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As a critical feature of the tumor microenvironment, hypoxia is known to

be a potent inducer of tumor metastasis, and it has been proposed that the

initial steps in metastasis involve epithelial–mesenchymal transition (EMT).

The strong correlation among hypoxia, EMT, and metastasis suggests that

integrative assessment of gene expression and the DNA modification pro-

gram of hypoxia-induced EMT via high-throughput sequencing technolo-

gies may increase our understanding of the molecular basis of tumor

invasion and metastasis. Here, we present the genomewide transcriptional

and epigenetic profiles of non-small-cell lung cancer (NSCLC) cells under

normoxic and hypoxic conditions. We demonstrate that hypoxia induces

EMT along with dynamic alterations of transcriptional expression and epi-

genetic modifications in both A549 and HCC827 cells. After training using

a dataset from patients with invasive and noninvasive lung adenocarcino-

mas with an artificial neural network algorithm, a characteristic 17-gene

panel was identified, consisting of genes involved in EMT, hypoxia

response, glycometabolism, and epigenetic modifications. This 17-gene sig-

nature clearly stratified NSCLC patients with significant differences in

overall survival across three independent datasets. Our study may be suit-

able as a basis for further selection of gene signatures to potentially guide

prognostic stratification in patients with NSCLC.
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1. Introduction

Lung cancer is the leading cause of cancer death in

China (Chen et al., 2016) and worldwide (Torre et al.,

2016). Non-small-cell lung cancer (NSCLC) accounts

for approximately 85% of all lung cancers, which are

often diagnosed at an advanced stage and are associ-

ated with a poor prognosis. In contrast to the steady

increase in survival for most cancers, the 5-year rela-

tive survival for lung cancer remains unsatisfactory,

mainly due to progressive metastasis and resistance to

anticancer therapy (Torre et al., 2016). Therefore, an

increased understanding of the molecular mechanisms

underlying tumor invasion and metastasis is crucial for

improving the early detection and treatment of this

disease.

It has been proposed that the initial steps in the

invasion–metastasis cascade involve an epithelial–mes-

enchymal transition (EMT) process, converting non-

motile epithelial tumor cells at a primary site into cells

with migratory mesenchymal characteristics that are

prone to invade other tissues at a distant site (Thiery

et al., 2009). EMT can be induced either by a number

of soluble cytokines or by varied physicochemical con-

ditions in the tumor microenvironment, such as

hypoxia (Le et al., 2006; Mittal et al., 2016). Hypoxia

is a pathobiological hallmark of rapidly growing solid

tumors, including NSCLC (Gilkes et al., 2014). When

tumors outgrow the oxygen supply delivered by the

vascular system, the low oxygen levels initiate the

hypoxic response machinery in the cell. This response

is mediated by a structurally conserved family of basic

helix-loop-helix (bHLH) transcription factors known

as hypoxia-inducible factors (HIFs) (Mimeault

and Batra, 2013). Most studies ascribe the hypoxic

response to the binding of canonical HIFs to functional

hypoxia response elements (HREs) within the promoter

of molecular targets that potently drive EMT and

tumor metastasis (Rankin and Giaccia, 2008). In addi-

tion to the stabilization and activation of these tran-

scriptional regulators, epigenetics plays a crucial role in

the cellular response of solid tumors to a hypoxic

microenvironment (Hancock et al., 2015). Importantly,

a series of epigenetic enzymes, including the ten-eleven

translocation (TET) DNA hydroxymethylases and his-

tone demethylases, are regulated in an oxygen-sensitive

manner (Iyer et al., 2009; Tahiliani et al., 2009). Such

epigenetic regulation may work jointly with HIF family

members or even contribute in a more substantial way

to maintain a variety of hypoxia-mediated cellular

functions that promote tumor progression and

metastasis. Therefore, a detailed understanding of the

molecular mechanism underlying hypoxia-mediated

responses in tumor cells has important implications for

producing novel therapeutic strategies and potential

biomarkers in the clinic.

Previous attempts to discover biomarkers in lung

cancer have referred to molecular abnormalities,

including genomic instability, DNA mutations, tran-

scriptional noise and epigenetic aberrations (Vargas

and Harris, 2016). However, despite the plethora of

studies addressing potential single biomarkers for use

in the diagnosis, prognosis, and epidemiology of lung

cancer, very few of these markers have sufficed to

enable clinical implementation. Over the past decade,

the emergence of high-throughput sequencing tech-

nologies has offered the promise of a comprehensive

understanding of carcinogenesis. Given a strong corre-

lation among hypoxia, EMT, and metastasis, integra-

tive epigenomic–transcriptomic analyses of hypoxia-

induced EMT provide a possibility for identifying

novel biomarkers in diagnosis, prognosis, and treat-

ment of lung cancer. In the present study, we revealed

the characteristic molecular signatures of hypoxic

NSCLC cells by integrating epigenomic, transcrip-

tomic, and HIF target analyses. A 17-gene panel was

identified as potential biomarkers for prediction of

metastasis and prognosis in patients with NSCLC

(workflow of data generation and analysis in Fig. S1).

