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Abstract 

Building models that allow phenotypic evaluation of complex agronomic traits in crops of global economic inter-
est, such as grain yield (GY) in soybean and maize, is essential for improving the efficiency of breeding programs. In 
this sense, understanding the relationships between agronomic variables and those obtained by high-throughput 
phenotyping (HTP) is crucial to this goal. Our hypothesis is that vegetation indices (VIs) obtained from HTP can 
be used to indirectly measure agronomic variables in annual crops. The objectives were to study the association 
between agronomic variables in maize and soybean genotypes with VIs obtained from remote sensing and to identify 
computational intelligence for predicting GY of these crops from VIs as input in the models. Comparative trials were 
carried out with 30 maize genotypes in the 2020/2021, 2021/2022 and 2022/2023 crop seasons, and with 32 soy-
bean genotypes in the 2021/2022 and 2022/2023 seasons. In all trials, an overflight was performed at R1 stage using 
the UAV Sensefly eBee equipped with a multispectral sensor for acquiring canopy reflectance in the green (550 nm), 
red (660 nm), near-infrared (735 nm) and infrared (790 nm) wavelengths, which were used to calculate the VIs 
assessed. Agronomic traits evaluated in maize crop were: leaf nitrogen content, plant height, first ear insertion height, 
and GY, while agronomic traits evaluated in soybean were: days to maturity, plant height, first pod insertion height, 
and GY. The association between the variables were expressed by a correlation network, and to identify which indices 
are best associated with each of the traits evaluated, a path analysis was performed. Lastly, VIs with a cause-and-effect 
association on each variable in maize and soybean trials were adopted as independent explanatory variables in mul-
tiple regression model (MLR) and artificial neural network (ANN), in which the 10 best topologies able to simultane-
ously predict all the agronomic variables evaluated in each crop were selected. Our findings reveal that VIs can be 
used to predict agronomic variables in maize and soybean. Soil-adjusted Vegetation Index (SAVI) and Green Normal-
ized Dif-ference Vegetation Index (GNDVI) have a positive and high direct effect on all agronomic variables evaluated 
in maize, while Normalized Difference Vegetation Index (NDVI) and Normalized Difference Red Edge Index (NDRE) 
have a positive cause-and-effect association with all soybean variables. ANN outperformed MLR, providing higher 
accuracy when predicting agronomic variables using the VIs select by path analysis as input. Future studies should 
evaluate other plant traits, such as physiological or nutritional ones, as well as different spectral variables from those 
evaluated here, with a view to contributing to an in-depth understanding about cause-and-effect relationships 
between plant traits and spectral variables. Such studies could contribute to more specific HTP at the level of traits 
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Introduction
Population growth and the increasing demand for food 
require greater accuracy, efficiency in management, grain 
yield, competitiveness in the market and protection of 
the environment, so that policies can be put in place to 
guarantee food safety [1]. To do this, it is necessary to 
adopt more precise technologies for appropriate man-
agement and plant phenotyping. By linking genotype to 
phenotype, stress-tolerant and high-yielding plants can 
be quickly and effectively identified [2].

Indeed, developing genetically superior cultivars 
depends on the efficiency of phenotypic evaluation in 
the field. Traditional phenotyping methods are based on 
manual measurements and visual observations of traits, 
which makes the process time-consuming, labor-inten-
sive, and less precise [3, 4].

Advanced plant phenotype evaluation techniques, 
such as high-throughput phenotyping (HTP), allows for 
evaluation more complex traits, such as growth, stress, 
resistance, pest and disease incidence, physiology, nutri-
tion, and yield [3, 4]. HTP can be understood as a set of 
technologies, such as the use of remote sensing imag-
ing, unmanned aerial vehicles (UAVs) or screening plat-
forms to measure plant traits in a faster, more accurate, 
non-destructive and large-scale way. Digital phenotyp-
ing technologies, such as using canopy reflectance spec-
trometers in the visible/near-infrared (VIS/NIR) region, 
combined with robust evaluation approaches enables 
accurate and faster identification of superior genotypes 
in breeding programs [5].

Currently, there are several HTP tools available, but 
most involve the use of expensive equipment and skilled 
labor [6, 7]. Thus, there is a need to develop modern phe-
notyping methods for non-destructive measurement of 
several traits under different field conditions for select-
ing genetic materials, which is essential in breeding pro-
grams [8]. IVs are mathematical models with spectral 
bands that allow association with plant biomass. The 
most widely used IV is the normalized difference vegeta-
tion index (NDVI), because there is a high relationship 
between spectral behavior and morphological, physiolog-
ical and biochemical processes of plants [4, 9]. However, 
the use of other IVs is as efficient or more efficient in this 
relationship with plant biomass.

