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Tobacco products, specifically cigarettes, are home to microbial ecosystems that may
play an important role in the generation of carcinogenic tobacco-specific nitrosamines
(TSNAs), as well as the onset of multiple adverse human health effects associated with
the use of these products. Therefore, we conducted time-series experiments with five
commercially available brands of cigarettes that were either commercially mentholated,
custom-mentholated, user-mentholated, or non-mentholated. To mimic user storage
conditions, the cigarettes were incubated for 14 days under three different temperatures
and relative humidities (i.e., pocket, refrigerator, and room). Overall, 360 samples were
collected over the course of 2 weeks and total DNA was extracted, PCR amplified for
the V3V4 hypervariable region of the 16S rRNA gene and sequenced using Illumina
MiSeq. A subset of samples (n = 32) was also analyzed via liquid chromatography
with tandem mass spectrometry for two TSNAs: N’-nitrosonornicotine (NNN) and
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Comparative analyses of the
five tobacco brands revealed bacterial communities dominated by Pseudomonas,
Pantoea, and Bacillus, with Pseudomonas relatively stable in abundance regardless of
storage condition. In addition, core bacterial operational taxonomic units (OTUs) were
identified in all samples and included Bacillus pumilus, Rhizobium sp., Sphingomonas
sp., unknown Enterobacteriaceae, Pantoea sp., Pseudomonas sp., Pseudomonas
oryzihabitans, and P. putida. Additional OTUs were identified that significantly changed
in relative abundance between day 0 and day 14, influenced by brand and storage
condition. In addition, small but statistically significant increases in NNN levels were
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observed in user- and commercially mentholated brands between day 0 and day 14
at pocket conditions. These data suggest that manufacturing and user manipulations,
such as mentholation and storage conditions, may directly impact the microbiome of
cigarette tobacco as well as the levels of carcinogens.

Keywords: cigarettes, tobacco, bacteria, bacterial community composition, microbiome, storage conditions,
tobacco-specific nitrosamines, 16S rRNA gene

INTRODUCTION

The tobacco microenvironment within cigarettes is home to
complex mixtures of chemicals, metals, salts, trace pesticides,
alkaloids, and commercial additives (e.g., menthol and
sweeteners; Pauly and Paszkiewicz, 2011; Rodgman and
Perfetti, 2013). In fact, over 5,000 components have been
identified in tobacco and over 6,000 in tobacco smoke, many of
which are carcinogenic toxins (Talhout et al., 2011; Rodgman
and Perfetti, 2013). Among the potentially harmful constituents
of tobacco are bacteria, fungi, and their microbially derived
toxins (Pattee, 1969; Hasday et al., 1999; Pauly and Paszkiewicz,
2011). Multiple studies have shown that bacteria can not
only survive the low moisture content of tobacco but also
withstand the harsh smoking process (Eaton et al., 1995; Rooney
et al., 2005; Pauly et al., 2008). Specifically, species of Bacillus,
Kurthia, and Mycobacterium have been successfully recovered
in vitro from cigarette filters, smoked filters, paper, and tobacco
microparticulates (Eaton et al., 1995; Rooney et al., 2005; Pauly
et al., 2008).

In addition, molecular techniques to assay the bacterial
diversity of tobacco products have identified hundreds of
bacterial species present in cured tobacco leaves (Di Giacomo
et al., 2007; Huang et al., 2010; Su et al., 2011), cigarettes (Sapkota
et al., 2010), and smokeless tobacco brands (Tyx et al., 2016).
These comprise species from the families Pseudomonadaceae,
Staphylococcaceae, Lactobacillaceae, Enterobacteriaceae,
Enterococcaceae, Aerococcaceae, Corynebacteriaceae, among
others, and include potential human and respiratory pathogens
(Di Giacomo et al., 2007; Huang et al., 2010; Sapkota et al.,
2010; Su et al., 2011). Furthermore, tobacco and tobacco
smoke have been shown to harbor microbial derived toxins
and secondary metabolites (Hasday et al., 1999). For instance,
lipopolysaccharide, a potent inflammatory endotoxin of
gram-negative bacteria, was identified as a bioactive component
of cigarette smoke and a suggested cause of respiratory diseases
among smokers (Hasday et al., 1999; Wendell and Stein, 2001;
Larsson et al., 2004). These microbial components of the cigarette
may be inhaled during use and deposited into the lung and oral
cavity, where they may directly impact the health of the user.