2. Materials and methods

2.1. Cell culture and hypoxic exposure

The human NSCLC cell lines A549 (K-RAS G12S),

HCC827 (exon 19 deletion of EGFR), NCI-H838 (K-

RAS amplified), NCI-H1437 (wild-type K-RAS), and

NCI-H1975 (EGFR T790M) were obtained from the

ATCC and cultured in medium supplemented with

10% fetal bovine serum (FBS) at 37 °C under 5% CO2

and 95% air. For the hypoxia experiments, the cells

were first seeded at 8 9 103 to 1 9 104 cells/cm2 in

normoxic conditions and then incubated under strictly

controlled hypoxic conditions (1% O2) in a hypoxic

chamber (ASTEC, Tokyo, Japan) for the desired time

periods. Each experiment was repeated in triplicate.

2.2. Western blot analysis

Cell extracts were prepared in RIPA buffer and

subjected to western blot analysis as described previ-

ously (Zhang et al., 2013). The primary antibodies

described in this paper include antibodies against

b-actin (Sigma, St. Louis, MO, USA), ANGPTL4
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(Chemicon/Millipore, Temecula, CA, USA), E-cad-

herin (Cell Signaling Technology, Beverly, MA, USA),

fibronectin (Sigma), HIF-1a (BD Biosciences, San

Jose, CA, USA), HIF-1b (BD BiosciencesA), HIF-2a
(Novus Biologicals, Littleton, CO, USA), LOXL2

(R&D Systems, Minneapolis, MN, USA), vimentin

(Sigma), and ZO-1 (Invitrogen, Carlsbad, CA, USA).

2.3. In vitro cell migration

The cell migration ability was evaluated using a Tran-

swell system (Corning Costar, Cambridge, MA, USA),

which allows cells to migrate through a polycarbonate

membrane (8-lm pore size). Briefly, A549 and

HCC827 cells were incubated under normoxia or

hypoxia in growth medium for 36 h, followed by

serum starvation overnight (12 h). Then, 4 9 104 cells

in serum-free medium (200 lL) were seeded in the

upper well, followed by continuous incubation for an

additional 24 h in normoxic or hypoxic chambers. The

lower compartment was filled with growth medium

(600 lL) containing 10% FBS. Nonmigrated cells on

the upper surface of the filter membrane were

removed, and the migrated cells attached to the bot-

tom surface of the filter membrane were fixed in 4%

paraformaldehyde and stained with 0.1% crystal vio-

let. The numbers of migrated cells were counted in five

randomly selected fields under a microscope, and each

assay was repeated in triplicate.

2.4. RNA-seq library construction and data

processing

After 72-h incubation under normoxia or hypoxia in

growth medium, total RNA isolation and library con-

struction of RNA-seq was performed as previously

described(Qian et al., 2014). Initial sequence quality

control metrics were calculated using FASTQC (version

v0.11.3). Next, filtering and data cleaning were per-

formed to remove sequencing adaptors and reads of

insufficient quality (low-quality base (<5) rate > 50%).

Mapping was performed using HISAT (version 0.1.6-

beta) with the default parameters (Kim et al., 2015).

Reference genome annotation files were downloaded

from NCBI (GRCh37.p5). A human genome reference

was constructed from UCSC (GRCh37/hg19) chromo-

somes 1–22, X, and Y and mitochondrial DNA. Align-

ment index files for HISAT version 0.1.6-beta were built

from this reference using the HISAT-build programs.

Visualization tracks for mapped reads and gene cover-

age were generated using BEDTOOLS-v2.24.0. Subsequent

data processing, including that for gene expression

levels and DEGs, was statistically analyzed via the

method of Audic and Claverie (Audic and Claverie,

1997). Gene expression levels were calculated using the

reads per kb per million reads (RPKM) method (Mor-

tazavi et al., 2008). The RPKM value of each tran-

script was directly employed for comparing differences

in gene expression among the samples. Significantly

differentially expressed genes (DEGs) were identified

based on a threshold false discovery rate

(FDR) ≤ 0.001 and a fold change ≥ 2.

