
RESEARCH ARTICLE

The marker choice: Unexpected resolving

power of an unexplored CO1 region for

layered DNA barcoding approaches

Jessica Rach1, Tjard Bergmann1☯, Omid Paknia1☯, Rob DeSalle2, Bernd Schierwater1,2,

Heike Hadrys1,2*

1 ITZ, Ecology & Evolution, TiHo Hannover, Hannover, D-30559, Germany, 2 Sackler Institute of

Comparative Genomics, American Museum of Natural History, New York, NY 10024, United States of

America

☯ These authors contributed equally to this work.

* heike.hadrys@ecolevol.de

Abstract

The potential of DNA barcoding approaches to identify single species and characterize spe-

cies compositions strongly depends on the marker choice. The prominent “Folmer region”, a

648 basepair fragment at the 5’ end of the mitochondrial CO1 gene, has been traditionally

applied as a universal DNA barcoding region for metazoans. In order to find a suitable

marker for biomonitoring odonates (dragonflies and damselflies), we here explore a new

region of the CO1 gene (CO1B) for DNA barcoding in 51 populations of 23 dragonfly and

damselfly species. We compare the “Folmer region”, the mitochondrial ND1 gene (NADH

dehydrogenase 1) and the new CO1 region with regard to (i) speed and reproducibility of

sequence generation, (ii) levels of homoplasy and (iii) numbers of diagnostic characters for

discriminating closely related sister taxa and populations. The performances of the gene

regions regarding these criteria were quite different. Both, the amplification of CO1B and

ND1 was highly reproducible and CO1B showed the highest potential for discriminating sis-

ter taxa at different taxonomic levels. In contrast, the amplification of the “Folmer region”

using the universal primers was difficult and the third codon positions of this fragment have

experienced nucleotide substitution saturation. Most important, exploring this new barcode

region of the CO1 gene identified a higher discriminating power between closely related sis-

ter taxa. Together with the design of layered barcode approaches adapted to the specific

taxonomic “environment”, this new marker will further enhance the discrimination power at

the species level.

Introduction

DNA barcodes, short DNA sequences of a standardized gene region, have been highly pro-

moted for their fast and reliable identification of specimens of unknown species origin.

Numerous groups all over the world have been compiling efforts to construct a comprehensive

DNA barcode database covering a major part of the worlds biodiversity [1–4]. More recent
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metabarcoding techniques have emerged to explore and monitor species composition in dif-

ferent environments (e.g. [5–8]). All of these approaches have in common that their potential

(accuracy) in delimiting species strongly depends on DNA marker selected. Finding and

applying appropriate markers for a specific “environment” is still a challenge and subject of

ongoing discussions [9, 10].

The mitochondrial CO1 gene region (cytochrome c oxidase 1) has become the standard

genetic marker for a broad range of animal phyla since it has been promoted as the “universal”

DNA barcoding marker for Metazoa [11]. The CO1 gene bears some characteristics making it

particularly effective for evolutionary studies. First, the size and structure of this mitochondrial

gene appear to be conserved in aerobic organisms [12]. Second, the approximately 1600 base-

pair (bp) gene comprises a range of different functional domains showing heterogeneous sub-

stitution patterns [12–14]. Mitochondrial genes in general have several strong advantages as

molecular markers. They are easy to amplify due to the high copy numbers per cell and their

haploid character. They also evolve much faster than the coding regions of nuclear genes

because mitochondria lack a proofreading mechanism (e.g. [15–17]). As for the emerging

metabarcoding approaches the scientific community recently has expressed mixed “feelings”

about mitochondrial markers, but overall mt-gene fragments might still be the markers of

choice. Especially the rapid degradation of environmental DNA due to UV light and microbial

activity [18] make short sequence fragments more likely to persist long enough for pooled spe-

cies detection. Here, the larger copy number of mitochondrial genes seems to outweigh the

disadvantages.

The international DNA barcoding initiative initially agreed upon a 650 bp fragment at the

5’end of the CO1 gene—the “Folmer region”—because it is flanked by “universal” primers that

have successfully been employed for various metazoan taxa [19]. The idea of using a standard

marker for DNA barcoding that eases the coordination of multiple research groups and the

construction of a comprehensive reference library is still very lively but also quite ambitious.