A potential way to achieve this is to use vegetation indi-
ces obtained from remote sensing [10]. When compared 
to traditional phenotyping methods, HTP enables a 

larger number of plants to be screened over time, as well 
as providing highly accurate information on the plant’s 
phenotype, which until now has been measured in the 
field with a high degree of bias, such as grain yield [10]. 
In conventional phenotyping, a single measurement of 
final yield for replicated plots in multiple seasons. How-
ever, grain yield is one of the traits with the lowest herit-
ability in breeding, making traditional plant selection for 
yield more imprecise [11–13].

Nowadays, HTP approaches have been developed to 
cover complex plant traits such as growth, architecture, 
biotic and abiotic stresses, and grain yield [14]. Physical 
and chemical characteristics of the plants, such as canopy 
architecture, water status, and nitrogen concentration, 
for example, are captured by reflectance in VIS/NIR spec-
tra, which can contribute to the identification of physio-
logically superior plants, such as water- and nitrogen-use 
efficient plants [11–13]. However, these approaches 
are still limited in terms of the range of species, cover-
ing small rosette plants such as Arabidopsis [11–13] and 
major cereal crops [15, 16]. Therefore, it is necessary to 
build models and generic solutions that allow the pheno-
typic evaluation of complex traits in crops of global eco-
nomic interest such as soybeans and maize, evaluating 
highly complex traits such as grain yield in these species.

Although there are some publications that used vegeta-
tion indices (VIs) for HTP, to the best of our knowledge, 
little research evaluates these variables in a breeding pro-
gram over different crop seasons in maize and soybean. 
Our hypothesis is that the best VIs to indirectly meas-
ure agronomic variables are different in both crops. The 
objectives were to study the association between agro-
nomic variables in maize and soybean genotypes with 
VIs obtained from remote sensing and to identify com-
putational intelligence for predicting GY of these crops 
from VIs as input in the models.

Material and methods
Field experiments
Comparative trials were carried out 30 maize geno-
types in the 2020/2021, 2021/2022 and 2022/2023 crop 
seasons. In the 2021/2022 and 2022/2023 crop season, 
comparative trials were carried out with 32 soybean 
genotypes. The field trials were carried out in the munici-
pality of Chapadão do Sul, Mato Grosso do Sul, Brazil, at 
the experimental area of the Federal University of Mato 
Grosso do Sul (UFMS/CPCS, Fig.  1). Region climate is 

of interest in each crop, helping to develop genetic materials that meet the future demands of population growth 
and climate change.
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Aw (Tropical Savannah) according to the Köppen-Geiger 
classification.

A randomized block design with four replications was 
used in all trials. The plots consisted of seven 5 m-long 
rows spaced 0.45  m apart. A stand of 15 plants m−1 
was used for soybean, while three plants per meter was 
adopted for maize trials. The evaluations took place in 
the three central rows, disregarding 0.5 m from each end 
of the lines.

To set up each trial, the soil was desiccated with the 
herbicide Glyphosate at a dose of 6 L ha−1. Subsequently, 
conventional soil preparation was carried out. Fungicide 
(pyraclotrobin + methyl thiophanate) and insecticide 
(fipronil) at 200 mL of the commercial product for every 
100 kg of seeds were used in seed treatment. The soybean 
seeds were inoculated with Bradyrhizobium spp bacteria 

using a rate of 200  mL of concentrated inoculant for 
every 100 kg of seeds. The furrows were opened mechan-
ically and 200  kg  ha−1 of the 04-20-20 formulation was 
applied, followed by manual sowing.

Weeds were controlled with the herbicide Gliphosate at 
a dose of 4 L ha−1 and pests with tamethoxam + lambda-
cyhalothrin at a dose of 200 mL ha−1. No irrigation was 
performed in the experiments. To control diseases, two 
preventive applications were carried out in each crop 
using mancozeb at a dose of 1.5  kg  ha−1, the first when 
more than 50% of the genotypes were in full flowering 
and the second 30 days later. On these same dates, pest 
control applications were carried out using tiametoxam 
at a dose of 1.0 L ha−1. Applications were carried out 
between 8:30 and 9:30 and between 15:30 and 17:00 to 
avoid product drift and hotter times of the day.