2.5. MeDIP-seq and hMeDIP-seq library

construction and data processing

DNA isolation was performed after 72-h incubation

under normoxia or hypoxia in growth medium for the

applied cell lines and MeDIP-Seq and hMeDIP-Seq

libraries were constructed, as described in a previous

study (Gao et al., 2013). The libraries were sequenced

using the Illumina HiSeq analyzer, according to the

manufacturer’s instructions. From the raw fastq files,

quality control was performed on the raw sequence

data using in-house scripts and FASTQC. After strin-

gent quality control, 23 million paired reads were

obtained from each sample on average. Alignment to

hg19 was performed using BWA software (version

0.7.12, Cambridge, UK). After aligning the clean reads

to the reference human genome (hg19), we randomly

selected 15 million reads from each remaining dataset,

leading to less noise and allowing us to obtain compa-

rable total reads for each sample. We then used RPM

values (reads assigned per million mapped reads) as a

measure of the level of methylation and hydrox-

ymethylation in a specific genomic region (Chavez

et al., 2010). A Perl script was employed to calculate

RPM by defining specified bin sizes across the gen-

ome. Differentially methylated regions (DMRs) and

differentially hydroxyl-methylated regions (DhMRs)

were defined as differentially read-enriched regions

from two samples by viewing one of the samples as a

control; thus, peak regions correspond to more

enriched regions in the other sample. MACS-1.4.2

was used to detect the differentially read-enriched

regions between the two samples with the following

parameters: -f BED -g hs -s 100 -p 1e-5 –wig (Zhang

et al., 2008).

2.6. ChIP-seq library construction and data

processing

Chromatin immunoprecipitation (ChIP) was performed

as previously described (Zhang et al., 2013). Briefly,

cells were rinsed with room temperature PBS and

cross-linked by 1% formaldehyde following sonication

1492 Molecular Oncology 13 (2019) 1490–1502 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Lung cancer metastasis gene panel Y.-L. Chen et al.



by a BioruptorTM200 to generate chromatin fragments

between 100 and 500 bp. The solubilized chromatin

fragments were then immunoprecipitated with antibod-

ies against H3K4me3 (CST 9751) and H3K27me3

(CST 9733), respectively. DNA from chromatin

immunoprecipitation was used to construct sequencing

libraries following the protocol provided by the Illu-

mina TruSeq ChIP Sample Prep Set A and sequenced

on Illumina Xten with PE 150 method. TRIMMOMATIC

(version 0.38, Aachen, Germany) was used to filter out

low-quality reads. Clean reads were mapped to the

human reference genome (hg19) by BWA (version

0.7.15), allowing up to two mismatches. SAMTOOLS (ver-

sion 1.3.1, Cambridge, UK) was used to remove poten-

tial PCR duplicates, and MACS2 software (version

2.1.1.20160309, Boston, MA, USA) was used to call

histone modification peaks by default parameters

(bandwidth, 300 bp; model fold, 5, 50; q value, 0.05).

Wig files produced by MACS software were used for data

visualization by IGV (version 2.3.91, Cambridge, MA,

UK). MAnorm was applied for differential analysis of

histone modifications (Shao et al., 2012).

2.7. Functional enrichment and basic statistical

analyses

Functional enrichment analysis for genes associated

with differential epigenetic modifications was per-

formed using WebGestalt (Wang et al., 2013), which is

freely accessible online. INTEGRATED GENOME BROWSER

(version 2.3.51, Kannapolis, NC, USA) was employed

to visualize the original read density. R (version 3.2.0,

Vienna, Austria) was used to perform the basic statisti-

cal analyses and chart plotting.

2.8. Artificial neural network prediction

The neuralnet package (Fritsch and Guenther, 2010)

in R (https://CRAN.R-project.org/package=neuralnet)

was applied for artificial neural network analysis.

Default parameters were used, except the argument of

hidden was fitted as h = c(30,10).

2.9. Quantitative real-time PCR

Total RNA was extracted using the TRIzol� Reagent

(Ambion, Austin, TX, USA) and then treated with

RNase-free DNase I (Thermo Scientific, Waltham,

MA, USA) for 30 min. 1 lg of total RNA was reverse-

transcribed using Thermo Scientific RevertAid First

Strand cDNA Synthesis Kit according to the manufac-

turer’s instructions. Quantitative real-time PCR (qRT–
PCR) was performed using the Applied Biosystems

StepOnePlus Real-Time PCR System (Life Technolo-

gies, Carlsbad, CA, USA). Reverse transcription PCR

primer sequences were listed in Table S9. The qRT–
PCR for each sample was conducted with three techni-

cal replicates. RPLP0 was used as a reference gene.

