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Abstract
Adaptive immune responses are complex dynamic processes whereby B and T cells

undergo division and differentiation triggered by pathogenic stimuli. Deregulation of the

response can lead to severe consequences for the host organism ranging from immune

deficiencies to autoimmunity. Tracking cell division and differentiation by flow cytometry

using fluorescent probes is a major method for measuring progression of lymphocyte

responses, both in vitro and in vivo. In turn, mathematical modeling of cell numbers derived

from such measurements has led to significant biological discoveries, and plays an increas-

ingly important role in lymphocyte research. Fitting an appropriate parameterized model to

such data is the goal of these studies but significant challenges are presented by the vari-

ability in measurements. This variation results from the sum of experimental noise and

intrinsic probabilistic differences in cells and is difficult to characterize analytically. Current

model fitting methods adopt different simplifying assumptions to describe the distribution of

such measurements and these assumptions have not been tested directly. To help inform

the choice and application of appropriate methods of model fitting to such data we studied

the errors associated with flow cytometry measurements from a wide variety of experi-

ments. We found that the mean and variance of the noise were related by a power law with

an exponent between 1.3 and 1.8 for different datasets. This violated the assumptions

inherent to commonly used least squares, linear variance scaling and log-transformation

based methods. As a result of these findings we propose a new measurement model that

we justify both theoretically, from the maximum entropy standpoint, and empirically using

collected data. Our evaluation suggests that the new model can be reliably used for model

fitting across a variety of conditions. Our work provides a foundation for modeling measure-

ments in flow cytometry experiments thus facilitating progress in quantitative studies of lym-

phocyte responses.
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Introduction
In response to pathogenic stimuli, B and T lymphocytes undergo proliferation and differentia-
tion into effector and memory cells. Dysregulation at any stage of this process can lead to
severe consequences for the host organism, ranging from autoimmune diseases and transplant
rejection to immunodeficiency and cancer. Obtaining a quantitative understanding of lympho-
cyte response regulation poses a significant theoretical and practical challenge for modern
immunology. It is increasingly evident that the study of such a complex biological phenome-
non will require an interdisciplinary approach. Indeed, mathematical modeling of proliferating
lymphocytes has played a central role in a number of major biological discoveries [1–3]. More-
over, a quantitative study of the effects of different signals on proliferation and survival param-
eters has enabled accurate prediction of lymphocyte expansion kinetics in response to signal
modulation [4]. Such predictive power can be employed in next generation drug screening
platforms for a range of therapies, including cancer immunotherapy [5].

Flow cytometry using a wide array of fluorescence probes is one of the most powerful meth-
ods used to measure the progression of lymphocyte responses both in vivo and in vitro [6]. It is
therefore not surprising that an increasing number of research groups fit and validate their
mathematical models of lymphocyte responses against flow cytometry data [4, 7–13]. Division
tracking dyes, such as carboxyfluorescein succinimidyl ester (CFSE) or CellTrace Violet
(CTV), enable estimation of the number of cells that have undergone a certain number of divi-
sions after activation [14, 15]. These data alone have been instrumental for developing models
of lymphocyte proliferation, such as systems of ordinary differential equations [16], branching
process-based formulations [17], or the Cyton model [18].

Moreover, the range of fluorescent probes is not restricted to division tracking (Fig 1). For
example, the Blimp1-green fluorescent protein (GFP) reporter mouse is useful for quantifying
B cell differentiation into plasma cells [19], and the fluorescent ubiquitination-based cell-cycle
indicator (FUCCI) system is a powerful tool for measuring cell cycle progression [20]. These
and other types of measurements support the development of mathematical models for various
aspects of lymphocyte responses. Here, we consider flow cytometry measurements, obtained
using division tracking dyes, or other probes, and the accordingly suitable mathematical mod-
els used to fit these data, collectively called response models. We note that flow cytometry data
is expected to remain a major source of information for the response models in future due to
the growing arsenal of fluorescent probes, their applicability in vivo, and their broad applicabil-
ity in many biological contexts.

There is considerable variation in measurements repeated for the same time point and
experimental conditions. This variation arises from two sources. First, biological variation
arises due to inherent cell-to-cell variability. For example, even sister cells can have different
division times or different fates where one cell dies and another cell divides [21]. Second, exper-
imental error denotes collective variations contributed by different steps of the experimental
procedure. Experimental error is responsible for the bulk of variation in measurements [22],
and therefore cannot be ignored during model fitting. While biological variation can be explic-
itly characterized as a part of a lymphocyte proliferation model [13, 22], it is extremely difficult
to formalize experimental error. This variability originates from pipetting errors, variation in
number of cells processed by a flow cytometer (sample recovery), and multi-level semi-manual
gating. Note that raw flow cytometry measurements are inevitably subject to at least two
rounds of gating, whereby a researcher first separates live cells from calibration beads and dead
cells [23], and then applies a gate on a particular fluorescent probe (Fig 1). In some experi-
ments, an additional round of gating is needed to isolate the cell population of interest (e.g.,
where transgenic cells were adoptively transferred). In practice, all these gates are either drawn
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entirely manually, or set automatically, but then adjusted manually. As such, experimental
error is one of the major challenges of model fitting.

