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Synovial Sarcomas (SS) are a type of Soft Tissue Sarcoma (STS) and represent 8–10%

of all STS cases. Although SS can arise at any age, it typically affects younger individuals

aged 15–35 and is therefore part of both pediatric and adult clinical practices. SS occurs

primarily in the limbs, often near joints, but can present anywhere. It is characterized by

the recurrent pathognomonic chromosomal translocation t(X;18)(p11.2;q11.2) that most

frequently fuses SSX1 or SSX2 genes with SS18. This leads to the expression of the

SS18-SSX fusion protein, which causes disturbances in several interacting multiprotein

complexes such as the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, also

known as the BAF complex and the Polycomb Repressive Complex 1 and 2 (PRC1 and

PRC2). Furthermore, this promotes widespread epigenetic rewiring, leading to aberrant

gene expression that drives the pathogenesis of SS. Good prognoses are characterized

predominantly by small tumor size and young patient age. Whereas, high tumor

grade and an increased genomic complexity of the tumor constitute poor prognostic

factors. The current therapeutic strategy relies on chemotherapy and radiotherapy,

the latter of which can lead to chronic side effects for pediatric patients. We will

focus on the known roles of SWI/SNF, PRC1, and PRC2 as the main effectors of the

SS18-SSX-mediated genome modifications and we present existing biological rationale

for potential therapeutic targets and treatment strategies.

Keywords: synovial sarcoma, SS18-SSX, epigenetics, therapeutic targets, SWI/SNF, PRC1, PRC2, chromatin

remodeling

INTRODUCTION

Synovial sarcoma (SS) is a rare (1–3 cases per 1,000,000) aggressive high-grade malignancy mainly
observed in adolescents and young adults, with a third of all SS cases occurring in patients under the
age of 20. Pediatric SS predominantly occurs in the limbs (1), but can occur anywhere. This disease
is characterized by the pathognomonic reciprocal t(X;18)(p11.2;q11.2) chromosome translocation,
which leads to the fusion of the SS18 (formerly SYT) gene to one of three SSX genes (2–6). In two
thirds of cases SS18 is fused to SSX1, with SSX2 as a fusion partner in most other cases, whilst
a fusion with SSX4 occurs rarely. SS18 contains an SNH domain and a QPGY domain, both of
which are present in the fusion protein. The SSX proteins contain a Krüppel associated box (KRAB)
repression domain at their N-terminus that is excluded from the 79 C-terminal amino-acids (a.a.)
fusing to SS18 (2–4, 7). SS18 functions as a co-activator of transcription, however the SSX proteins
have been shown to moderate repression, allowing the oncoprotein the ability to activate and
repress gene expression.
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Other than the translocation, SS tumors are mutationally
quiet. This is especially true in the pediatric setting (8).
Furthermore, pediatric SS is associated with a better prognosis
compared to its adult counterpart (9–16). Despite this, both
patient populations face the same poor prognosis in metastatic
context, which is associated with increased tumor genomic
instability (8). A difference is seen in the rate of patients with
metastases at diagnosis, reflected by 5–11% of pediatric patients
(1, 17) compared to the 50% observed in newly diagnosed adult
patients (1, 17, 18).

SS can be classified into three distinct histological subtypes
(19). Monophasic SS is characterized by spindle cells of
mesenchymal differentiation. Biphasic SS shows evidence of
both epithelial and mesenchymal differentiation, resulting in
epithelial-like structures among the spindle cells. The third
subtype, undifferentiated SS, is characterized by a lack of
differentiation. Currently, there is no clear evidence for a link
between SSX fusion partner and histological subtype.

Like most other soft tissue sarcomas, systemic therapy for
pediatric SS relies on heavy use of doxorubicin and ifosfamide
associated with radiotherapy for local control (20), but surgical
resection remains the only long-term curative technique. Low
grade cases in pediatrics have shown no benefit from adjuvant
chemotherapy and post-operative radiotherapy (21–25). There
has been no progress in patient survival during the last
three decades (26), which is linked to insufficient availability
of therapeutics.

The hallmark SS chromosome translocation leads to the
expression of a fusion protein consisting of the 379th N-terminal
a.a. of SS18 to the 79th C-terminal a.a. of the given SSX fusion
partner. These fusion proteins are widely considered to be the
main driver of SS pathogenesis (27, 28), as their expression is
sufficient to induce SS tumors in mice (29) and their silencing
causes SS cells to revert to mesenchymal stem cell-like cells
(30). However, neither fusion partner nor the fusion protein
possess DNA binding domains (2, 3, 31). Regulation of gene
expression by the fusion protein has been determined as indirect
via interactions with protein complexes.