Prior to packaging within the cigarette wrapper, tobacco
is influenced heavily by bacteria. This occurs largely during
the curing process, a necessary part of cigarette production,
whereby tobacco leaves are dried generally by flue (e.g., Virginia
tobacco), air (e.g., Burley tobacco), or sun (e.g., Oriental
tobacco) to improve their color, flavor, and aroma (Leffingwell,
1999). During the curing stage, the amount of tobacco specific
nitrosamines (TSNAs), carcinogens derived from the nitrosation

of tobacco alkaloids, increases significantly (Wiernik et al., 1995).
This is suggested to be, in part, due to certain nitrate and
nitrite reducing bacterial species present on or in the tobacco
leaves (Atawodi and Richter, 1996). High temperatures and
relative humidities have been shown to be key factors that
contribute to increasing levels of TSNAs throughout curing
(Burton et al., 1989b; Law et al., 2016) and storage (Burton
et al., 1989a; Shi et al., 2013) of tobacco. TSNA levels in
smokeless tobacco brands have also been shown to be influenced
by storage conditions, with high levels of TSNAs associated
with storage for 4 weeks at room and high temperatures
(>37◦C), but not low temperature (4◦C; Djordjevic et al., 1993).
This may be due to changing bacterial diversity within these
products.

Microbial populations are often dynamic and influenced
by surrounding environmental conditions (Kinkel, 1997; Di
Giacomo et al., 2007). For instance, changes in temperature, pH,
and nutrient availability throughout the Toscano cigar tobacco
fermentation cycle were shown to be associated with changes
in the bacterial community composition of these products
(Di Giacomo et al., 2007). In addition, storage conditions
have also been found to influence microbial exposures of
tobacco users. For example, cigarettes kept at high humidity
have been characterized by increased levels of fungi (Larsson
et al., 2008). However, to our knowledge there is no literature
describing the longitudinal effects of varying storage conditions
(e.g., temperature and relative humidity) on the bacterial
diversity of cigarettes. Therefore, this study aimed to utilize
high throughput 16S rRNA gene sequencing to investigate the
bacterial community composition of five cigarette brands over
14 days at average room, refrigerator, and pocket conditions
to identify potential trends in overall bacterial diversity and
in specific operational taxonomic units (OTUs). In addition,
a subset of samples was tested for levels of two TSNAs
[N-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanone (NNK)] at pocket and refrigerator
conditions over time.

MATERIALS AND METHODS

Sample Collection and Treatment
Five different cigarette brands (including three distinct lots
per brand) were analyzed in this study. Camel Crush, regular,
fresh (CC; R.J. Reynolds Tobacco Co., Winston-Salem, NC,
USA) and Newport Menthols (NMB; Lorillard Tobacco Co.,
Greensboro, NC, USA) were purchased from tobacco stores in
College Park, MD, USA. CC cigarettes, where the capsule within
the filter was not crushed, were considered non-mentholated,
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while those where the capsule was crushed to release a
menthol-containing solution into the cigarette filter were
considered user-mentholated (CCM). Camel full flavor, hard
pack, king (CK; R.J. Reynolds Tobacco Co., Winston-Salem, NC,
USA) were provided by our collaborators at The Battelle Public
Health Center for Tobacco Research (Columbus, OH, USA)
along with a custom mentholated version (CKM) as described
in MacGregor et al. (2014). To reflect normal user storage
conditions cigarettes were subjected to 14 days of three different
experimental storage conditions: pocket (25◦C and 30% relative
humidity), refrigerator (5◦C and 18% relative humidity), and
room (20◦C and 50% relative humidity). Subsets of cigarettes
(n = 6) were sampled from each brand for DNA extraction
and 16S rRNA amplification prior to onset of the experimental
condition (day 0), after 5 days, after 9 days, and after 14 days for
each condition (Supplementary Table S1).

DNA Extraction
Total DNA extraction was adapted from procedures previously
published (Zupancic et al., 2012; Jackson et al., 2014). Cigarettes
were dissected separately under sterile conditions and 0.2 g of
tobacco was removed and aseptically placed in Lysing Matrix
B tubes (MP Biomedicals, Solon, OH, USA). To achieve an
effective enzymatic lysis, 1 ml of ice cold 1X molecular grade
PBS buffer (Gibco by Life Technologies, Grand Island, NY, USA),
5 µl lysozyme from chicken egg white (10 mg/ml, Sigma-Aldrich,
St. Louis, MO, USA), 5 µl lysostaphin from Staphylococcus
staphylolyticus (5 mg/ml, Sigma-Aldrich, St. Louis, MO, USA)
and 15 µl of mutanolysin from Streptomyces globisporus ATCC
21553 (1 mg/ml, Sigma-Aldrich, St. Louis, MO, USA) was added
to the tubes containing cigarette tobacco and lysing matrix. Tubes
were then incubated at 37◦C for 30 min followed by the addition
of a second enzymatic cocktail consisting of 10 µl Proteinase
K (20 mg/ml, Invitrogen by Life Technologies, Grand Island,
NY, USA) and 50 µl of SDS (10% w/v, BioRad). Incubation
was repeated at 55◦C for 45 min. Samples were then subjected
to mechanical lysis via the FastPrep Instrument FP-24 (MP
Biomedicals, Santa Ana, CA, USA) at 6.0 m/s for 40 s followed
by centrifugation for 3 min at 10,000 rcf. Subsequent DNA was
purified using the QIAmp DSP DNA mini kit 50, v2 (Qiagen,
Valencia, CA, USA), according to the manufacturer’s protocol.
Negative extraction controls were included to ensure that no
exogenous DNA contaminated the samples during extraction.
DNA quality control/quality assurance was performed using
spectrophotometric measurements on a NanoDropTM (Thermo
Scientific, Waltham, MA, USA), as well as gel electrophoresis.