Fig. 1  Pearson’s correlation network for the variables leaf nitrogen (NL), ear insertion height (EIH), plant height (PH), grain yield (YG) and vegetation 
indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) evaluated in 30 maize genotypes during three crop seasons
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Obtaining vegetation indices
Vegetation indices (VIs) were obtained in all trials from 
UAV imagery using a Sensefly eBee RTK (Real Time 
Kinematics) fixed-wing remotely piloted aircraft with 
autonomous take-off, flight plan and landing control. 
The eBee was equipped with the Sensefly Sequoia mul-
tispectral sensor, which is a multispectral camera used in 
agricultural activities that uses the sunlight sensor and 
the additional 16 Mpx RGB camera for recognition. The 
multispectral sensor used was acquired with a horizon-
tal field of view (HFOV) of 61.9°, vertical field of view 
(VFOV) of 48.5° and diagonal field of view (DFOV) of 
73.7° as explained by [4], which acquires reflectance in 
the green (550 nm), red (660 nm), Rededge (735 nm) and 
near-infrared (790 nm) wavelengths, and has a brightness 
sensor that enables the calibration of the acquired values.

The information acquired at these wavelengths made it 
possible to calculate the VIs (Table 1), which were used in 
the computer algorithms. In each trial, an overflight was 
carried out at R1 stage, which corresponded to 60  days 
after emergence (DAE), period when most genotypes are 
in full bloom. Radiometric correction of the images was 
performed using Pix4Dmapper software, in conjunction 
with the camera’s reflectance calibration plate, which is 
specific to each device. This reflectance calibration plate 
contains detailed information on the reflectance rates for 
each wavelength captured by the multispectral sensor. 
The field calibration procedure was performed immedi-
ately before the flight, with the capture of the reference 
photo for calibration being managed by the e-Motion 
software. Since the flight had a maximum duration of 
15 min, no new calibration was necessary after the flight 
was completed. The processing of the vegetation index 
models was performed based on the reflectance factor 
data obtained during the field images. The maps were 
manipulated and the Vegetation Indices extracted from 
the respective plots using the ArcGis software version 
10.5.

Agronomic traits evaluated in maize
Agronomic traits evaluated in maize crop were: leaf nitro-
gen content at full bloom (LNC), plant height (PH), first ear 
insertion height (EIH), and grain yield (GY). For the evalu-
ations, ten plants were randomly harvested from each plot 
and the variables LNC, PH and EIH were measured in cm 
using a millimeter tape at 60 DAE. To determine GY, the 
central rows of each plot were harvested and the grains 
were weighed, corrected to 13% moisture and the values 
extrapolated to kg ha−1. For leaf nitrogen analysis, diagnos-
tic leaves were removed from the corn plant, which were 
washed with water, neutral detergent solution (0.1%), acid 
solution (HCl 0.3%) and deionized water, and then placed 
in paper bags and dried in a hot air oven at 65 ± 5 ºC until 
they reach a constant temperature. pasta. After drying the 
material, the samples were ground in a Wiley mill. Leaf 
nitrogen analyzes were carried out following the Bataglia 
methodology [17].

Agronomic traits evaluated in soybean
In the soybean experiments, the agronomic traits at matu-
rity were: days to maturity (DM), plant height (PH), first 
pod insertion height (PIH) and grain yield (GY). DM con-
sisted of the number of days from emergence to maturity in 
at least 95% of the plants in each plot. For the other assess-
ments, ten plants were randomly harvested from each plot 
and the variables PH and PIH were measured in cm using 
a millimeter tape at 60 DAE. GY was estimated by harvest-
ing the center rows of each plot, in which the grains were 
weighed, corrected to 13% moisture and the values extrap-
olated to kg ha−1.

Statistical analyses
Initially, a joint analysis of variance was carried out for each 
variable evaluated in the maize and soybean experiments, 
according to the statistical model shown in Eq. 1.

(1)Yijk = µ+ Bk + Gi + Sj + GSij + eijk

Table 1  Equations and references for vegetation indices (VIs) used for high-throughput phenotyping

RNIR near infrared reflectance, RGREEN green reflectance, RRED red reflectance, REDGE Red-edge reflectance, L soil effect correction factor

VIs Vegetation Index Equation References

NDVI Normalized difference vegetation index NDVI = Nir−Red
Nir+Red

[15]

SAVI Soil-adjusted vegetation index SAVI = (1+ 0,5) nir−red
nir+red+0,5

[16]

GNVDI Green normalized difference vegetation index GNDVI = Nir−Green
Nir+Green

[17]

NDRE Normalized difference red edge index NDRE = nir−rededge
nir+rededge

[18]