The difficulty in finding an explicit experimental error characterization has lead to an
approach where all the stochastic biological and experimental effects are attributed to a single
process (Fig 2) which is formalized using some assumed probability distribution for measure-
ments [10, 11, 13]. This measurement distribution can then be used for model fitting, e.g.,
assuming normality of measurements with fixed variance leads to least-squares fitting. The
problem is that different researchers have been using different sets of assumptions for fitting to
the same type of data [10, 11, 13]. Moreover, within the same work one set of assumptions
(e.g., measurement variance scaling with the mean) can be adopted for parameter estimation,
while another set of assumptions (e.g., constant variance) is used for model selection using
information-theoretic criteria [11, 24].Here we study the distribution of measurements from
representative experiments as an important step towards adoption of a single standard method
for estimating parameters from flow cytometry data.

Fig 1. Measuring lymphocyte responses using a range of fluorescent probes. Panels show flow cytometry results for a time point from different
representative B or T cell activation experiments. A: CTV can be used to estimate number of cells that divided 4 times since activation (“generation 4” gate).
B: Blimp1-GFP reporter and IgG1-APC antibody enable estimation of non-differentiated cells (purple gate). IgG1-APC is a fluorescent probe-conjugated
antibody against IgG. C: FUCCI reporter system allows one to estimate cells in different cell cycle stages (labeled quadrants). In each case, estimates are
obtained using semi-manual gates. Such gates can be initially set using an automated routine, but it is a common practice to manually validate and adjust the
gates.

doi:10.1371/journal.pone.0146227.g001

Fig 2. Measurement process encapsulates biological variability and experimental error. Since it is difficult to formalize experimental error, a common
strategy is to consider a stochastic measurement generating process as a whole. Measurements can then be described using a measurement distribution.
Internally, this distribution is a result of stochastic lymphocyte response and experimental error (including data pre-processing, such as gating).

doi:10.1371/journal.pone.0146227.g002
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To this end, we explore lymphocyte response data (both new and previously published)
from a wide range of experimental conditions focusing on immunological applications. Based
on these data, we develop a new measurement model and corresponding model fitting method.
In addition to the data, we provide a theoretical support for our model from a maximum
entropy standpoint. Our evaluation shows that the new method can be reliably used for model
fitting across a variety of conditions, thus providing a foundation for model development in
the field of quantitative lymphocyte research.

RelatedWork
There has been a large number of proposed lymphocyte response models, as well as parameter
estimation strategies for flow cytometry data [4, 7–13]. In this work, we focus on parameter
estimation strategies and the assumptions involved in these strategies. These strategies can be
broadly categorized in heuristic and probabilistic approaches. In a heuristic approach, a lym-
phocyte response model is used to predict expected values of measurements, and an ad hoc
function is defined to characterize the discrepancy between the predictions and the data [12,
13, 24]. This discrepancy is then minimized as a function of response model parameters. Prob-
abilistic approaches, on the other hand, attempt to define the probability of the measured data
given response model parameters [10, 13]. This probability can then be used in different ways,
for example, in maximum likelihood (ML) or Bayesian parameter estimation algorithms. It is
important to acknowledge that various assumptions can be heuristically adopted in order to
derive the probability of measurements. However, the probabilistic approach still has the
advantage that all assumptions can be explicitly identified and tested.

A measurement can be viewed as the sum of two random variables corresponding to lym-
phocyte response and experimental error (Fig 2). In most lymphocyte response models, the
population response is considered as the sum of independent single cell responses, and the cen-
tral limit theorem can be used to argue that the response outcomes are approximately normal.
It is then possible to explicitly model experimental error in the context of CFSE experiments by
describing the process of peak generation on a CFSE histogram [12, 25]. However, such an
approach does not take into account other steps of experimental procedure, including live cell
gating, and also is not applicable to other types of flow cytometry experiments, such as those
involving Blimp1-GFP or FUCCI reporters. Alternatively, other probabilistic methods assume
a certain probability distribution directly for measurements [10, 11, 13, 24]. It is also assumed
that expected values of the response model (as a function of model parameters) are indicative
of the expected values of the measurements [11, 13, 24]. Next, many methods adopt the simpli-
fying assumption that the measurement covariance matrix is diagonal [10, 11, 24].