The PCR was carried out under these conditions:

95 °C for 10 min, followed by 40 cycles of 95 °C for

15 s, 60 °C for 60 s. Relative expression levels for tar-

get genes were calculated via the 2�ΔΔCT method.

3. Results

3.1. Hypoxia induces EMT in NSCLC cell lines

Almost 85% of lung cancers are identified as NSCLC,

among which adenocarcinoma is the most common

histological subtype (Torre et al., 2016). Therefore, we

collected two human NSCLC cell lines A549 and

HCC827, which have been used extensively as an ideal

in vitro model to study EMT, tumor hypoxia, and car-

cinogenesis (Chen et al., 2007; Feng et al., 2014).

When exposed to hypoxia for 6 h, the proteins of

HIF-1a and HIF-2a were accumulated in both A549

and HCC827 cells, whereas HIF-1b was constitutively

expressed (Fig. 1A). The activation of hypoxia signal-

ing was further confirmed by assessing the mRNA

level of vascular endothelial growth factor A (VEGFA)

(Fig. 1B), a conventional target gene of HIF-1a and

HIF-2a (Carroll and Ashcroft, 2006). After a pro-

longed treatment of hypoxia for 72 h, both HCC827

and A549 cells underwent phenotypic changes, as the

cells lost their epithelial honeycomb-like morphology

and developed a spindle-like shape (Fig. 1C). Along

with these morphological alterations, the expression

levels of the adherens junction protein E-cadherin and

the tight junction protein ZO-1 were decreased,

whereas the expression of the intermediate filament

proteins fibronectin and vimentin was clearly up-regu-

lated (Fig. 1D). Because EMT is thought to promote

tumor invasiveness and metastasis, we next investi-

gated the impact of hypoxia on cell migration. Indeed,

the ability of the cells to migrate was significantly

increased when NSLCL cells were cultured in hypoxic

conditions, compared with those under normoxia

(Fig. 1E,F). Collectively, these results showed that

hypoxic stimulus elicited a transition from epithelial to

mesenchymal state in NSCLC cell lines.

3.2. RNA-seq reveals a hypoxia-mediated gene

expression program in NSCLC cells

Next, we applied RNA sequencing (RNA-seq) technol-

ogy to characterize the transcriptional landscape of

1493Molecular Oncology 13 (2019) 1490–1502 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Y.-L. Chen et al. Lung cancer metastasis gene panel

https://CRAN.R-project.org/package=neuralnet


both A549 and HCC827 cells under normoxic and

hypoxic conditions for 72 h. On average, 27.62 million

raw paired-end reads of 125 bp in length were gener-

ated in these cell lines. After removing low-quality

reads, 94.32% of the clean reads could be mapped to

the human genome on average (hg19) (Table S1). For

the majority of these mapped genes, the sequencing

reads were randomly distributed in more than half of

genic regions (Fig. S2A,B).

Typically, we identified 18 966 genes exhibiting at

least one unique read, among which 16 620 genes were

commonly expressed across the four samples (Fig. S2C).

Hierarchical clustering analysis of the RPKMs of these

commonly expressed genes revealed a larger difference

between the two cell types than between the cell

states under normoxic and hypoxic conditions, indicat-

ing distinct cell-type-specific transcription profiles

(Fig. 2A). We then performed pairwise comparisons for

the two cell lines, revealing 3398 and 2491 significantly

altered genes in A549 and HCC827 cells exposed to

hypoxia, respectively. Among these DEGs, 901 genes

(409 up-regulated and 492 down-regulated) were shared

between the two cell lines (Fig. 2B and Table S2). Using

an online tool for the classification of gene function
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Fig. 1. Induction of EMT by hypoxia in NSCLC cell lines. (A) Analysis of HIF proteins in cells exposed to normoxia (21% O2) or hypoxia (1%

O2) for 6 h prior to preparation of whole-cell extracts. (B) The effect of hypoxic exposure for 72 h on the transcriptional level of VEGFA was

further evaluated by real-time qPCR. The relative expression value for VEGFA mRNA was normalized on the basis of its RPLP0 content. All

the assays were performed in triplicate, and the data are shown as the mean values � SEM. The asterisks denote significant differences

(*P < 0.05; ***P < 0.001) within experiments, as determined by the Student’s t-test. (C) Morphological changes in cells treated with

hypoxia for 72 h (Bars = 50 lm). Both A549 and HCC827 lost their epithelial honeycomb-like morphology and obtained a spindle-like shape.