Recent evidence supporting epigenetic modifications driving
sarcomagenesis (32) and the SS fusion acting as an epigenetic
modifier (33, 34) has brought epigenetics to the forefront of
the field for SS. Recent efforts have focused on unraveling the
mechanism behind the SS18-SSX-mediated epigenetic rewiring.

In this paper, we summarize the evidence of the interplay
between the SS fusion protein and the chromatin remodeling
machinery with its associated epigenetic modifiers. We will
discuss two key protein complex families, SWItch/Sucrose Non-
Fermentable (SWI/SNF) and Polycomb Repressive Complexes
(PRC) and how they can be targeted to improve current therapies
and alleviate/avoid their harmful side-effects (35–38).

THE SWI/SNF COMPLEXES IN SS

The SWI/SNF complexes, originally discovered in budding
yeast (39–41), have been shown to be evolutionarily conserved,
as seen by the presence of homologs of the complex

components in Drosophila (42) and mammals (43–47). These
complexes belong to the Trithorax Group (TrxG) proteins,
and utilize ATP hydrolysis to regulate the chromatin state and
control transcription (48–50). The SWI/SNF complexes have a
canonically activating role, antagonistic to the one of the PRCs,
whose description and link to SS is reviewed later.

There are two main mammalian SWI/SNF (mSWI/SNF)
complex populations, BAF (BRG1 or BRM associated factors)
and PBAF (Polybromo-associated BAF) (49, 51–54). The two
populations contain either BRG1 or BRM, which are responsible
for the catalytic ATPase activity of the complex, in addition
to other core subunits (BAF155, BAF170, BAF47, BAF57) (55).
The main difference between the two complexes is the inclusion
of BAF250A/B or BAF200, in the BAF and PBAF complexes,
respectively (56, 57). Moreover, only BAF complexes contain
SS18 and have been shown to interact with the SS fusion proteins.
The rest of the 12–14 complex subunits are tissue- and cell-
type specific.

Historically, the first evidence for a link between the
mSWI/SNF complexes and cancer was shown in Malignant
Rhabdoid Tumors (MRT), with the hallmark biallelic inactivation
of SMARCB1, the gene coding for the BAF47 protein, observed
in 98% of tumors (58–60). This leads to a loss of function of the
complexes thus promoting tumourigenesis. Later it was shown
that up to 20% of all cancers show mutations in one of the
subunits of the mSWI/SNF complexes, making it an extremely
disrupted complex, with a key role in cancer (61–64). However,
in SS the disruption of the BAF complex does not rely on a loss of
function, but on a gain of function. The SS18-SSX fusion proteins
have been shown to competitively replace the wild-type SS18 in
the BAF complex and excluding BAF47 from it, leading to its
proteasomal degradation (7, 65).

These oncogenic BAF complexes are subsequently retargeted
to PRC repressed domains and have been shown to activate
them. This is evidenced by the presence of BAF complexes
on the SOX2 locus, and the decrease in PRC2 deposited tri-
methylated lysine 27 on histone 3 (H3K27me3) marks on
the same locus (65). This has been confirmed by McBride
et al., showing a broad relocalization of the oncogenic BAF
complexes in SS, specifically targeting PRC2 repressed domains
and recruiting RNA Polymerase II to initiate transcription (66).
Furthermore, the H3K27me3 levels increased at PRC2 repressed
loci upon SS18-SSX knockdown, reverting back to a non-
activated bivalent state (66), characterized by the presence of
both activating H3K4me3 and repressive H3K27me3 marks (67).
McBride et al. also described a targeting of the PBAF complexes
to SS18-SSX activated genes (66), despite the complex not
containing SS18, thus not incorporating the fusion protein. This
suggests a downstream recruitment of PBAF complex following
BAF relocalization.