SCCCI Simplified canopy chlorophyll content index SCCCI = NDRE
NDVI

[19]

EVI Enhanced vegetation index EVI =  nir−red
(nir+6red−7,5green)+1

[20]

MSAVI Modified soil adjusted vegetation index
MSAVI = 2Nir+1−

√
(2Nir+1)2−(8Nir−Red)

2

[21]
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wherein: Yijk is the observation in the k-th block evalu-
ated in the i-th genotype and j-th crop year, µ is the over-
all mean, Bk is the block effect considered as fixed, Gi 
is the genotype effect considered as fixed, Sj is the crop 
effect considered as random, GSij is the random effect of 
the interaction between genotype i and crop j, and eijk is 
the random error associated with the observation Yijk.

Pearson correlations (r) between the traits evaluated in 
each experiment were obtained according to Eq. 2:

where: COV(XY) is the covariance between traits X and 
Y, σ̂ 2

x  is the phenotypic variance of trait X and σ̂ 2
y  is the 

phenotypic variance of trait Y. Correlation coefficients 
between the traits were expressed by a correlation net-
work, in which the proximity between the nodes (traits) 
is proportional to the absolute value of the correlation 
between these nodes. Thickness of the edges was con-
trolled by a cut-off value equal to 0.60, which means that 
just | rXY|≥ 0.60 had their edges highlighted. Lastly, green 
color represents positive correlations, while red color 
highlights negative correlations.

In order to identify which indices are best associated 
with each of the traits evaluated in maize and soybean, 
path analysis was used, according to the model shown in 
Eq.  3. For this purpose, the multicollinearity of the X’X 
correlation matrix was initially diagnosed following the 
classification by Montgomery et  al. (2001). In all cases, 
moderate multicollinearity was detected (condition num-
ber > 100). Therefore, the path analyses were carried out 
by adding a constant k = 0.05 to the diagonal of the X’X 
matrix to provide weak multicollinearity.

where: Y are the traits evaluated in maize and soybean 
experiments; β1, β2, …β7 are the direct effects obtained 
for the VIs described in Table 1; pε is the residual effect of 
the analysis. VIs with a cause-and-effect relationship to 
each trait, i.e., high direct effects and in the same direc-
tion as their correlation with these traits, will be selected.

VIs with a cause-and-effect relationship with each trait 
evaluated in maize and soybean trials were used as inde-
pendent explanatory variables in multiple linear regres-
sion model (MLR) and multilayer perceptron neural 
network (ANN). For this purpose, original datasets from 
each crop (three maize trials and two soybean trials) were 
divided into two subsets: training (80% of the data) and 
validation (20% of the data).

(2)rXY =
COV(xy)√
σ̂ 2
x × σ̂ 2

y

(3)
Y = β̂1NDVI + β̂2SAVI + . . .+ β̂7MSAVI + pε

Multiple regression model tested for each trait with the 
selected VI is contained in Eq. 4. This model will be used 
as a control to verify the gain from using computational 
intelligence techniques.

where Y is the traits evaluated in the maize and soybean 
experiments; β1, β2, …βi are the regression coefficients 
obtained for the j-th VIs selected by the path analysis.

The input layer was comprised of the VIs selected by 
the path analysis; the output layer was comprised of the 
agronomic variable to be predicted. For the intermedi-
ate layers, a logistic activation function (fx) was applied 
to each neuron (Eq. 3), which uses as argument the scalar 
product of the input vector (x) and the weight vector (w) 
associated with that node.

where: x is a binary value representing neuron activation 
(1) versus non-activation (0).

The training adopted was a feedforward type using 
the supervised approach. Thus, 3600 ANN topologies 
were tested, consisting of the following combination: 
two hidden layers (20 × 20 possibilities), three hidden 
layers (20 × 20x20 possibilities), and four hidden layers 
(20 × 20x20 × 20 possibilities). Only the 10 best topologies 
able to simultaneously predict all the agronomic variables 
evaluated in each crop were saved.

The following statistics were used to select the 10 best 
ANNs saved at both steps (training and validation): Pear-
son correlation ( rXY—Eq. 6) and root mean squared error 
(RMSE—Eq. 6).

wherein: COV (xy) is the covariance between the observed 
(X) and estimated (Y) values; σ̂ 2

x  is the variance of the 
observed values; σ̂ 2

y  is the variance of the estimated 
values.

wherein: Ŷi is the mean of the observed values; n is the 
total number of observations.