(D) Cellular protein levels of E-cadherin, fibronectin, vimentin, and ZO-1 affected by hypoxia for 72 h were determined by western blotting.

b-Actin was employed to ensure equal loading. E-cadherin and ZO-1 were down-regulated, whereas fibronectin and vimentin were up-

regulated when cells were subjected to hypoxia. (E) As determined by transwell assay, the migratory cells under normoxia and hypoxia for

72 h were visualized by staining with crystal violet. (F) Quantification of these migratory cells determined by transwell assay in (E). Hypoxia

treatment for 72 h clearly increased the migration of the cells of both cell lines. **P < 0.01, as evaluated using the Student’s t-test.
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(http://www.pantherdb.org), we classified these 901

DEGs into functions in the ‘cellular process’ (279,

31.0%), ‘localization’ (110, 8%), and ‘response to stimu-

lus’ (81, 9.0%) categories, among others (Fig. 2C). We

suspected that many of the genes would be involved in

the molecular pathways underlying hypoxia-induced

EMT; therefore, we cross-matched these 901 DEGs with

the 212 genes related to the gene ontology (GO) terms

EMT (GO:0001837) and response to hypoxia

(GO:0001666) and obtained 23 DEGs related to these

two terms (Fig. 2D). Among these genes, TGFB2,

DRD4, and LOXL2 were shared between the EMT and

hypoxia response terms and were all up-regulated after

hypoxia treatment (Table S3).

In addition to the DEGs classified in the hypoxia

response and EMT pathways, we found that 39.6%

(357) of the 901 DEGs were classified into ‘metabolic

process’ functions. Further statistical testing indicated

that these 357 genes were involved in both canonical gly-

colysis (7 genes) and glucose metabolic processes (12

genes) (Fig. S3 and Table S4). To clarify the gene

expression of key metabolic pathways, we selected 118

key genes involved in the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways of glycolysis/gluco-

neogenesis (hsa00010, 67 genes), the citrate cycle (TCA

cycle) (hsa00020, 30 genes), the pentose phosphate path-

way (hsa00030, 29 genes), and glycogenesis/glycogenol-

ysis (hsa00500, 12 genes). Comparison of the two cell

lines under normoxic and hypoxic conditions showed

that hypoxia notably activated the glycolysis pathway

and significantly repressed the TCA cycle (Fig. 2E). 11

genes involved in glycol-metabolism were shared

between these two cell lines, thus representing key candi-

date genes in response to hypoxia (Fig. 2F).
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3.3. Epigenome-wide mapping illustrates a

unique outlook of hypoxic NSCLC cells

We hypothesized that oxygen levels may affect func-

tional proteins containing 2-oxoglutarate- and iron(II)-

dependent dioxygenase (2OGFeDO) domains, espe-

cially proteins in the TET and methyl binding protein

domain (MBD) families (Iyer et al., 2009), resulting in

transcriptional regulation of the DNA methyltrans-

ferase (DNMT) family as well as other factors

involved in DNA methylation. Therefore, we further

examined the DNA methylation-related genes, includ-

ing DNMTs, TETs, MBDs, and nucleosome- or chro-

matin-related genes (Ooi et al., 2009), among the 901

DEGs identified above (Table S2). As a result, we

found that TET3, UHRF1, DNMT3B, MBD2, MBD3,

and MBD4 were all significantly down-regulated after

hypoxia exposure in both cell lines. In contrast, the

chromatin-related genes PIWIL2 and PIWIL4 were

significantly up-regulated (Fig. 3A). Interestingly, the

expression levels of other members of the DNMT and

TET families, that is, DNMT1, DNMT3A, and Tet1/

2, were not altered. We then validated the relative

expression of DNMT3B and TET3 in A549, HCC827,

and three other NSCLC cell lines (NCI-H838, NCI-

H1437, and NCI-H1975), and the results also showed

down-regulation of those genes (Fig. S4). As the func-

tions of these enzymes are tightly regulated for estab-

lishing, maintaining, and modifying DNA methylation

patterns, these results might suggest that the hypoxia-

induced alterations of DNA methylome were mainly

mediated by DNMT3B and TET3.