16S rRNA Gene PCR Amplification and
Sequencing
Using a dual-indexing strategy for multiplexed sequencing
developed at the Institute for Genome Sciences and described in
detail elsewhere (Fadrosh et al., 2014), the V3V4 hypervariable
region of the 16S rRNA gene was PCR-amplified and sequenced
on the Illumina MiSeq (Illumina, San Diego, CA, USA). PCR
reactions were set-up in 96-well microtiter plates using
the 319F (ACTCCTACGGGAGGCAGCAG) and 806R

(GGACTACHVGGGTWTCTAAT) universal primers, each
with a linker sequence required for Illumina MiSeq 300 bp
paired-ends sequencing, and a 12-bp heterogeneity-spacer
index sequence to minimize biases associated with low-diversity
amplicons sequencing (Caporaso et al., 2012; Fadrosh et al.,
2014). Reactions were performed with Phusion High-Fidelity
DNA polymerase (Thermo Fisher, Waltham, MA, USA) and
2 ng of template DNA in a total reaction volume of 25 µl. In
addition, due to the presence of PCR inhibitors, an additional
0.375 µl of bovine serum albumin (BSA; 20 mg/ml, Sigma) was
added to the PCR reactions. Negative controls without DNA
template were performed for each primer pair. A DNA Engine
Tetrad 2 thermo cycler (Bio-Rad, USA) was used under the
following cycling parameters: 30 s at 98◦C, followed by 30 cycles
of 10 s at 98◦C, 15 s at 66◦C, and 15 s at 72◦C, with a final step of
10 min at 72◦C. Successful amplification was confirmed using gel
electrophoresis. This was followed by cleanup and normalization
via the SequalPrep Normalization Plate kit (Invitrogen Inc.,
Carlsbad, CA, USA) with 25 ng of 16S PCR amplicons from each
sample prior to pooling and 16S rRNA sequencing using the
Illumina MiSeq (Illumina, San Diego, CA, USA) according to the
manufacturer’s protocol.

TSNA Analysis
Concentrations of two TSNAs (NNN and NNK) in the unused
product were determined for a subset of cigarette samples
(n= 32). The subset included two samples taken at day 0 and two
samples taken at day 14 at pocket conditions for all five brands.
In addition, two samples taken at day 0 and two samples taken at
day 14 at refrigerator conditions for CK, CKM, and NMB were
included. Samples were stored at −80◦C until analysis. Prior to
extraction, the tobacco and the outer wrapper (cut into small
pieces) were removed, weighed separately, and then combined
for analysis. Filters and the paper encasing them were removed
and discarded.

Samples were extracted using a method adopted from those
previously published for smokeless tobacco products (Stanfill
et al., 2010; Lawler et al., 2013). Each sample was spiked
with deuterated internal standards (NNN-d4 and NNK-d4) and
extracted in 30 mL of ammonium acetate on a rotary shaker
for 1 h at 250 rpm. Each extract was then filtered with a
0.45 mm syringe filter. Quality control samples, including matrix
spikes, were prepared with each batch of samples using 3R4F
cigarettes. Extracts were analyzed using liquid chromatography
with tandem mass spectrometry (LC-MS/MS). The method
detection limit based on average sample tobacco weights was
0.002 mg/g. Matrix spike recoveries averaged 113± 23% for NNN
and 110± 9% for NNK.