The crucial parameter for the choice of a marker fragment is the substitution rate. The patterns

of molecular evolution within the CO1 gene have not yet been sufficiently studied and evolu-

tionary rates of mitochondrial genes are known to vary extremely within and between taxa

[20]. Thus, it is not remarkable that the “Folmer region” of CO1 performed well for the identi-

fication and assignment of samples in some taxonomic groups (for example birds [21–23],

fishes [24, http://www.fishbol.org] and mammals [25, http://www.mammaliabol.org]) but

failed in various other groups (bilaterian animals [26, 27], gastropods and amphibians [28]),

and a wide range of marine invertebrate (e.g. [29]) and insects (e.g. [30]). More interestingly,

in most studies using this partition of the CO1 gene, taxon specific primers have been used

instead of the universal primers established by Folmer et al. in 1994 [29–32]. Besides these

“drawbacks”, in August 2015 the iBOL (international Barcode of Life) consortium completed

gathering barcodes from five million specimens, representing 500,000 species (see http://www.

ibol.org).

In odonates, the “Folmer region” for DNA barcoding has been tested before [33]. It was

shown that overlaps of intra- and interspecific variation were prevalent complicating the iden-

tification through genetic distances. Moreover, amplification success was limited and potential

pseudogenes were co-amplified with the universal primers. Consequently, the addition of the

mitochondrial ND1 gene region (NADH dehydrogenase subunit 1) has been used for charac-

ter-based DNA barcoding in odonates to overcome these limitations [33–37].

It has become obvious that a layered barcode approach, i.e. adding a second, a third or even

more additional markers to enhance the discrimination potential in many, and particularly

metabarcoding studies, is highly desirable. In search for a more suitable marker to monitor

biodiversity patterns in odonates (which are prominent freshwater-bioindicators) we explore a
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new marker and test it against the traditional ones. We evaluate a new partition of the CO1

gene (CO1B), an approximately 650 bp fragment downstream of the “Folmer region”, for its

potential to reliably discriminate 23 odonate species of twelve genera and six families. Yet

another fragment downstream of the “Folmer region” has successfully been used for discrimi-

nating species of three New Zealand damselfly genera [38]. It was also shown that this part of

the gene was promising for DNA barcoding in sponges and presumably other diploblasts

while the 5’region failed in these animal groups due to extremely low genetic divergences [13].

We here compare the CO1B partition with the “Folmer region” and the ND1 marker with

regard to (i) the straightforwardness of amplification, sequencing and alignment procedures,

(ii) the base composition and homoplasy level and (iii) the suitability for character-based DNA

barcoding and its overall discriminating power for potential layered or metabarcoding

approaches.

Materials and methods

DNA extraction, PCR and sequencing

Tissue samples of 130 individuals representing 23 species, 12 genera and 6 families were col-

lected from 2001 to 2006 mostly by non-invasive sampling [39] and stored in 70% or 98% etha-

nol until DNA extraction. A summary of all analyzed species is given in Tables 1 and 2.

Samples from South Africa were collected by Sandra Damm and Frank Suhling within the

project BMBF Biota South S08. Samples from East Africa were collected by Viola Clausnitzer

within the project BMBF Biota East E09.

Prior to the phenol chloroform DNA extraction after Hadrys et al. [39], the tissue was

freeze-dried with liquid nitrogen for a better homogenization. Sequences of ND1 and the

“Folmer region” were obtained as described in Bergmann, Rach [33]. For the amplification

of the CO1B fragment the newly designed primers OdoCO1Fw (5’>TACACGAGCATA

TTTTACTTCAGC>3’) and OdoCO1Rev (5’ >CTTAAATCCATTGCACTTTTC>3’) were

used. The 25 μl PCR reaction mixes contained 2.5 μl of 10 X Taq DNA polymerase buffer

(Bioline/Invitrogen), 2.5 mM MgCl2, 0.1 mM dNTPs, 7.5 pM each primer and 0.5 U Taq

DNA polymerase (either Invitrogen or Bioline). Thermocycler conditions were initial dena-

turing at 95˚C 3 min, 35 cycles of 30 s denaturing at 95˚C, 30 s annealing at 53˚C, 1 min

extension at 72˚C, followed by a final extension of 6 min at 72˚C. PCR products were bidirec-

tionally sequenced on a MegaBACE 500 sequencer using the DYEnamic ET Dye Terminator

Cycle Sequencing Kit (Amersham Bioscience). Sequences were assembled and edited using

SEQMANII (v. 5.03; DNASTAR, Inc.). All sequences were deposited in Genbank (CO1A&B:

KY847543—KY847672; ND1: KY847673—KY847802).