We subsequently applied the methylated DNA

immunoprecipitation (MeDIP-seq) and hydroxymethy-

lated DNA immunoprecipitation (hMeDIP-seq) tech-

niques to determine the genomewide profiles of DNA
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methylation and hydroxymethylation, respectively. The

results regarding data generation and quality control

for these sequencing experiments are displayed in

Table S5 and Fig. S5. Initially, we investigated the

overall 5mC and 5hmC patterns of each library. Our

results showed that the distribution of 5mC and 5hmC

was considerably divergent, although many of the

modified regions overlapped (Figs S5 and S6). We then

applied Pearson correlations of reads per million

(RPM) values to infer the dynamics of DNA modifica-

tions. The difference between the overall 5mC and

5hmC levels in A549 and HCC827 cells under nor-

moxia versus hypoxia was small. Instead, greater dis-

similarity between overall 5mC and 5hmC levels as

well as between the two cell lines was observed

(Fig. 3B). Furthermore, analysis of modification levels

against GC contents showed a similar pattern of the

5mC distribution between the two cell lines (Fig. S7A).

In comparison with methylation, the distribution of

5hmC was considerably different, as 5hmC was abun-

dant in regions of low CpG content in HCC827 cells,

whereas 5hmCs were more enriched in regions with a

high GC content in A549 cells (Fig. S7B). Further, we

identified many more DhMRs, but slightly fewer

DMRs in A549 cells compared with HCC827 cells

(Fig. 3C). Accordingly, more DhMR-containing but

less DMR-containing DEGs out of the 901 common

DEGs were revealed (Fig. 3D). This difference could

be explained by the distinct stages of cellular differen-

tiation in these two cell lines, as pluripotent cells show

more 5hmCs distributed in low-GC regions (Yu et al.,

2012).

In addition, we applied ChIP-seq to investigate the

dynamic changes in genomewide histone modifications

of H3K4me3 and H3K27me3, representing the active

and repressive markers, respectively. As a result, a

higher global divergence of H3K27me3 in comparison

with H3K4me3 was observed between the hypoxia and

normoxia states of the two cell lines (Fig. S8), in

accordance with the significantly differential regions

we identified (Table S6).

3.4. HIF target genes potentially regulated by

hypoxia via DNA modification

Hypoxia-inducible factors stimulate transcription via

binding to HREs in the promoters of target genes,

which contain core 50-[AG]CGTG-30 sequences (Pol-

lard et al., 2008). Previous studies have indicated that

hypomethylation of HREs is required for HIFs to

bind to their target genes, although it is unclear

whether this is the only regulatory mechanism (Hori-

uchi et al., 2012; Kitamoto et al., 2012). As shown in

Fig. 1A, HIF-1a and HIF-2a were accumulated in

response to hypoxia exposure in both A549 and

HCC827 cells, whereas HIF-1b was constitutively

expressed. We therefore studied 438 target genes of

HIF-1a (323 genes) and HIF-2a (267 genes) that were

revealed in a previous study via high-resolution ChIP-

seq technology (Schodel et al., 2011). The results
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clearly showed that HIF binding regions were gener-

ally hypomethylated in comparison with flanking

regions. In contrast, highly variable hydroxymethyla-

tion levels were observed in HIF binding regions,

which might suggest dynamic regulation of methyla-

tion around HIF binding regions in the cell population

(Fig. 4A). Among these candidate target genes of

HIFs, 55 DEGs were identified as significantly up-

regulated in our transcriptome analyses of the two cell

lines after hypoxia (Table S3). We further examined

the methylation and hydroxymethylation status of the

binding regions of these 55 genes. Interestingly, we

observed significantly greater hydroxymethylation after

hypoxia based on intragroup comparison of these

genes, whereas for methylation, a hypomethylated sta-

tus was generally maintained, with no significant dif-

ference being observed (Fig. 4B). Considering that

5hmC is the intermediate of demethylation, these

results suggest that a large population of cells were in

the process of undergoing demethylation in response

to hypoxia, thereby enabling HIF binding.

3.5. Selection and validation of a candidate gene

set as biomarker of lung cancer metastasis

We propose a rationale that the epigenetic and tran-

scriptional alterations induced by hypoxia in NSCLC

cell lines were comparable to those in the progression

and metastasis of NSCLC. Based on this reasoning,

we next selected a set of genes as candidates of metas-

tasis biomarkers of lung cancer by integrating epige-

nomic, transcriptomic, and HIF target analyses

mentioned above. We thereby obtained 51 genes that

contained genes with divergent promoter DNA modifi-

cations across the two cell lines (Table S3 and

Fig. S8), genes in the EMT and hypoxia response GO

pathways, genes involved in glycometabolism and epi-

genetics-related genes (Table S3). We reasoned that the

gene expression profiles of hypoxic NSCLC cell lines

could be comparable to those in invasive lung adeno-

carcinomas. Therefore, we further compared the

expression data for 51 genes between hypoxic NSCLC

cells and a dataset that contains microarray gene
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expression data of microdissected tumor samples from

17 cases of noninvasive lung adenocarcinoma and 23

cases of adenocarcinoma with mixed-subtype invasive

tumors [Gene Expression Omnibus (GEO) accession

code GSE27716]. As a result, we identified 29 genes

that displayed the same trend of expression changes

(Table S7).