Sequence Quality Filtering
After screening 16S rRNA gene reads for low quality bases
and short read lengths (Fadrosh et al., 2014) paired-end
read pairs were then assembled using PANDAseq (Masella
et al., 2012), de-multiplexed, trimmed of artificial barcodes
and primers, and assessed for chimeras using UCHIME in
de-novo mode implemented in Quantitative Insights Into
Microbial Ecology (QIIME; release v. 1.9; Caporaso et al., 2010).
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The resulting quality trimmed sequences were then clustered
de-novo into OTUs with the SILVA 16S database (Quast et al.,
2012) in QIIME (Caporaso et al., 2010), with a minimum
confidence threshold of 0.97 for the taxonomic assignments.
All sequences taxonomically assigned to chloroplasts were
removed. To account for uneven sampling depth and to
ensure less biases than the standard approach (total sum
normalization), data were normalized with metagenomeSeq’s
cumulative sum scaling when appropriate (Paulson et al.,
2013b).

Data Analysis
Taxonomic assignments of genera were obtained through QIIME
(Caporaso et al., 2010). After removing genera whose maximum
relative abundance was less than 1%, a heatmap was created and
visualized with R version 3.2.2 and vegan heatplus (Ploner, 2012).
The core tobacco bacterial microbiome was defined as OTUs
present at a minimum fraction of 100% in all tested products
with QIIME’s compute_core_microbiome.py script (Caporaso
et al., 2010) and visualized with Cytoscape (Shannon et al.,
2003).

Beta diversity for all brands at all times and conditions was
calculated using the Bray–Curtis dissimilarity and compared
using Analysis of similarities (ANOSIM) on normalized data (999
permutations) through the R packages: biomformat (McMurdie
and Paulson, 2015), vegan (Oksanen et al., 2007), ggplot2
(Wickham, 2009), phyloseq (McMurdie and Holmes, 2013). Beta
diversity was also calculated as described above for samples
separated by brand.

Diversity was estimated for samples pooled by brand, time
point, and condition using the Shannon Index (Shannon et al.,
2003) through the R packages: Bioconductor (Huber et al.,
2015), metagenomeSeq (Paulson et al., 2013a), vegan (Oksanen
et al., 2007), phyloseq (McMurdie and Holmes, 2013), and fossil
(Vavrek, 2011). Significance was assessed through Tukey’s test at
p < 0.05. To account for uneven sampling depth, diversity was
measured with and data rarefied to a minimum sampling depth.

Determination of statistically significant differences
(p-value < 0.001) in OTU abundance was performed using
DESeq2 (Love et al., 2013, 2014) to compare the NMB brand
between day 0 and day 14 at room, pocket, and refrigerator
conditions. The significant OTUs (p < 0.001) were visualized
with R version 3.2.2 and R packages ggplot2 (Wickham, 2009),
vegan (Oksanen et al., 2007), and phyloseq (McMurdie and
Holmes, 2013). This was repeated for the remaining brands (CC,
CCM, CK, CKM), as well as, by product lot.

RESULTS

Sequencing
DNA extraction and sequencing was performed on 360 cigarette
samples (Supplementary Table S1), with a total of 2,172,847
sequences and an average sequence per sample of 6,262
(±3,433 SD). A total of 1,985 different bacterial OTUs (97%
identity) were identified at an average of 185 OTUs per sample
(±46 SD).

Taxonomic Analysis of All Cigarette
Brands
After samples were pooled by brand (CC, CCM, CK, CKM,
and NMB), time point (day 0, day 5, day 0, and day 14),
and condition (pocket, room, and refrigerator), Pseudomonas
had the highest relative abundance in all instances, ranging
from 7.05 to 11.24%. This was followed by either Pantoea
(3.58–8.44%) or Bacillus (4.58–9.38%) (Figure 1). These three
encompassed the furthest clade to the left of the cladogram
(Figure 1). The second most abundant clade of bacterial
genera consisted of Acinetobacter (2.16–4.84%), Enterobacter
(3.09–5.27%), Unknown Enterobacteriaceae (2.53–4.76%), and
Sphingomonas (2.97–5.13%) (Figure 1).

When samples were pooled by brand (Figure 2A)
Pseudomonas was significantly (p < 0.05) higher in relative
abundance in CCM compared to CC, CK, and NMB. CCM also
had a significantly higher relative abundance of Pantoea than
CC and a significantly lower relative abundance of Bacillus than
CC, CK, CKM, and NMB. Furthermore, CKM had significantly
higher relative abundance of Pseudomonas than CK. NMB had a
significantly higher relative abundance of Pantoea than CC, CK,
CKM.