Alignment and sequence analyses

Consensus sequences of all samples and of the three fragments were aligned using MUSCLE

[40]. The alignments were shortened to unambiguously alignable core regions of 541 bp (Fol-

mer region), 508 bp (CO1B) and 335 bp (ND1). The alignment procedure was straightforward

for the “Folmer region” and CO1B and no insertions or deletions (indels) were observed. The

alignment of the ND1 sequences was more complex due to several indels at the 5’ -end of the

sequences where parts of the 16S rDNA gene and the tRNALeu are located. All but one gap

were removed by shortening the alignment to 335 bp. The only remaining gap is located at

position 20. The gap was kept because one species (Pg- Paragomphus genei) has a characteristic

“A” at this position. This insert has been observed for all five samples of this species and was

unique to this group. Nucleotide base compositions and numbers of parsimony informative

The marker choice
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sites were quantified for all sites of each marker and for the three codon positions separately

using DAMBE [41].

Phylogenetic trees were generated for each dataset by using parsimony in PAUP version

4.0b10 [42]. All characters were weighted equally and tree statistics were calculated with unin-

formative characters excluded. Heuristic searches using parsimony were performed with 100

random sequence-addition repetitions and TBR branch swapping. Consensus trees for the

three datasets were computed to determine tree lengths and the homoplasy indices (HI).

To obtain a visual display of substitution saturation the number of transitions and transver-

sions versus divergence was plotted for (i) all sites (ii) first and second codon position and (iii)

only third codon positions using DAMBE [41]. The K2P substitution model was used as a

measure of divergence because it accommodates transition/transversion rate bias. To con-

struct a reproducible criterion for “saturation” a second-order polynomial regression line was

fitted to the transition and transversion data of each saturation plot.

Table 1. Information on anisoptera odonate samples.

Family Species Locality Country ID/Sequences No. Ind. GPS Authority

Aeshnidae Aeshna cyanea Hannover Germany Acy1—Acy2, Acy4 3 52˚21’ N / 09˚48’ E 1

Meißendorf Germany Acy03A 1 52˚72’ N / 09˚82’ E 1

Aeshnidae Aeshna grandis Hannover Germany Aegr05A 1 52˚21’ N / 09˚48’ E 1

Aeshnidae Aeshna mixta Hannover Germany Ami2—Ami3 2 52˚21’ N / 09˚48’ E 1

Aeshnidae Aeshna rileyi Kilimanjaro, Machame, Semira Riv. Tanzania Aeri142 2 03˚10’ S / 37˚13’ E 2

Aeshnidae Anaciaeschna triangulifera Pangani River Tanzania Anatri162 1 04˚37’ S / 38˚00’ E 2

Aeshnidae Anax imperator Tsaobis Namibia Ai21 3 22˚31’ S / 15˚50’ E 3

Tsauchab River Namibia Ai16 4 24˚30’ S / 16˚06’ E 3

Erb Namibia Ai61 1 22˚38’ S / 14˚38’ E 3

Baynes Mts. Namibia Ai98 3 17˚01’ S / 12˚39’ E 3

Aeshnidae Anax speratus Naukluft Namibia As11 4 24˚15’ S / 16˚14’ E 3

Tsauchab River Namibia As16 2 24˚30’ S / 16˚06’ E 3

Aeshnidae Brachytron pratense Braunschweig Germany Brpr02 2 52˚15’ N / 10˚30’ E 1

Aeshnidae Gynacantha villosa Arabuke Sokoke Forest Kenya Gyvill60 1 03˚18’ S / 39˚59’ E 2

Gomphidae Paragomphus genei Palmwag Namibia Pg3 3 17˚22’ S / 12˚15’ E 3

Baynes Mts. Namibia Pg98 2 17˚01’ S / 12˚39’ E 3

Libellulidae Crocothemis erythraea Palmwag Namibia Ce3 3 19˚53’ S / 13˚56’ E 3

Tsauchab River Namibia Ce7 1 24˚30’ S / 16˚06’ E 3

Ongongo Namibia Ce32 3 19˚08’ S / 13˚49’ E 3

Libellulidae Crocothemis sanguinolenta Ongongo Namibia Cs7 3 19˚08’ S / 13˚49’ E 3