(4)

Y = β̂1NDVI + β̂2SAVI + . . .+ β̂7MSAVIY

= β̂1IV1 + β̂2IV2 + . . .+ β̂iIVj + εij

(5)f (x) =
1

1+ e−x

(6)rXY =
COV(xy)√
σ̂ 2
x × σ̂ 2

y

(7)
RMSE(%) =

100

Y

√√√√
∑n

i=1

(
Yi − Ŷi

)2

n
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Results
Maize trials
The block effect was non-significant (p < 0.05) for all the 
variables evaluated, while the genotype effect was signifi-
cant only for the SCCCI (Simplified Canopy Chlorophyll 
Content Index) index (Table 2). However, there was sig-
nificance for crop season and the genotype by crop sea-
son interaction (GxS) for all variables. The coefficient of 
variation was higher than 10% only for the ear insertion 
height (EIH) and grain yield (GY).

Pearson correlation network reveals a positive and 
high magnitude relationship between the VIs evaluated 
(Fig.  1). However, the association between these indi-
ces and the agronomic variables evaluated in maize was 
low. SAVI (Soil-Adjusted Vegetation Index) and EVI 
(Enhanced Vegetation Index) were closest to the EIH and 
plant height (PH) variables, while SAVI and NDVI (Nor-
malized Difference Vegetation Index) were closest to GY 
and leaf nitrogen content (LNC).

Figure 1 Correlation network for leaf nitrogen (LNC), 
ear insertion height (EIH), plant height (PH), grain yield 
(GY) and vegetation indices (NDVI, GNDVI, NDRE, 
SAVI, MSAVI, EVI and SCCCI) assessed in 30 maize gen-
otypes during three crop seasons

However, Pearson correlation coefficient does not 
show a cause-and-effect relationship between the vari-
ables, especially when some of them are highly correlated 
such as the VIs evaluated. For this reason, a path analy-
sis was carried out to split the Pearson correlation values 
into direct and indirect effects on the main variable of 
interest.

Figure 2 shows the direct effects of each VI evaluated 
on the agronomic variables of corn. The NDVI, NDRE 
(Normalized Difference Red Edge Index) and SCCCI 
have a direct effect of low magnitude on LNC. Similarly, 

EVI and MSAVI (Modified Soil Adjusted Vegetation 
Index) have a moderate direct effect on PH. SAVI and 
GNDVI have a positive direct effect of high magnitude 
on all the agronomic variables evaluated in maize. There-
fore, these VIs were used in the computational intelli-
gence analyses carried out.

The accuracy values of the ten best topologies out of 
the 3600 tested for predicting maize agronomic variables 
are shown in Tables 3 and 4. All the topologies presented 
obtained higher correlation coefficient (r) values between 
the observed and estimated values compared to MLR 
for all agronomic variables in the training and validation 
steps. The best topology for NL reached values of 0.9 in 
validation, 0.48 for EIH, 0.8 for PH and 0.7 for YG.

Following this pattern, the RMSE values between the 
values observed and estimated by the 10 best networks 
were lower than those obtained by the MLR in the train-
ing and validation steps for all agronomic variables, 
in which the MLR value achieved for NL was 23.29 in 
the validation and the topology with the lowest RMSE 
reached 13.11, for EIH the error was 52.15 in the evalu-
ation and the topology with the highest error was 47.10, 
falling below the MLR with emphasis on the YG variable 
that reached RMSE of 70.01 for MLR and the topologies 
with the highest error approached 43, much lower than 
what was presented by the traditional technique. Overall, 
the two-layer topologies had lower r values and higher 
RMSE values than the three-layer topologies.

Soybean trials
Block effects were non-significant for all the vari-
ables evaluated in soybean crop (Table  5). Genotype 
effects were only significant for DM, PIH, and NDRE. 
These same variables showed a non-significant GxCS 

Table 2  P-value of the joint analysis of variance for the variables leaf nitrogen (LNC), ear insertion height (EIH), plant height (PH), grain 
yield (GY) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) evaluated in 30 maize genotypes during three crop 
seasons

Variable Block Genotype (G) Crop season (CS) GxCS Mean CV (%)

LNC 0.27 0.12 0.00 0.00 31.86 3.28

EIH 0.14 0.34 0.00 0.00 0.93 13.35

PH 0.26 1.00 0.00 0.00 1.87 6.89

GY 0.05 0.99 0.00 0.02 7540.56 19.21

NDVI 0.21 1.00 0.00 0.00 0.79 3.93

SAVI 0.28 1.00 0.00 0.00 0.58 5.07

GNVDI 0.29 0.42 0.00 0.00 0.71 2.34

NDRE 0.22 0.07 0.00 0.00 0.24 5.61

SCCCI 0.29 0.00 0.00 0.00 0.29 3.61

EVI 0.26 1.00 0.00 0.00 0.28 6.00

MSAVI 0.27 1.00 0.00 0.00 0.61 5.84
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interaction, while this effect was significant for the other 
variables. Crop season effect was non-significant only for 
DM, plant height (PH) and NDVI. CV values were below 
20% for all the soybean variables evaluated.