THE ROLE OF THE POLYCOMB
COMPLEXES IN SS

The Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2)
are members of a family of Polycomb group-proteins (PcG

Frontiers in Oncology | www.frontiersin.org 2 October 2019 | Volume 9 | Article 1078

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hale et al. Epigenetic Targets in Synovial Sarcoma

FIGURE 1 | BAF complex retargeting in SS. (A) The oncogenic BAF complex, including one of the SS18-SSX fusion proteins is retargeted to PRC2 repressed

domains. SS18-SSX inclusion in the BAF complex leads to the eviction of both SS18 and BAF47 from the complex. PRC2 mediates its transcriptional silencing activity

via the catalytic subunit EZH2. EZH2 catalyses the tri-methylation of H3K27, which leads to chromatin compaction. (B) The oncogenic BAF complex evicts the PRC2

complex, thus repressing its activity and activating the previously bivalent promoter. This leads to an abnormal gene expression profile across the genome due to a

widespread epigenetic rewiring and drives tumourigenesis. Created with BioRender.com.

proteins). These multiprotein complexes are responsible for
chromatin silencing of HOX genes (68, 69) through chromatin
compaction (70, 71), mediated by their respective catalytic
subunits. The current theory is that the SS18-SSX oncoprotein
mediates its transcriptional silencing via interaction with PRC1
and PRC2, since studies have shown SS18-SSX to co-localize with
the complexes (33, 72, 73). Figure 1 summarizes the important
interplay between PRC2 and BAF for silencing and remodeling
of chromatin, respectively.

PRC1 consists of two core subunits: RING1A/B and PCGF1-
6. The canonical PRC1 (cPRC1), otherwise known as PRC1.2
or PRC1.4, contains the core subunits RING1A/B, with either
polycomb group RING finger protein 2 or 4 (PCGF2 or PCGF4),
respectively. These subunits are accompanied by Chromobox
domains (Cbx) 2, 4, 6–8 and polyhomeotic homolog proteins
1–3 (HPH1-3) (74–77). There are also several heterogeneous
non-canonical PRC1 complexes, however for the purpose of
this review, we will be focussing mainly on cPRC1. The
function of cPRC1 is the mono-ubiquitination of histone 2A
at lysine 119 (H2AK119ub), controlled by the enzyme unit
dRing that catalyses the E3 ligase activity (78, 79). This process
also involves the Cbx proteins, which are thought to be the
determinants for chromatin binding, since they interact with
RING1A/B, to form a heterodimer with the core of the cPRC1
complex (74–76). The Cbx chromodomains have been found
to preferably localize to H3K27me3 domains (77), which fits
with the current hypothesis that PRC1 binds to trimethylated
H3K27, in order to maintain suppression of transcription
(69, 80–82).

The PCGF components are important for maintaining the
protein-protein interactions that initiate chromatin silencing (83)
and the knockdown of PCGF4 or either of the RING proteins,
leads to a global reduction in H2AK119ub (69). Concurrent with
this, Barco et al. also found that SS18-SSX2 influences PCGF4

by interacting with the polycomb complexes to downregulate
PCGF4 and subsequently decrease the levels of H2AK119ub (84).
This could indicate a method of reprieve from transcriptional
silencing by PRC1, utilized by the modified BAF complex and
further supports the idea that there is a sophisticated interplay
between the different multiprotein complexes in SS.

The previous model suggested that PRC1 and PRC2
complemented each other when repressing chromatin, since
many studies have identified that these PcG complexes
commonly co-occupy many PcG target loci in Drosophila
and mice (85–87). The theory was that PRC2 tri-methylated
H3K27 and PRC1 maintained this state, due to the binding
of a Cbx protein to H3K27me3 and the subsequent PRC1
binding (68, 88–90). However, compelling evidence shows
that there may be PRC2 independent pathways for PRC1
chromatin silencing (91).

THE STRUCTURE OF PRC2 AND ITS
INVOLVEMENT IN SS

PRC2 is another member of the PcG protein complexes. It
exerts its chromatin silencing functions via its catalytic subunit
Enhancer of Zeste 2 (EZH2) (92, 93), a histonemethyltransferase.
EZH2 catalyses di- or tri-methylation of lysine 27 on histone 3
(H3K27), to form H3K27me2 or H3K27me3, respectively. SS18-
SSX and EZH2 mediate formation of H3K27me3, which leads
to repression of tumor suppressor genes such as Early Growth
Response 1 (EGR1) (94). The core PRC2 subunits of canonical
PRC2 (cPRC2) are EZH2, SUZ12 and Eed (68, 90–95). There
are also several PRC2 associated proteins (96, 97) but we will
mainly focus on the core components of PRC2, since they are
independently sufficient to perform di- and tri-methylation of
H3K27 (98).