Baynes Mts. Namibia Cs98 3 17˚01’ S / 12˚39’ E 3

Libellulidae Orthetrum julia falsum Tsauchab River Namibia Oj16 5 24˚30’ S / 16˚06’ E 3

Waterberg Namibia Oj32 5 20˚25’ S / 17˚15’ E 3

Libellulidae Orthetrum trinacria Van-Bach-Dam Namibia Ot1 2 22˚00’ S / 16˚57’ E 3

Palmwag Namibia Ot3 3 19˚53’ S / 13˚56’ E 3

Libellulidae Trithemis morrisoni Popa Falls Namibia Tst119 5 18˚70’ S / 21˚34’ E 3

Libellulidae Trithemis palustris Kwando Namibia Tst128 4 18˚00’ S / 23˚18’ E 3

72

The species and respective family names are given. The sample sites (Locality) and countries as well as the number of analysed individuals per locality are

listed for each species. Authority: 1 = no specific permissions were required, no endangered or protected species were collected; 2 = BMBF Biota East E09;

3 = BMBF Biota South S08.

https://doi.org/10.1371/journal.pone.0174842.t001
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CAOS analyses

CAOS (Character Attribute Organization System) was used to identify diagnostic characters

for taxonomic groups. Here, diagnostic characters are pure characteristic attributes (CA)

occurring only in one clade of a particular node [33, 37, 43, 44] within the strict consensus

trees of the parsimony analyses. For comparison, examples of sister taxa pairs (genera, species

or populations) were chosen and the numbers of pure CAs identified for each taxon were listed

for all three markers (Table 3). The CAOS analyses were performed as described in Rach,

Desalle [37] and Paknia, Bergmann [45].

Results

Sequence analyses

Amplification of the CO1B and ND1 fragments were successful for all species. The “Folmer

region” could not be amplified for all three individuals of one species, Paragomphus genei,
even after several retries (see also [33]). Consequently, this taxon was excluded from the study.

A compositional bias towards AT was observed for all three markers. The ND1 data set

revealed the highest AT content followed by CO1B (ND1: 73.3%; CO1B: 68.3%, Folmer:

Table 2. Information on zygoptera odonate samples.

Family Species Locality Country ID/Sequences No. Ind. GPS Authority

Coenagrionidae Pseudagrion acaciae Pangani River Tanzania Pa81 3 04˚37’ S / 38˚00’ E 2

Coenagrionidae Pseudagrion bicoerulans Mt.Elgon, Rongai River Kenya Pb77 4 01˚02’ S / 34˚46’ E 2

Aberdare Mts, River Kenya Pb78 4 00˚31’ S / 36˚43’ E 2

Kilim.,Machame,Semira Val. Tanzania Pb79 3 03˚10’ S / 37˚13’ E 2

Mt.Kenya, Loruku Kenya Pb113 4 00˚09’ S / 37˚07’ E 2

Coenagrionidae Pseudagrion kersteni Naukluft Namibia Pk11 1 24˚15’ S / 16˚14’ E 3

Kiboko River, Hunter‘s Kenya Pk72 2 02˚15’ S / 37˚21’ E 2

Tsavo West, Mzima Kenya Pk73 2 02˚58’ S / 38˚01’ E 2

Rufiji, Kichi Stream Tanzania Pk88 1 08˚15’ S / 38˚37’ E 2

Usamb.Mts,Amani Pond Tanzania Pk94 3 05˚05’ S / 38˚37’ E 2

Baynes Mts Namibia Pk98 2 17˚01’ S / 12˚39’ E 3

Coenagrionidae Pseudagrion massaicum Van-Bach-Dam Namibia Pm1 1 22˚00’ S / 16˚57’ E 3

Kuiseb River Namibia Pm15 2 24˚30’ S / 16˚06’ E 3

Tsauchab River Namibia Pm16 2 22˚00’ S / 16˚37’ E 3

Shimba Hills, Pemba Kenya Pm37 5 04˚11’ S / 39˚24’ E 2

Kiboko River, Hunter‘s Kenya Pm72 1 02˚15’ S / 37˚21’ E 2

Coenagrionidae Pseudagrion niloticum Tsavo West, Mzima Kenya Pn73 1 02˚58’ S / 38˚01’ E 2