Within brand condition was also a prominent factor
impacting the temporal dynamics of the most abundant genera
(Figures 2B–F). Experimental condition seemed to have little
significant effect on the relative abundance of Pseudomonas over
time. In fact, Pseudomonas only significantly changed in one
brand, CKM, in which it decreased between day 0 and day 14 at
room conditions (Figure 2F). The relative abundance of Bacillus
was only affected by condition in NMB at pocket conditions
and CKM at room conditions. For CKM there was a significant
increase in Bacillus between day 0 and day 9 at room conditions,
followed by a decrease between day 9 and day 14 (Figure 2F). For
NMB, Bacillus decreased in relative abundance between day 0 and
day 5 and then stayed relatively unchanged for the remainder of
the study (Figure 2B).

The relative abundance of Pantoea appeared to be more
affected by condition, whereas changes in the relative abundance
occurred in CC at pocket and room conditions (Figure 2C), in
CCM at room conditions (Figure 2D), and in NMB at pocket
and refrigerator conditions (Figure 2B). Specifically, for NMB
there was a significant increase in the relative abundance of
Pantoea between day 0 and day 14 and between day 0 and day
5 at pocket conditions, with an oscillation downward at day
9 (Figure 2B). In addition, there was a significant increase in
the relative abundance of Pantoea between day 0 and day 5 at
refrigerator conditions for the same brand.

For CC, the relative abundance of Pantoea significantly
fluctuated between day 0 and day 5, day 5 and day 9, and day
9 and day 14 at pocket conditions. There was also a significant
decrease in Pantoea between day 0 and day 9 for CC at room
conditions (Figure 2C). This is in contrast to CCM in which there
was a significant increase in Pantoea between those same times at
the same condition (Figure 2D).

The core microbiome, defined for each brand, comprised 26
bacterial OTUs for CC, 24 for CK, 22 for NMB, 20 for CKM,
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FIGURE 1 | Bacterial community composition of cigarette products over time and differing storage conditions. Heat map showing the relative
abundances of the most dominant bacterial genera identified (>1%) in cigarette products pooled by brand (CK, CKM, CC, CCM, and NMB), time point (day 0, day
5, day 9, and day 14), and experimental storage condition (room, pocket, refrigerator) and denoted by colored rectangles. Clustering using Manhattan distance of
the pooled samples represented by the dendrograms.

and 16 for CCM (Figure 3). A comparative analysis of these
bacterial OTUs revealed that 11 OTUs were shared among all
samples regardless of brand, time, and experimental condition
at relative abundances between 1.26% (Pseudomonas putida,
OTU #3) and 0.83% (Rhizobium sp., OTU #11). These included:
B. pumilus (OTU #5), Rhizobium sp. (OTU #11), Sphingomonas
sp. (OTU #2), unknown Enterobacteriaceae (OTU #1969 and
#1885), Pantoea sp. (OTU #398 and #1904), Pseudomonas sp.

(OTU #1886), Pseudomonas oryzihabitans (OTU #1868 and #8),
and P. putida (OTU #3) (Figure 3).

Two OTUs were unique to the core of NMB, Brevibacterium
sp. (OTU # 42) and Staphylococcus sp. (OTU # 143). Similarly two
OTUs were unique to the core of CC, Novosphingobium sp. (OTU
# 27) and unknown Pseudomonadales (OTU # 13). Only one
OTU was unique to CCM, unknown Enterobacteriaceae (OTU #
2018), and there were no OTUs in the core microbiome unique
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FIGURE 2 | Comparison of the relative abundance of the most dominant genera. (A) Boxplot of the relative abundance of the most dominant genera
(Pseudomonas, Pantoea, Bacillus) in each brand (CC, CCM, CK, CKM, NMB). Brands are colored as follows: CC (dark orange), CCM (pink), NMB (purple), CKM
(light green), CK (dark green). Line graphs with standard deviations of relative abundances of the same genera within brand (B) NMB, (C) CC, (D) CCM, (E) CK,
(F) CKM over time and experimental storage condition. Experimental storage condition denoted by color as follows: room (gray), pocket (orange), and refrigerator
(light blue). Asterix on lines and dashed brackets represent significant changes between time points. Significance determined by an alpha level of 0.05.
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FIGURE 3 | Network of core bacterial operational taxonomic units (OTUs) in each brand. Cytoscape network visualizing the OTUs (circles) that occur in
100% of samples (hexagon) pooled by brand and labeled with taxonomic ID and assigned OTU number in parantheses. Brands are colored as follows: CC (dark
orange), CCM (pink), NMB (purple), CKM (light green), CK (dark green). Size of OTU nodes represent relative abundance and are colored by phylum: Actinobacteria
(green), Firmicutes (red), and Proteobacteria (blue). Inner circle of nodes represent eleven core bacterial OTUs that occur in all samples, regardless of brand, time
point or condition.