To validate whether these genes preferentially pre-

sented a unique expression signature of hypoxic

NSCLC cells, we then selected three representative key

genes (LOXL2, VEGFA, and ANGPTL4) that were

known to be responsible for hypoxia, EMT, and gly-

cometabolism and applied quantitative real-time PCR

to validate their mRNA levels in three independent

NSCLC cell lines (NCI-H838, NCI-H1437, and NCI-

H1975), in addition to A549 and HCC827. Further-

more, protein expression of ANGPTL4 and LOXL2

was confirmed by western blotting in these NSCLC

cell lines. Consistently, these genes were mostly up-

regulated by hypoxia except LOXL2 in NCI-H1437

(Fig. S9), despite these NSCLC cells possessing varied

mutational profiles (See Materials and methods).

Encouraged by these results, we then aimed to

develop a predictive gene panel for metastasis of

NSCLC, using randomly selected 30 samples from the

GSE27716 dataset as a discovery set and the rest 10

samples as a test set. We applied an algorithm based

on artificial neural network (ANN) (Fritsch and

Guenther, 2010) (Fig. 5A) and mainly tested three

combinations of the 29 genes, including the up-regu-

lated (17), down-regulated (12), and total genes

(Table S7). As a result, we found that the 17 up-regu-

lated gene panel displayed better accuracy than the

total or the down-regulated gene set (data not shown),

which can achieve a prediction accuracy of 70% and

sensitivity of 100% (Fig. 5B). Probably due to limited

sample size, the specificity rate is 40%.

Further, as metastasis is responsible for more than

90% of deaths among cancer patient with solid tumors

(Gupta and Massague, 2006), we assumed that these

genes could reflect the survival time of patients. We

then downloaded four independent datasets containing

gene expression data and survival rate information of

NSCLC patients, including three GEO datasets

(GSE30219, GSE42127, and GSE41271) and a com-

bined TCGA dataset (TCGA_LUSC + TCGA_LUAD)

(Table S8). We applied the same ANN algorithm to

predict the patients into two groups and analyzed their

survival rates for the two predicted patient groups. As a

result, three datasets of NSCLC showed significant dif-

ferences in survival time between the two classified

groups (P values are 0.0049, 0.04, and 0.025, respec-

tively) (Fig. 5C–E). Though the combined TCGA

NSCLC dataset was not showing significance, these

results indicated for the efficacy of this 17-gene signa-

ture to distinguish the high or low risk of survival in

patients with NSCLC. Furthermore, we also examined

another three datasets containing transcriptome data of

lung small cell carcinoma (SCC), hepatocellular carci-

noma (LIHC), and stomach adenocarcinoma (STAD).

No significant difference was observed between the two

predicted patient groups for their survival rates

(Fig. S10). These results might indicate the tumor-speci-

fic potential for this 17-gene panel as a tool to identify

metastatic-prone NSCLC tumors. However, considering

the technology bias and small sample size among these

datasets, further study with larger sample size is needed

to establish a solid conclusion whether the 17-gene

panel is highly specific to NSCLC.

4. Discussion

The exceptionally high mortality of lung cancer can be

investigated by treatment resistance and progressive

metastasis. There is now a pressing need to determine

the malignant status of cancer lesions and the prognos-

tic significance of novel biomarkers, as these tools will

enable the clinical development of personalized cancer

therapies that will ultimately improve patient outcomes.

The aims of this study were to first characterize unique

epigenomic and transcriptomic signatures in NSCLC

cells under hypoxia and then to identify a gene panel

that could serve as potential biomarkers with prognostic

implications in the clinic. Previous studies have indi-

cated that the molecular program of metastasis is

already present in the bulk of some primary cancers at

the time of diagnosis (Ramaswamy et al., 2003). Here,

we have proposed a molecular program for metastasis,

involving both gene expression and epigenetic modifica-

tions, which were inferred from hypoxic NSCLC cell

lines, as hypoxia is a vital feature in the tumor microen-

vironment that can drive EMT and metastasis.