Figure  3 shows the correlation network obtained for 
the variables evaluated. NDVI and SAVI showed the 
strongest correlations with GY and DM. Conversely, 

MSAVI and SCCCI were correlated with the PIH and 
PH variables. However, it is important to note that the 
magnitude of these correlations is considered low as it 
is less than 0.30 in all cases.

Direct effects of the VIs on each agronomic variable 
in the soybean are shown in Fig.  4. NDVI and NDRE 
indices had high-magnitude positive effects on all the 

Fig. 2  Direct effect obtained by path analysis of vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) on the variables leaf nitrogen 
(NL), ear insertion height (EIH), total height (PH), grain yield (GY) evaluated in 30 maize genotypes during three crop seasons

Table 3  Pearson’s correlation between the values observed and predicted by the 10 best artificial neural networks selected and 
multiple linear regression (MLR) for predicting the variables leaf nitrogen (LNC), ear insertion height (EIH), total height (PH), grain yield 
(GY) in maize using the SAVI and GNDVI vegetation indices as input

* the values between the lines refer to the number of neurons in each layer; T: training (80% of the data); V: validation (20% of the data)

Topology* LNC EIH PH GY

T V T V T V T V

2–8 0.77 0.79 0.40 0.40 0.69 0.70 0.29 0.30

4–10 0.80 0.82 0.41 0.40 0.68 0.70 0.33 0.35

5–10 0.81 0.82 0.44 0.45 0.71 0.72 0.45 0.46

6–6 0.83 0.83 0.42 0.43 0.70 0.70 0.41 0.42

8–8 0.84 0.85 0.44 0.45 0.73 0.73 0.44 0.47

2–4-8 0.85 0.85 0.44 0.46 0.75 0.78 0.61 0.62

2–6-8 0.87 0.87 0.45 0.45 0.75 0.76 0.63 0.63

2–10-10 0.87 0.87 0.45 0.46 0.76 0.76 0.67 0.70

4–4-8 0.88 0.88 0.46 0.47 0.75 0.77 0.66 0.67

4–8-2 0.89 0.90 0.47 0.48 0.77 0.80 0.68 0.69

MLR 0.64 0.65 0.39 0.39 0.51 0.52 0.28 0.30
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variables. Therefore, these indices were used in the 
computational intelligence analyses to predict the agro-
nomic variables in soybean.

Tables  6 and 7 show the accuracy metrics of the 10 
best topologies out of the 3,600 tested for predicting 
soybean agronomic variables. All the selected topolo-
gies obtained r values higher than and RMSE values 
lower than the MLR model for all the agronomic varia-
bles in the training and validation steps. As in the maize 
experiments, the two-layer topologies showed lower 
r values and higher RMSE values than the three-layer 
topologies. It is important to note that layers with more 
than 10 neurons were not found in any of the topolo-
gies selected in both cases. DM, PH and GY reached 

values ​​close to or greater than 0.5, indicating high accu-
racy especially for these variables that are difficult to 
predict due to the strong influence of the environment.

Discussion
The presence of genotype x crop season interaction for all 
the agronomic variables evaluated in the maize and soy-
bean trials shows that climatic conditions from one crop 
season to the next affect the behavior of genotypes, espe-
cially changes in temperature and rainfall. By evaluat-
ing the phenotype using VIs, it is possible to quickly and 
accurately understand the relationship between genetic 
components and phenotypic expression [18]. Using VIs 
as an approach for evaluating and selecting genotypes in 

Table 4  Root mean squared error (%) between observed and predicted values from the 10 best artificial neural networks selected 
and multiple linear regression (MLR) for the for predicting the variables leaf nitrogen (LNC), ear insertion height (EIH), total height (PH), 
grain yield (GY) in maize using the SAVI and GNDVI vegetation indices as input

* the values between the lines refer to the number of neurons in each layer; T: training (80% of the data); V: validation (20% of the data)