to CKM and CK. The largest degree of overlap was between
NMB, CC, CK, and CKM, which had an additional four OTUs
in common amongst their core microbiomes: Sphingomonas
sp. (OTU # 1850), Methylobacterium (OTU # 28 and #
18), and unknown Aurantimonadaceae (OTU #23). The two
non-mentholated brands (CC and CK) both had Enterobacter
aerogenes (OTU # 1932) amongst their core microbiomes.
Enterobacter sp. (OTU # 4) and Pseudomonas sp. (OTU #
134) were a part of the core in all brands except the custom
mentholated Camel Kings (CKM). The custom mentholated and
non-mentholated Camel Kings (CKM and CK) along with the
NMB each had Staphylococcus sp. (OTU # 7). Terribacillus sp.
(OTU # 6) and Enterobacter sp. (OTU # 107) were a part
of the core microbiomes of all brands except commercially
mentholated NMB. CKM, CK, and CC all had B. clausi (OTU
# 9), whereas Pseudomonas (OTU # 10) and Sphingomonas (OTU
# 1287) were in the core microbiomes of NMB, CK, and CC. In

addition, Methylobacterium (OTU # 36) was present in CC and
CKM.

Beta and Alpha Diversity of All Brands
PCoA plots of the Bray-Curtis computed beta diversity for
all brands revealed the largest significant clustering by brand
(R = 0.25, p = 0.001) followed by lot (R = 0.21, p = 0.001)
(Figure 4 and Supplementary Figure S1), with NMB observed
clustering away from the other brands. There was no significant
clustering by time point or condition (Supplementary Figure
S1). When separated into distinct brands, each had minimum
clustering by time point and lot (Supplementary Figure S2),
particularly for CK (R = 0.1762, p = 0.001), CKM (R = 0.1703,
p= 0.001), and NMB (R= 0.198, p= 0.001) lots.

All brands appeared to have fluctuating bacterial diversity,
assessed through Shannon indices, during the length of the
experiment (day 0, day 5, day 9, and day 14; Supplementary
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FIGURE 4 | PCoA analysis plots of Bray-Curtis computed distances between cigarette products. Colored by brand and tested with ANOSIM (R = 0.28,
p = 0.001). Ellipses are drawn at 95% confidence intervals for product brand.

Figure S3). However, the only significant change in Shannon
indices was between day 0 and day 9 in NMB at pocket conditions
in which diversity increased (p < 0.05) (Supplementary
Figure S3).

Comparative Analysis of OTUs by
Condition between Day 0 and Day 14
Within the experimental conditions tested, non-mentholated
CC had the greatest amount of OTUs (19 OTUs) that were
significantly different in relative abundance between day 0

and day 14 at refrigerator conditions (Figure 5A). Of these,
61% (11 OTUs) were at higher relative abundance at day
14 and the rest (8 OTUs) were at higher relative abundance
at day 0. This was followed by pocket conditions, which
had 15 OTUs significantly different between day 0 and day
14, with 73% (11 OTUs) at higher relative abundance at
day 0. Room conditions had the least amount of significantly
different OTUs (nine OTUs) between time points, of which
55% (five OTUs) were at higher relative abundance at
day 14.
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FIGURE 5 | Overview of relative abundances of bacterial OTUs that were statistically significantly different (p-value < 0.001) between day 0 and day
14 for refrigerator (circle), room (square), and pocket (triangle) conditions for (A) non-mentholated Camel Crush (CC) and (B) mentholated Camel Crush
(CCM). OTUs are colored by Phylum and shaped by experimental condition. A positive log2-fold change value denotes an OTU that is significantly higher at day 14,
while a negative log2-fold change indicates an OTU that is significantly higher at day 0. The dotted line and arrows highlight the conversion in log2-fold change from
negative to positive values. Bolded text refers to OTUs that occur in both (A,B).

In contrast to its non-mentholated counterpart, CCM had
the greatest number of OTUs (20 OTUs) that were significantly
different between day 0 and day 14 at room conditions
(Figure 5B), with 70% (14 OTUs) at higher abundance at
day 0 compared to day 14. Refrigerator conditions had the
second largest amount of OTUs (eight OTUs) that were
significantly different between day 0 and day 14 for CCM,
all of which had higher relative abundance at day 0. At
pocket conditions there were only three OTUs that were
significantly different between time points. Two were at higher
abundance at day 0 and one was at a higher abundance at
day 14.

Similar to CCM, non-mentholated Camel Kings (CK) had
the largest amount of OTUs at significantly different relative
abundances (34 OTUs) between day 0 and day 14 at room
conditions (Figure 6A). However, unlike CCM, 67% of the OTUs
(23 OTUs) were at higher relative abundance at day 14. The
second condition that produced the most OTUs with significantly
different relative abundances (24 OTUs) between time points
was refrigerator conditions; 54% of OTUs (13 OTUs) at higher
relative abundance at day 0. Pocket conditions had the smallest
amount of OTUs at significantly different relative abundances
(14 OTUs). Of these, 57% (eight OTUs) were at higher relative
abundance at day 14.