We applied high-throughput sequencing technologies

for analyzing RNA populations (RNA-Seq), DNA

modifications (MeDIP-seq and hMeDIP-seq), and his-

tone modifications (H3K4me3 and H3K27me3). These

analyses indicated that oxygen, as a major environ-

mental factor, can indeed cause extensive alterations of

gene expression. Thus, oxygen can ultimately regulate

cellular metabolism and cell-fate decisions. Impor-

tantly, in addition to the genes involved in the classical

pathways of hypoxia and EMT, a considerable pro-

portion of the identified genes were involved in glucose

metabolism. The glycolysis pathway was significantly

activated, and the TCA pathway was significantly

repressed after hypoxic stimulus (Figs 2E and S3).
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These findings are in agreement with the view of

the functional importance of glycolysis in cancer (Alten-

berg and Greulich, 2004). Furthermore, previous studies

revealed that several epigenetic enzymes are dependent

on oxygen levels in the cell, and these epigenetic

enzymes appear to play HIF-independent roles in regu-

lating glycometabolism and cell proliferation (Kaelin,

2011), indicating potential interactions among epigenetic

modulation, oxygen-dependent molecular pathways,

and regulation of glycometabolism. As expected, we

found that hypoxia regulated the expression levels of

several key DNA modification enzymes and conse-

quently induced globally dynamic changes in genome-

wide DNA methylation, hydroxymethylation, as well as

histone modifications. Many DEGs also displayed sig-

nificant variations in DNA modifications, including key

HIF target genes (Fig. 4B), suggesting that DNA modi-

fication may be involved in cellular responses to hypox-

ia. Based on these results, we identified a matrix of

gene signatures in hypoxic NSCLC cell lines.

To identify a gene panel that could be used as

biomarkers of the metastasis program in primary

NSCLC, we tested several machine-learning algorithms

in a dataset (GSE27716) containing gene expression

data of both invasive and noninvasive lung adenocar-

cinoma, using three fourths of the samples as the dis-

covery set and the rest as the test set of samples.

Ultimately, we obtained a 17-gene panel that could be

used as a potential molecular signature for prediction

of metastasis and prognostic stratification in patients

with NSCLC (Fig. 5C–E). Interestingly, all these 17

genes were significantly up-regulated upon hypoxia

exposure, while the gene set with down-regulated genes

were not applicable. Among these up-regulated genes,

ANGPTL4 was strongly regulated by epigenetic mech-

anisms as we observed alterations of both DNA and

histone modifications upon hypoxia exposure across

the two cell lines (data not shown). ANGPTL4 was

previously reported to be induced by hypoxia and cor-

relate with NSCLC progression (Zhu et al., 2016).

More relevantly, 10 out of these 17 genes are HIF-tar-

geted genes, in agreement with increased HIF expres-

sion in response to hypoxia exposure. Six genes,

including phosphoglycerate kinase (PGK1), enolase

(ENO2), and four of these HIF-targeted genes (glu-

cose-6-phosphate isomerase (GPI), phosphofructoki-

nase (PFKP), aldolase (ALDOA and ALDOC)) are

involved in glycolysis, consistent with the well-accepted

concept of up-regulation of glycolysis in cancer

(Semenza, 2010). Therefore, these six genes represent

the key regulators controlling the metabolic pathways

of lung cancer cells, leading to increased anaerobic gly-

colysis in response to hypoxia. In addition, the up-

regulated HIF-1 target gene pyruvate dehydrogenase

kinase-1 (PDK1), together with the up-regulated cell-

surface glucose transporter SLC2A1 (GLUT1), plays a

key role in blocking the aerobic TCA cycle by inhibit-

ing the oxidative decarboxylation of pyruvate

(Gagliardi et al., 2015; Wigfield et al., 2008). Previous

work also revealed a role of SLC2A1 in the prognosis

of metastasis in lung cancer (Buffa et al., 2010). On

the other hand, the down-regulated ADH1C redirects

pyruvate metabolism to lactate production, as it sup-

presses the pathway of ethanol production. Accumula-

tion and secretion of lactate have been found to

represent a pivotal early event that is correlated with

cell migration and tissue invasion in cancer (Goodwin

et al., 2014; Hirschhaeuser et al., 2011).

One major shortage of the current study is the small

sample size we obtained for the algorithm training.

Due to difficulties of getting metastatic samples, such

dataset is very rare now in the public databases.

Despite that, we identified a 17-gene panel as potential

biomarkers for precise prediction of metastasis and

prognosis in patients with NSCLC. Future studies are

required to further improve the efficacy and warrant

its potential usefulness in the diagnosis, prognosis, and

epidemiology of lung cancer.

5. Conclusion

We identified a 17 gene panel for NSCLC prognosis

through integrative epigenomic–transcriptomic analy-

ses of hypoxia-induced epithelial–mesenchymal transi-

tion. Our study may be suitable as a basis for further

selection of gene signature to potentially guide prog-

nostic stratification in patients with NSCLC.
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