add onto the membrane-associated 
ends of core filaments. If this interpretation is correct, then we 
are left with an interesting puzzle regarding how the microvillar 
membrane accommodates the artificial elongation of the mi- 
crovillus. Perhaps the microvillus membrane stretches, or there 
is sufficient "slack" in the membrane to allow some extension. 
In support of this notion is the observation that many microvilli 
with "growth zones" (e.g., Fig. 8c and d)  have thinner diam- 
eters at their tips, suggesting that the membrane has been 
pulled "taut" by the elongation of the filaments underneath it. 
The fact that the length of the growth zones is quite uniform 
and rarely exceeds 0.4/~m also supports the idea that the extent 
of elongation may be restricted by the degree of slack and/or  
stretch in the membrane. Another possibility is that the mem- 
brane can slide up the core during elongation because it is (or 
becomes) detached from the rest of the brush-border membrane 
at the base of the microvillus. If so, one would expect to observe 
a region of "bare" filament bundle exposed at the base of the 
microviUus roughly equal to the length of the growth zone at 
the tip. In fact, microvilli with this morphology are frequently 
observed in these preparations (e.g., Fig. 8 a). 

We suggested from the observations on the polymerization- 
induced elongation of microvilli that association or attachment 
of a core filament at its barbed end to the plasma membrane 
does not prevent growth at that end--the end identified as the 



preferred assembly-end using core fragments as nuclei for 
polymerization (Figs. 1 and 2). On the other hand, we cannot 
rule out the possibility that capping of  f'dament ends and 
attachment o f  those ends to the microvillar membrane are 
carried out by two different sets o f  proteins. The endogenous 
capping proteins could have been lost during brush-border 
isolation without detaching the filaments from the microvillar 
membrane. This raises the important problem of  how one 
defmes the attachment or association of  core filaments with the 
plasma membrane. We say that core fdaments are attached to 
the membrane at the tip o f  the microvillus based on ultrastruc- 
tural evidence. Although electron microscopy is perhaps the 
best assay for identifying specific interactions o f  fdaments with 
membranes, there is no evidence, as yet, which demonstrates a 
physical connection between core fdaments and the membrane.  
We can only say that the barbed ends of  core filaments are 
embedded in a densely staining region of  cytoplasm which in 
turn is very close to the plasma membrane.  Given this l imited 
defmition, our results indicate that "attachment" of  an actin 
filament to the membrane by its barbed end may not prevent 
growth at that end, and conversely, that monomer  addition 
may not interfere with attachment. Additional evidence for 
growth of  actin filaments at their membrane-associated ends 
has been provided by the recent studies o f  Tilney et al. (28) on 
the assembly of  acrosomal fdaments during spermiogenesis in 
Limulus. 
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