Topology* LNC EIH PH GY

T V T V T V T V

2–8 18.92 18.36 42.10 41.03 27.19 26.56 43.46 42.17

4–10 18.15 18.13 40.15 39.99 26.99 26.19 43.18 42.99

5–10 17.95 17.76 39.95 39.57 25.68 25.60 42.98 42.98

6–6 17.45 17.43 39.10 38.17 24.36 23.44 42.67 42.15

8–8 17.03 16.96 38.52 37.10 23.79 22.11 42.01 41.15

2–4-8 16.15 14.15 37.35 36.50 22.31 20.19 41.40 40.45

2–6-8 15.89 15.02 36.55 36.17 21.27 21.03 40.15 38.99

2–10-10 15.00 14.93 35.17 34.94 20.45 20.02 39.19 38.93

4–4-8 14.97 14.12 34.46 33.33 19.50 18.91 38.98 38.10

4–8-2 14.28 13.11 33.21 31.99 18.19 17.50 37.45 36.12

MLR 25.24 23.29 56.01 52.15 39.15 36.18 70.89 70.01

Table 5  P-value of the joint analysis of variance for the variables days to maturity (DM), first pod insertion height (PIH), plant height 
(PH), grain yield (GY) and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) evaluated on 32 soybean genotypes 
during two crop seasons

Variable Block Genotype (G) Crop season (CS) GxCS Mean CV (%)

DM 0.45 0.00 0.99 0.87 106.49 3.12

PIH 0.32 0.04 0.00 1.00 8.15 19.16

PH 0.25 1.00 1.00 0.00 77.13 12.51

GY 0.06 0.28 0.02 0.04 3573.08 19.39

NDVI 0.34 0.42 1.00 0.01 0.66 9.96

SAVI 0.33 0.35 0.00 0.00 0.33 12.76

GNVDI 0.39 1.00 0.00 0.00 0.64 4.71

NDRE 0.41 0.01 0.00 0.00 0.17 8.57

SCCCI 0.38 0.46 0.00 0.03 0.26 10.79

EVI 0.41 0.20 0.00 0.00 0.14 16.06

MSAVI 0.36 0.32 0.00 0.00 0.30 15.42
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maize and soybean breeding programs is still recent in 
Brazil.

Overall, the vegetation indices showed low cor-
relations with the agronomic variables of maize and 
soybean. There are several studies in the literature 
reporting low or moderate magnitude associations 
between vegetation indices and agronomic variables 
evaluated in maize [19] and soybean [20]. However, for 
vegetation indices to be used as criteria for selecting 
the best genotypes in these programs, it is necessary to 
evaluate them in different seasons, as was carried out in 
this research, as pointed out by [21].

Although important, investigating only the Pearson 
correlation coefficient between agronomic variables 
and vegetation indices is not enough. In order to estab-
lish a cause-and-effect relationship, it is necessary to 
use the path analysis proposed by [22]. This analysis 

splits the correlation values into direct effects, remov-
ing the influence of secondary variables by obtaining 
indirect effects. Its use is important due to the high 
correlation observed between the vegetation indices in 
the maize and soybean trials.

Path analysis made it possible to select specific VIs for 
each crop. For maize, the VIs with the greatest direct 
effect were SAVI and GNDVI. Both VIs have the capac-
ity to speed up evaluations in crop genetic improvement 
programs, which is essential for sustaining high food pro-
duction in order to meet population growth while main-
taining a commitment to the environment [23]. Maize 
plants showing higher SAVI are often observed from 
60 DAS onwards, a period of maximum leaf area exhib-
ited by the hybrids [24–27]. According to [28] GNDVI is 
the most relevant index for estimating maize yields and 
biomass.

Fig. 3  Pearson’s correlation network between the variables days to maturity (DM), first pod insertion height (PIH), plant height (PH), grain yield (YG) 
and vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) evaluated in 32 soybean genotypes during two crop seasons
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For soybean, the VIs with the greatest direct effect on 
agronomic variables were NDVI and NDRE. Santana 
et  al. [29] reported a high association between NDRE 
and DM, while NDVI had a higher relationship with GY, 
a variable governed by many genes that are greatly influ-
enced by environmental conditions. Santana et  al. [29] 
also reported that NDRE has a cause-and-effect relation-
ship with the plant cycle in soybean. High-throughput 

phenotyping is a crucial technological advance in the 
crop genetic improvement and is essential for select-
ing new genotypes with high grain yield and greater 
tolerance to multiple stresses, especially abiotic stresses 
caused by climate changes [23].