Kiboko River Kenya Pn72 1 02˚15’ S / 37˚21’ E 2

Ewaso, NyiroRiv., Nguruman Kenya Pn76 4 01˚78’ S / 36˚13’ E 2

Protoneurinae Chlorocnemis abbotti Uluguru Mts,Pandanus For. Tanzania Ca54 1 07˚01’ S / 37˚48’ E 2

Udzungwa Mts, Sonje Tanzania Ca55 1 07˚45’ S / 36˚53’ E 2

Kilim.,Machame,Semira Val. Tanzania Ca79 5 03˚10’ S / 37˚13’ E 2

Uzamb.Mts,Amani,Sigi Val. Tanzania Ca83 1 05˚05’ S / 38˚39’ E 2

Pseudostigmatidae Coryphagrion grandis Arabuke Sokoke Forest Kenya Cg19 2 03˚18’ S / 39˚59’ E 2

Bandas, Shimba Hills Kenya Cg22 2 04˚12’ S / 39˚27’ E 2

58

The species and respective family names are given. The sample sites (Locality) and countries as well as the number of analysed individuals per locality are

listed for each species. Authority: 2 = BMBF Biota East E09; 3 = BMBF Biota South S08.

https://doi.org/10.1371/journal.pone.0174842.t002
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65.4%; see Table 4). The sequences of the “Folmer region” and ND1 showed the highest AT

occurrence at the first codon position (Folmer: 86.5% (1st), 51% (2nd), 58.5% (3rd); ND1:

84.6% (1st), 64.9% (2nd), 69.8% (3rd)) while the highest AT content within the CO1B frag-

ment was observed at the second and third codon positions (61.5% (1st), 72% (2nd), 71.4%

(3rd)). All base compositions are summarized in Table 4.

The highest percentage of parsimony informative (PI) sites was found within the ND1

alignment (51.3%) followed by CO1B (48.2%). The dataset of the “Folmer region” revealed the

lowest number of PI sites (39.4%). The great majority of sites of ND1 and the “Folmer region”

are parsimony informative at third codon positions (ND1: 89.3%; Folmer: 92.8%). The CO1B

fragment revealed however, the most PI sites at the first codon positions (65.7% of all 1st

codon positions) and only 52.9% of the 3rd codon positions were parsimony informative.

The Maximum Parsimony analyses identified significantly different numbers of equally

most-parsimonious trees for the three markers (ND1: 164, Folmer: 1558, CO1B:>10000). The

Table 3. Diagnostic characters for sister taxa.

Taxon level Taxon name Diagnostic characters

CO1A CO1B ND1

Genus Aeshna Anax 6 19 5

Genus Crocothemis Orthetrum 21 18 17

Species Pseudagrion kersteni P. bicoerulans 43 49 22

Species Anax imperator A. speratus 29 41 6

Species Aeshna cyanea A. mixta 35 50 20

Population Orthetrum julia falsum (Tsau.) O. julia falsum (Wat.) 5 1 1

Population Pseudagrion bicoerulans (Mt. Kenya) P. bicoerulans (Mt. Elgon) 2 2 4

Population Pseudagrion kersteni (Baynes Mts.) P. kersteni (5 pop.) 0 13 4

Numbers of diagnostic characters for sister taxa of different taxonomic levels (genera, species and populations) identified within the three analysed genetic

markers (“Folmer region”, CO1B and ND1).

https://doi.org/10.1371/journal.pone.0174842.t003

Table 4. Sequence information.

Marker (Codon Pos.) T(U) C A G A/T Parsimony informative

(PI) sites/Total sites

% PI sites

Folmer (all sites) 33,8 17,6 31,6 17 65,4 213/541 39,4

CO1B (all sites) 36 16,7 32,3 14,9 68,3 245/508 48,2

ND1 (all sites) 47,3 11,3 26 15,4 73,3 172/335 51,3

Folmer (1st pos.) 36 8,7 50,5 4,8 86,5 39/180 21,7

CO1B (1st pos.) 35,2 19,9 26,5 18,4 61,7 111/169 65,7

ND1 (1st pos.) 57,4 4,3 27,6 10,6 85 47/112 42.0

Folmer (2st pos.) 21,4 17,9 29,6 31,1 51 6/180 3,3

CO1B (2st pos.) 39,8 17,7 32,2 10,3 72 44/170 25,9

ND1 (2st pos.) 37,7 13,8 27,2 21,3 64,9 25/112 22,3

Folmer (3st pos.) 44 26,2 14,5 15,3 58,5 168/181 92,8

CO1B (3st pos.) 33 12,5 38,4 16,1 71,4 90/170 52,9

ND1 (3st pos.) 46,6 15,8 23,2 14,4 61 100/112 89,3

The proportion of each base (%) at all sites and at only 1st, 2nd and 3rd codon positions is shown for the three analysed mitochondrial gene partitions. The