Frontiers in Oncology | www.frontiersin.org 3 October 2019 | Volume 9 | Article 1078

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hale et al. Epigenetic Targets in Synovial Sarcoma

The previous hypothesis for the pathogenesis of SS was that
the SS18-SSX oncoprotein completely knocked out the wild type
BAF complex, which then disrupted the balance between the
TrxG and PcG proteins (65, 99). It was thought that PRC2
activity was completely unopposed and therefore, EZH2 was
able to catalyse over-production of the H3K27me3 motif. This
chromatin repression also silences anti-tumourigenic proteins
and EZH2 is able to maintain cells in a pluripotent state (100),
which would fit with the neural stem-cell like landscape of SS
(101, 102). Other cancers display an oncogenic dependency on
the PcG complexes (55, 103), however McBride et al. have shown
that EZH2 mediated activity may not be the driving factor for
the pathogenesis of SS (66). There is currently no definitive
theory for the mechanism of SS that accounts for the complex
interplay between the TrxG and PcG complexes, therefore a
better understanding of the effects and consequences of the
expression of SS18-SSX fusion proteins is needed.

NOVEL EPIGENETIC THERAPEUTIC
APPROACHES

Due to the complexity of SS, its treatment will require multiple
combined epigenetic therapies or combinations of targeted
therapies, since single therapies have been trialed in the past and
have only shown partial success (99, 104). A summary of potential
therapeutic targets can be seen in Figure 2.

SS have been shown to have high levels of EZH2 expression
and subsequently high H3K27me3motif expression (92, 99, 105).
Moreover, EZH2 expression has been shown to correlate with
poor prognosis in these tumors (105). Cho et al. also reported
that in sarcomas, an increased expression of PRC2 and it’s
components were poor prognostic factors for overall survival
(106). EZH2 catalyses the di- or tri-methylation of H3K27 via
S-Adenosyl Methionine (SAM) and EZH2 expression was also
found to be more commonly linked to metastatic SS (8, 106),
which emphasizes the importance of EZH2 in metastatic SS. In
hypomethylated prostate cancer, the addition of SAM showed
a decrease in the proliferative and malignant potential of the
cancer cells (107). This highlights the importance of SAM in
cancer pathogenesis, therefore trialing a knockdown of SAM in
SS should be considered for a combination therapy. Preclinical
studies involving EZH2 inhibitors have shown some reduction in
cell proliferation in SS cell lines (99, 104), which has prompted
investigation in the clinical setting. Indeed, both pediatric and
adult patients with refractory SS have been enrolled in phase I and
II clinical trials testing the novel EZH2 inhibitor, tazemetostat
(ClinicalTrials.gov Identifiers: NCT02601937, NCT02601950,
and NCT02875548). Unfortunately, poor initial results in the
adult setting were observed (108), which could be explained
by the low levels of BAF47 present in SS (65, 109–111).
This is further supported by the synthetic lethal effect exerted
by combining BAF47 and PRC2 activity repression through
EZH2 knockdown or inhibition with another EZH2 inhibitor
(EPZ005687) (99). This result is coherent to what has previously
been done in MRT with tazemetostat (103). BAF47 is an essential
component of the complex under normal conditions (112, 113),

but appears redundant for the activity of oncogenic BAF in SS.
Instead, the complex relies on its gain of function through the
SS18-SSX mediated specific retargeting (66), which explains the
poor results shown in EZH2 inhibitor clinical trials.

JARID2 is a PRC2 associated protein (96, 97), which has
DNA binding capabilities (114, 115) and has been shown to
regulate the trimethyl mark of H3K27 in rhabdomyosarcomas
in conjunction with PRC2 (116). Knockdown of JARID2 is
linked to a global reduction of PRC2 binding to its target genes
(117, 118), which indicates an interdependence for recruitment
to target loci. An association between JARID2 and Eed suggests
that Eed is the facilitator for the interaction between PRC2
and JARID2 (118), since knockdown of Eed in vitro and in
Drosophila leads to global reduction in H3K27me3 (119). With
a potential dependence on Eed, JARID2 has been shown to alter
the methylation status of H3K27, thus implicating both Eed and
JARID2 as potential targets.

SS differs from rhabdoid tumors and other BAF47 deficient
tumors, since its key mechanism is the retargeting of the
oncogenic BAF complexes through the 79th C-terminal a.a. of
the SSX protein. This is supported by the fact that truncated
SSX sequences disrupt the localization of the fusion proteins and
inhibit SS proliferation (120), thus Figure 2 shows SS18-SSX to
be a target for consideration.