Using machine learning algorithms can assist in data 
processing, making the process more accurate and effi-
cient. During the learning process, ANNs acquire the 

Fig. 4  Direct effect obtained by path analysis of vegetation indices (NDVI, SAVI, GNDVI, NDRE, SCCCI, EVI and MSAVI) on the variables days 
to maturity (DM), first pod insertion height (PIH), plant height (PH), grain yield (YG) evaluated in 32 soybean genotypes during two crop seasons

Table 6  Pearson’s correlation between the values observed and predicted by the 10 best artificial neural networks selected and 
multiple linear regression (MLR) for predicting the variables days to maturity (DM), first pod insertion height (PIH), plant height (PH), 
and grain yield (GY) in soybean using the NDVI and NDRE vegetation indices as input

* the values between the lines refer to the number of neurons in each layer; T: training (80% of the data); V: validation (20% of the data)

Topology* DM PIH PH GY

T V T V T V T V

2–6 0.49 0.49 0.36 0.36 0.60 0.60 0.40 0.40

3–10 0.49 0.50 0.36 0.37 0.60 0.61 0.40 0.41

5–10 0.48 0.49 0.38 0.38 0.61 0.63 0.40 0.41

6–6 0.51 0.53 0.38 0.39 0.61 0.62 0.41 0.41

8–8 0.50 0.54 0.39 0.39 0.63 0.64 0.41 0.41

2–4-6 0.54 0.54 0.39 0.39 0.64 0.65 0.44 0.44

4–6-8 0.55 0.56 0.40 0.40 0.65 0.65 0.44 0.45

2–10-10 0.56 0.56 0.40 0.40 0.67 0.67 0.47 0.48

4–4-8 0.57 0.57 0.40 0.41 0.68 0.69 0.49 0.50

4–8-2 0.58 0.60 0.41 0.41 0.69 0.70 0.51 0.52

MLR 0.43 0.44 0.35 0.36 0.57 0.59 0.30 0.31
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ability to respond correctly to tasks proposed to them by 
adjusting parameters, which can be supervised or unsu-
pervised [30]. Computational intelligence techniques 
such as ANNs can provide an accurate estimation of the 
plant phenotype, performing non-linear tasks efficiently 
and with the flexibility to integrate data from multi-
ple sources. [31, 32]. Elmetwalli et al. [33] state that the 
use of ANNs is a relatively simple, accurate, reliable and 
highly efficient way of processing data from large-scale 
and non-destructive approaches, such as HTP using VIs.

The experiments carried out demonstrate that HTP 
actions need to be directed to the crop that the breeder is 
working on. Our findings demonstrate that it is not rec-
ommended to use the same vegetation indices for HTP in 
corn and soybeans. The results reported here are encour-
aging for soybean and corn breeding programs, which 
annually evaluate hundreds or even thousands of geno-
types in the traditional way. Now these programs can 
use specific VIs for each crop and precisely obtain the 
agronomic variables, which represents greater savings in 
financial resources.

Future studies should evaluate other plant traits, such 
as physiological or nutritional ones, as well as differ-
ent spectral variables from those evaluated here, with 
a view to contributing to an in-depth understanding 
about cause-and-effect relationships between plant 
traits and spectral variables. Such studies could contrib-
ute to more specific HTP at the level of traits of inter-
est in each crop, helping to develop genetic materials 
that meet the future demands of population growth and 
climate change. The flight date and the performance of 
multiple flights are crucial to optimize the performance 

of phenotyping based on spectral data. The flight in this 
study was performed 60  days after emergence, when 
the crop is at the peak of the photosynthetic period. 
However, flights on different dates allow capturing tem-
poral variability, improving model calibration, identify-
ing phenological patterns, improving results in more 
accurate and robust predictions, and are indicated for 
future work.

Conclusions
Path analysis enabled specific VIs to be selected for 
each crop to predict agronomic variables. Our findings 
reveal that SAVI and GNDVI indices have a positive 
and high magnitude direct effect on all agronomic vari-
ables evaluated in maize, while NDVI and NDRE have a 
positive cause-and-effect relationship with all soybean 
agronomic variables. The selected ANNs outperformed 
MLR, providing higher correlation and lower RMSE 
values when predicting agronomic variables using the 
VIs select by path analysis as input. In light of these 
findings, HTP using VIs with a higher cause-and-effect 
relationship on agronomic traits associated with com-
putational intelligence models shows to be a promising 
tool for faster, accurate and large-scale evaluation of 
complex traits aiming to select genotypes for traits of 
interest in breeding programs.
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