percentage of Parsimony informative (PI) sites is listed for all sites and for 1st, 2nd and 3rd codon positions separately. The value was determined by

dividing the number of PI sites to the total numbers of basepairs (Total sites).

https://doi.org/10.1371/journal.pone.0174842.t004
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Homoplasy Index (HI) which describes the proportion of character change in a data set that is

homoplastic for a phylogenetic tree [46] was highest in the “Folmer” dataset (0.632) followed

by CO1B (0.614) and lowest in ND1 (0.532).

Nucleotide substitution saturation was studied by surveying the shape of the second-order

polynomial regression line that was fitted to transition and transversion data of each saturation

plot. If the slope of this regression line was zero or negative the data were considered to be sat-

urated. When all codon positions were analyzed together, no substitution saturation was

observed in the three data sets (S1a–S1c Fig). The slopes of the graphs for transitions and

transversions in the “Folmer” and CO1B saturation plots increased continuously with rising

K2P distances. The gradient of the graph describing transitions in the ND1 saturation plot

showed only a minimal increase when the pairwise K2P distances reached a value of approxi-

mately 0.25. Combined analyses of the first and second codon positions revealed no substitu-

tion saturation in all three data sets either (S1d and S1f Fig). When only third codon positions

were examined, no saturation of transitions and transversions were detected in the CO1B and

ND1 data sets (S1h and S1i Fig). The “Folmer” data set showed a saturation of transversions at

a K2P distance value of 0.7 and above, while the graph of transitions increased steadily with ris-

ing K2P distances (S1g Fig).

Character based analyses (CAOS)

The numbers of pure characteristic attributes (CAs, [44]) obtained for sister taxa by analyzing

the three data sets with the CAOS algorithm are given in Table 3. At the genus level two exam-

ples were chosen for comparison of the three markers. The two species of the family Aeshni-

dae, Aeshna and Anax, can be discriminated by 19 pure CAs within the CO1B fragment, while

only six and five diagnostic characters were found within the “Folmer region” and ND1. At the

genus level twenty-one CAs within the “Folmer region”, 18 within CO1B and 17 within ND1

distinguish the libellulid genera Crocothemis and Orthetrum.

As for closely related sister species two pairs of the Aeshnidae were chosen, Anax impera-
tor/Anax speratus and Aeshna cyanea/Aeshna mixta. For both pairs the CAOS analyses

revealed the highest numbers of CAs within the CO1B region (41/50), followed by the “Folmer

region” (29/35) and fewest CAs within ND1 (6/20). The same result was found for the sister

species of the Coenagrionidae, Pseudagrion kersteni and Pseudagrion bicoerulans (CO1B: 49,

“Folmer”: 43, ND1: 22).

For comparison of the three markers at the population level, three examples were chosen.

Here, interestingly in all three cases a different marker revealed the highest number of diagnos-

tic characters for distinguishing populations (Table 3). For example, for the Namibian popula-

tion “Baynes Mountains” of Pseudagrion bicoerulans 13 pure CAs were found within CO1B

and four within ND1 for distinguishing these samples from individuals of five other popula-

tions from Namibia, Kenya and Tanzania. Here, no pure CA was found within the “Folmer

region” for the same comparisons.