Frontiers in Microbiology | www.frontiersin.org 9 March 2017 | Volume 8 | Article 358

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00358 March 4, 2017 Time: 16:56 # 10

Chopyk et al. Cigarette Microbiota and Carcinogen Dynamics

FIGURE 6 | Overview of relative abundances of bacterial OTUs that were statistically significantly different (p-value < 0.001) between day 0 and day
14 for refrigerator (circle), room temperature (square), and pocket (triangle) conditions for (A) non-mentholated Camel Kings (CK) and (B) mentholated
Camel Kings (CKM). OTUs are colored by Phylum and shaped by experimental condition. A positive log2-fold change value denotes an OTU that is significantly
higher at day 14, while a negative log2-fold change indicates an OTU that is significantly higher at day 0. The dotted line and arrows highlight the conversion in
log2-fold change from negative to positive values. Bolded text refers to OTUs that occur in both (A,B).
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FIGURE 7 | Overview of relative abundances of bacterial OTUs that
were statistically significantly different (p-value < 0.001) between day
0 and day 14 for refrigerator (circle), room temperature (square), and
pocket (triangle) conditions for Newport Menthols (NMB). OTUs are
colored by Phylum and shaped by experimental condition. A positive log2-fold
change value denotes an OTU that is significantly higher at day 14, while a
negative log2-fold change indicates an OTU that is significantly higher at day
0. The dotted line and arrows highlight the conversion in log2-fold change
from negative to positive values.

Custom-mentholated Camel Kings (CKM) at pocket
conditions had the most OTUs (43 OTUs) that were significantly
different in relative abundance between day 0 and day 14
(Figure 6B). However, only one of these OTUs was at higher
relative abundance at day 0, Bacillus (189). The remaining
98% (42 OTUs) were at higher relative abundance at day 14.
Room conditions had 38 OTUs at significantly different relative
abundance between time points, all at higher relative abundance
at day 14. Finally, refrigerator conditions had the least number
of OTUs (11 OTUs) that were significantly different in relative
abundance between day 0 and day 14, all of which were higher at
day 14.

There were only five OTUs at statistically significantly
different (p < 0.001) relative abundances between day 0 and day
14 among the different conditions for NMB (Figure 7). Pocket
and refrigerator conditions each had two OTUs that were at
significantly different relative abundance between time points.
In both conditions one of the OTUs was at higher relative
abundance at day 0 and one higher at day 14. Room conditions
had only one OTU, significantly higher at day 14.

Operational taxonomic units that are significantly different
in relative abundance between day 0 and day 14 in both CC
and CCM and in both CK and CKM are described in detail in
the Supplementary Material, in addition to a comparison of the
product lots (Supplementary Figures S4–S6).

FIGURE 8 | Tobacco-specific nitrosamine levels over time at pocket
conditions. Comparison of (A) N-nitrosonornicotine (NNN) and
(B) Nicotine-derived nitrosamine ketone (NNK) levels in all brands at day 0
(D0) and day 14 (D14) at pocket conditions. Significance at p < 0.05 shown
by brackets at the top of the plot.

Analysis of TSNA Content
N-nitrosonornicotine levels were significantly higher (p < 0.05)
at pocket conditions from day 0 to day 14 for NMB and
CCM (Figure 8A). NNK levels increased as well from day 0
to day 14 for NMB and CCM; however, these results were
not statistically significant (Figure 8B). Only CKM, CK, and
NMB were tested for these TSNAs at refrigerator conditions
(Supplementary Figure S7). NNN tended to increase in all brands
from day 0 to day 14, while NNK levels tended to decrease in all
brands over the same time. However, these differences were also
not statistically significant.

DISCUSSION

Fresh tobacco leaves are colonized by a variety of microorganisms
(Larsson et al., 2008) that can be altered by tobacco-processing
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methods following harvest, such as curing and fermentation (Di
Giacomo et al., 2007; Zhao et al., 2007). However, the effect of
storage conditions on the bacterial constituents of tobacco after
packaging within a cigarette was previously unknown. Here, we
showed that the dominant bacterial genera (Figure 2), specific
OTUs (Figures 5–7), and the concentration of TSNAs (Figure 8)
are related to the cigarette brand and the storage condition.