Furthermore, the inhibition of a recently described non
canonical BAF (ncBAF) complex (121), distinct from the two
previouslymentioned BAF and PBAF complexes, has been shown
to be a potential synthetic lethal target for SS. The synthetic
lethal approach relies on exploiting the vulnerability caused by
the inclusion of the fusion genes in the cBAF complex, which
becomes unable to perform its canonical role in the cells leading
to an increased sensitivity to ncBAF inhibition. The depletion of
the BRD9 subunit of the BAF and ncBAF complexes leads to
cell death in both SS and MRT (122, 123). This is particularly
interesting given the recent development of potent and specific
BRD9 targeting compounds (124–128). Another synthetic lethal
target for SS is the DNA damage response kinase ATR, which has
been shown to impair growth of patient-derived SS xenografts
(129). This study has indicated that SS has a dependence on
ATR, which is apparent in other cancers and has been trialed
in squamous non small cell lung cancer, small cell lung cancer,
breast cancer and ovarian cancer (129, 130).

Another potential therapeutic target associated with the BAF
complex, is cyclin-dependent kinase 9 (CDK9). It has recently
been shown that its inhibition leads to the dephosphorylation
of BRG1, one of the catalytic subunits of the BAF complex
(131), which impairs its activity and activates silenced genes.
The mechanism behind this is not completely understood but
given the oncogenic relationship between the BAF complex
and the SS fusion, this leads us to believe that it would
be worth investigating the effect of CDK9 inhibition in a
SS context.

Interestingly, another set of CDKs, namely CDK4 and CDK6,
have been shown to be valuable therapeutic targets in SS as
well. Targeting the cyclin D1-CDK4/6-Rb axis with the CDK4/6
inhibitor palbociclib leads to proliferation arrest and cell death in
SS cell lines (132, 133). Palbociclib was approved for breast cancer
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treatment by the FDA in 2015 and is currently being trialed in
various other cancers (134).

KDM2B is a histone demethylase and is a member of non-
canonical PRC1, named PRC1.1 (77, 135). KDM2B is involved
in the maintenance of embryonic stem cell (ESC) state in mouse
cells (136) and is also implicated in multiple malignancies, such
as gynecological, hematological, gastric, and pancreatic cancers
(137–139). Its role in these cancers is linked to tumourigenesis
and proliferation of the malignant cells, however more recently,
KDM2B has been indicated for the maintenance of SS cell
transformation (140).

SS18-SSX has also been shown to activate factors that
influence lineage, most notably the FGF receptor gene (FGFR2)
(101), which is important for inducing a neuronal lineage in
stem cells (141). The effector proteins that are influenced by SS
could provide another avenue for potential therapeutics. Another
consideration for targeting is the protein-protein interaction that
the PCGF proteins are responsible for maintaining, since this

enables PRC1mediated chromatin silencing and has not received
much consideration previously. More insight into the different
subtypes of SS could provide more targets or unknown synthetic
lethal targets, however this would require more research into the
genetic mechanisms involved in SS.

CONCLUSION

The growing evidence surrounding genetic abnormalities
inducing a gain of function of the mSWI/SNF complexes, as
opposed to the historically identified loss of function in MRT,
makes a strong case for further investigation of the mechanism
underlying the retargeting of the BAF complex. The interaction
between the oncogenic BAF complex and the PcG complexes
in SS is not fully understood either and this information may
lead to the identification of novel therapeutic targets. There are
multiple epigenetic targets discussed in this mini-review that, if

FIGURE 2 | Therapeutic targets in Synovial Sarcoma. The yellow visuals represent the potentially targetable components discussed in this review. The red dashed

lines indicate components in SS that already have small molecule inhibitors and the black dashed lines indicate potential targets that currently have no small molecule

inhibitor or gene therapy. Certain targets in the figure (e.g., ATR and FGFR2) have been inhibited in other cancers and have shown potential synthetic lethality and

growth reduction in SS, respectively, and have therefore been included for consideration as targets. The green plus signs indicate the maintenance of the repressive

tri-methylation of H3K27, exerted by PRC1, and the red cross depicts the inhibition of BRG1 through dephosphorylation, should there be inhibition of CDK9. The

figure also represents some of the interplay in SS that controls chromatin remodeling and silencing and emphasizes the need for a multifactorial approach to treatment

and overcome potential treatment resistance. Created with BioRender.com.
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targeted in combination, could provide a well-tolerated and safe
therapy for pediatric and adult SS. However, a comprehensive
understanding of the SS18-SSX induced epigenetic rewiring in
SS is needed to allow the most influential epigenetic modifiers to
be identified and incorporated into an effective therapy.
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