Discussion

The Odonata are a prominent order at the base of flying insects (Pterygota), the most species

rich and important animal group on earth but—notoriously undetected—on the brink of mass

extinction. Many pterygote orders need immediate attention. Monitoring their biodiversity

patterns over time and space by reliable and fast DNA(meta)barcoding studies would be highly

desirable. Hereby the choice of markers adapted to the “specific taxonomic environment” is

the most important “genetic predisposition” to achieve this task. While the first study on DNA

barcoding presented by Hebert, Cywinska [11] focused on the “Folmer region” and the
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“Consortium for the Barcode of Life” (CBoL) has adopted this part of the CO1 gene as univer-

sal DNA barcoding marker for species identification in a broad range of taxa (e.g. [47–50]); it

has also been shown that the “Folmer region” did not deliver reliable DNA barcodes in other

animal groups (e.g. various insect orders), due to low divergence rates or overlapping inter-

and intraspecific genetic distances [13, 51–53]. Thus, identifying, testing and employing other

DNA markers for specific taxa and/or various (meta)barcoding techniques and questions have

become a “conditio sine qua non”.

PCR anomalies and odonate DNA barcoding

Amplification success of a suitable barcoding region depends on the presence of conserved

flanking regions that can serve as universal priming sites. While the “Folmer region” based

universal primers have been working for many animal groups [19], for our datasets containing

130 odonate specimens the amplification success with these primers was moderate. Alteration

of PCR conditions were necessary for various samples, and for one species no amplification

products were obtained at all. This observation highlights the fast and different mutation ratios

within and between species. Further studies of the Folmer fragment and its flanking regions in

odonates revealed a lack of highly conserved domains [33], which made the design of odonate

specific primers for this specific gene region particularly difficult. In contrast, the odonate spe-

cific primers that have been used for the CO1B fragment show “universally” excellent perfor-

mance. PCR products were obtained easily for all species and specimen.

Comparison of homoplasy levels of different mitochondrial gene

fragments

Strong compositional biases cause saturation of nucleotide substitution [17, 54] and result in

homoplasy when placed into a tree context. Homoplasy can lead to low genetic distances

between taxa with deep divergence and might result in incorrect taxonomic assignments when

distance-based methods are used, especially in cases of incomplete taxon sampling [55]. Com-

parative analyses of the behavior of different markers, using homoplasy as a guide, will reveal

characteristics of the markers for their potential utility. In order to investigate levels of homo-

plasy we analyzed (i) base composition bias, (ii) distribution of parsimony informative (PI)

sites (iii), numbers of most-parsimonious trees (MPTs), including their Homoplasy Indices

(HI) and (iv) base substitution saturation in the three markers.

All three genetic markers showed a compositional bias towards AT. The AT content was

highest in ND1 (73.3%) and lowest in the “Folmer region” (65.4%). The AT content at the

third codon positions where generally most nucleotide substitutions occur was highest in

CO1B (71.4%) and lowest in the CO1 “Folmer region” (58.5%). The number of parsimony

informative (PI) sites within a fragment reflects its variability. Analyses of the distribution of

PI sites at the codon positions might additionally indicate homoplasy levels. If most PI sites are

restricted to one codon position high levels of homoplasy are likely. The highest percentage of

PI sites was observed within the ND1 region (51.3%), followed by CO1B (48.2%). The “Folmer

region” revealed only 39.4% PI sites. But, the great majority of third codon positions of the

“Folmer region” and ND1 are parsimony informative (Folmer: 92.8%; ND1: 89.3%). The PI

sites within the CO1B are distributed more evenly and 52.9% of the third codon positions are

parsimony informative. As DNA codons are degenerated and in most cases the same amino

acid is encoded by codons showing differences in the second or third codons, CO1B having

most PI sites in the first codon position (65,7%) indicates higher barcoding potential than the

“Folmer region”. Only three amino acids (Arg, Leu, Ser) out of twenty have codons varying
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the first codon position. Therefore, in CO1B the high PI at this position indicates meaningful

changes of amino acid chain structures between specimens.

Parsimony analyses generally return a large number of equally most-parsimonious trees

(MPTs). The parsimony analyses of CO1B revealed a high number of more than 10000 MPTs.

The number of MPTs for ND1 and the “Folmer region” was much lower (ND1: 164; Folmer:

1558). The Homoplasy Index (HI) also was lowest in ND1 but highest in the “Folmer region”.