Pseudomonas was the most abundant bacterial genera detected
in all brands, time points, and conditions (Figure 1). This
corroborates with previous findings suggesting that Pseudomonas
was a dominant bacterial genera on aged and unaged flue-cured
tobacco leaves (Huang et al., 2010; Su et al., 2011). In addition,
storage condition seemed to have little significant effect on the
relative abundance of Pseudomonas over time, whereas Pantoea
appeared more sensitive to storage condition (Figure 2). This
may be indicative of differing colonization strategizes between the
two genera (Sabaratnam and Beattie, 2003).

In addition, OTUs of Pseudomonas and Pantoea were both
defined as members of the “core microbiome” of all products
(Figure 3). Pseudomonas and Pantoea are gram-negative, which
may contribute to the high levels of lipopolysaccharide found in
cigarette tobacco and smoke (Hasday et al., 1999). Both genera
also contain species that are associated with disease in humans
(Hatchette et al., 2000; Musher, 2001; Dutkiewicz et al., 2016).
These include P. putida and P. oryzihabitans, which are generally
considered opportunist pathogens (Yang et al., 1996), particularly
P. oryzihabitans which has been linked to bacteremia, peritonitis,
and pneumonia (Lin et al., 1997).

Many of the members of the core microbiome were also
present in the core microbiome defined for air-cured burley
tobacco including Pantoea, Pseudomonas, Sphingomonas, and
Bacillus (Law et al., 2016). Despite this agreement in core
members between products, our results showed there was some
divergence in bacterial community composition between brands
of cigarettes. For instance, NMB had a larger degree of the
genera Staphylococcus (Figures 1, 2). A well known pathogenic
species of Staphylococcus, S. aureus, has been found to have higher
nasal carriage rates in smokers (Durmaz et al., 2001; Choi et al.,
2006). This bacteria has also been shown to increase biofilm
formation and host cell adherence in the presence of cigarette
smoke (Kulkarni et al., 2012).

In addition, levels of the TSNA NNN were found in this
study to increase significantly between day 0 an day 14 at pocket
conditions for NMB and CCM, a potential public health concern
given that carcinogen exposure has been found to correlate with
the levels of TSNAs in smokeless tobacco products. Specifically, it
has been reported that NNK and NNN nitrosamine biomarkers
in the urine of smokeless tobacco users increased 32 and
12%, respectively, for every one-unit (µg/g wet wt) increase in
NNK and NNN levels within their smokeless tobacco products
(Hatsukami et al., 2015). In tobacco, bacteria have been identified
that are capable of reducing nitrate to nitrite for the formation
of TSNAs, including species of Bacillus, Staphylococcus, and
Corynebacterium (Di Giacomo et al., 2007; Fisher et al., 2012).
However, we are unable to determine with these data whether
the OTUs present in our samples have such capabilities or
were responsible for the observed increases in TSNAs levels.

In addition, the type of tobacco and the subsequent nitrate
availability, may factor into the ecology of TSNA production. For
example, flue-cured and sun-cured tobaccos have been reported
to have lower nitrate levels than air-cured (Sophia et al., 1989;
Centers for Disease Control, and Prevention, 2010). The different
tobacco varietals are also blended in various assortments by
commercial manufacturers, often with additives (e.g., menthol),
thereby resulting in varied nitrate levels and potentially different
arrangements of the microbial community compositions (Ding
et al., 2008). Keeping these variables in mind, more work
is necessary to explore the potential connections between
nitrate reducers in tobacco, such as Lactobacillus fermentum
(Figure 7; Xu and Verstraete, 2001), and increasing levels of
TSNAs.

Several studies have suggested that smoking tobacco products
can alter the microbiome of the user by disrupting commensal
bacterial populations, enabling the invasion of pathogens in
an otherwise occupied niche (Bizzarro et al., 2013; Thomas
et al., 2014; Wu et al., 2016). However, the relationship
between the microbiome of the products and the user is just
beginning to be explored. Here, we present evidence that cigarette
tobacco is a dynamic microenvironment, with significant changes
in members of the dominant bacterial genera (Figure 2),
specific OTUs (Figures 5–7), and the concentration of TSNAs
(Figure 8) dependent on brand, storage conditions, and time.
In addition, bacterial genera present at high abundance in
these products are also those common to respiratory infections
among smokers (Hatchette et al., 2000; Durmaz et al., 2001;
Musher, 2001; Choi et al., 2006). Although the capabilities of
bacterial growth in cigarette filters post-smoking have been
demonstrated (Eaton et al., 1995), our data currently cannot
ascertain whether the bacteria found in the cigarette tobacco
are capable of colonizing the oral and/or lung cavities of the
user. Despite this uncertainty, their potential role in TSNA and
toxin production makes them a potentially appropriate target for
intervention.
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