To test for substitution saturation, the numbers of transitions and transversions of each

marker were plotted against pairwise K2P distances. Optimally the transitional and transver-

sional substitutions should linearly increase with K2P. However, with the increase of diver-

gence time, multiple substitutions at the same site might occur and the linear correlation for

the character transformations is lost. No substitution saturation was observed when all

codon positions of each marker were analyzed and when first and second codon positions

were examined. However, when only third codon positions were analyzed, the “Folmer

region” shows experienced saturation, while transitions increase linearly with the K2P

model. The slopes of the regression lines for transitions and transversions at third codon

positions of the ND1 fragment did not show a linear correlation using the K2P model. The

graphs for transitions and transversion at the third codon positions of CO1B show a linear

pattern. These results are congruent with the observed percentages of PI sites at the third

codon positions.

In general, these results suggest that mitochondrial genes and, moreover, different parti-

tions within mitochondrial genes, may highly differ in their nucleotide substitution rates and

patterns [56]. For example, in odonates the third codon position of the “Folmer region” has

experienced saturation of nucleotide substitutions and thus a decrease of genetic distances

with increasing divergence times is likely. In contrast, within the more downstream partition

of the CO1 gene, the CO1B region, additional PI sites were found. PI sites in the CO1B region

were more evenly distributed at the three codon positions than within the “Folmer region”.

The data did not indicate substitution saturation at any of the codon positions. Thus, the

genetic distances of the CO1B show a higher correlation with odonate divergence times and

consequently a more accurate assignment of close sister taxa than the barcode standard,

although both regions are parts of the same mitochondrial gene.

Diagnostic characters for sister taxa

In order to discriminate closely related taxa through discrete diagnostic characters, the CAOS

algorithm was used to identify pure characteristic attributes (CAs) for pairs of sister taxa. Pure

CAs are diagnostic characters that are present in one group but absent in the alternate group

of a node within a guide tree [37, 43–45]. Combinations of pure CAs can serve as reliable char-

acter-based DNA barcodes for species and also for genera and populations [33, 37].

The CO1B fragment showed the highest number of diagnostic characters in most sister taxa

comparisons as well as at different taxonomic levels. For example, the CAOS analysis revealed

19 diagnostic characters within the CO1B fragment for distinguishing the aeshnid genera

Aeshna and Anax, but only six and five within the “Folmer region” and ND1. For the discrimi-

nation of the sister species Aeshna cyanea and Aeshna mixta 50 pure CAs were identified

within CO1B, 35 within the “Folmer region” and 20 within ND1. The CO1B fragment also

showed good performance in discriminating geographical entities and discrete populations.

For the Namibian “Baynes Mountains” population of Pseudagrion kersteni, the CO1B

sequences revealed 13 diagnostic characters to differentiate these samples from individuals of

five other populations of this species from Namibia, Kenya and Tanzania. Here, only four

diagnostic characters were found within ND1 and no pure CA within the “Folmer region”.
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The numbers of diagnostic characters for discriminating closely related taxa is directly

related to the suitability of the particular marker to deliver reliable DNA barcodes. In that

sense the character-based barcoding approach has the potential to “filter” the discrimination

power of a given marker at different taxonomic levels! At different taxonomic levels a charac-

ter-based approach filters the informative signal for this level. A distance-based approach

reduces all character information equally to distance values between two samples without con-

sideration of taxon specific signals. Given that the Folmer sequences comprised 541, the CO1B

sequences 508 and the ND1 sequences only 335 basepairs, the CO1B showed clearly the high-

est resolution power per base pair of sequence.

Conclusion

The main criteria for the suitability of a genetic marker for DNA barcoding are (i) the simple

isolation under various laboratory conditions, (ii) low levels of homoplasy and (iii) high num-

bers of diagnostic characters for the differentiation of sister taxa. In this paper we compared

three discrete mitochondrial DNA fragments with regard to their potential for DNA barcoding

in odonates. We show that the “Folmer region” (the barcode standard) revealed a high per-

centage of parsimony informative sites at the third codon positions and that transversions at

these positions experience substitution saturation in odonate species comparisons. This satura-

tion might lead to reduced genetic differentiation at higher taxonomic levels and consequently

to false positive assignments of unknown samples when using this marker in DNA barcoding.

The CO1B fragment showed the highest number of diagnostic characters for discriminating

close sister taxa on different taxonomic levels. We suggest that this gene region is able to

deliver reliable DNA barcodes for developing a fast monitoring approach in odonates in gen-

eral. In summary, there are clear differences in the performance of DNA fragments consider-

ing different criteria important for DNA barcoding. We further suggest that a layered barcode

including several markers will most likely increase the identification success and reliability of

DNA barcodes in general.
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