Probabilistic measurement models are used for both parameter estimation and model selec-
tion based on information criteria, such as corrected Akaike Information Criterion (AICc),
and Bayesian Information Criterion (BIC). These criteria require an estimate of the probability
of the data [26], i.e., a probabilistic measurement model. For such a model, some authors adopt
a multivariate normal distribution with a constant variance [11, 24], while others assume con-
stant marginal variances of log-transformed data [10]. These previous measurement models
are formally described in S1 Text. A point of concern here is that in some cases, fitting is per-
formed using a different criterion than the one used for model selection. For example, for the
purposes of fitting, marginal variances can be assumed to scale linearly with the expected val-
ues, while for the purposes of model selection these variances can be assumed to be constant
[24]. Here, we aim to test the above assumptions (summarized in Table 1) against a large vari-
ety of data. The premise is that identification of assumptions supported by the data will
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facilitate the development of a single measurement model that can be reliably used for both fit-
ting and model selection across a wide range of lymphocyte studies.

Having introduced the prior art, we can now elaborate on the question that we address in
this work. Given data and a set of predicted mean cell counts produced by a response model
(e.g., Cyton or multitype branching process), we ask which objective function one should use
for parameter estimation. Different previous models listed in Table 1 will lead to different
objective functions (in this case, likelihoods). As we show in subsequent sections, the assump-
tions behind some of these likelihood functions are inconsistent with the data, and the choice
of the function makes a difference to the final solution. Next, we present a new measurement
model and the corresponding likelihood function. Finally, note that different likelihoods,
including the likelihood derived from our model, can be used in situations where single or mul-
tiple parameter sets that maximize the likelihood are explored (search for global and local max-
ima, respectively).

Results
We start with outlining the notation principles used in this paper. We use lowercase symbols to
denote constant scalar values (e.g., x, σ) which can be vector or matrix components (e.g., xi, σij),
symbols in boldface to denote constant vectors and matrices (e.g., x, S), uppercase symbols to
denote random variables (e.g., X, Δ), and blackboard bold symbols for sets (e.g., D). For multi-
variate random variables, indexing can be used to denote a marginal variable (e.g., Xi, Δj). Fur-
thermore, sample parameter estimates are denoted using a hat (e.g., x̂; μ̂). Finally, Rp denotes p
−dimensional Euclidean space, and Rpþ denotes a non-negative Euclidean subspace, i.e., for a p
−dimensional vector, x 2 R

pþ means that xi � 0, i = 1, . . ., p.

Experimental data
A dataset is a set of samples D ¼ fTð1Þ; . . . ;TðdÞg, where each sample TðtÞ ¼ fzðt;1Þ; . . . ; zðt;st Þg is
a set of st repeated measurements (replicates) taken at a distinct time point. We assume that all
measurements from the same time point are generated by the same distribution that character-
izes the lymphocyte response at that time point. Samples from different time points may come
from different distributions. Each measurement z(t, r) is a p-dimensional vector, where compo-
nent z(t, r), i denotes the estimated number of cells that belong to group i. Examples of groups
include cells that have divided two times since the beginning of the experiment, cells that have
differentiated, or cells that have returned to quiescence. Different experiments can measure dif-
ferent quantities and result in datasets covering different groups. A range of fluorescent probes
and semi-manual gating are used to assign cells to groups. Note that z(t, r), i cannot be negative,

Table 1. Assumptions involved in previousmeasurement models (used either for model fitting or
model selection).

Approach Assumptions Ref.

sum of squared residuals (SSR) multivariate normal (MVN) distribution of measurements;
diagonal covariance matrix; same marginal variances for all
dimensions and time points

[11]

log-transformed sum of squared
residuals (LogNrm)

multivariate lognormal distribution of measurements; diagonal
covariance matrix for log-transformed data; same marginal
variances for log-transformed samples

[10]

linear variance scaling (LVS) MVN distribution of measurements; diagonal covariance matrix;
linear relationship between marginal variances and means

[24]

doi:10.1371/journal.pone.0146227.t001
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but can be a fraction, because the estimation involves normalization using calibration bead
counts [27].

Consider a lymphocyte response model with parameter vector θ (e.g., Cyton model with
parameters such as mean time to first division, mean division destiny, etc. [18]; or a branching
process with probabilities of division, death, etc. [7, 11, 13]). A probabilistic parameter estima-
tion approach first aims to define the likelihood LðθjDÞ � ProbðDjθÞ. The experiments can be
performed in vitro or in vivo. Here we focus on widely used protocols where repeated observa-
tions are measured from distinct physically separated wells in vitro or from different animals in
vivo [4, 24]. Therefore, it is reasonable to assume independence, conditioned on a model with
fixed parameter values, not only for different time points, but also for observations (i.e., repli-
cates) within the same time point. More discussion on this assumption is provided in S2 Text.
That is, we assume that (a) observations for different time points are independent:
PrðTðiÞ;TðjÞjθÞ ¼ PrðTðiÞjθÞPrðTðjÞjθÞ, i 6¼ j, and (b) the repeated observations z(t, r) for a given

time point t are independent and identically distributed (i.i.d.). Therefore, if Z(t) denotes the
measurement random variable (that incorporates both biological variation and experimental
noise), we can write

LðθjDÞ ¼
Yd
t¼1

Yst
r¼1

PðZðtÞ ¼ zðt;rÞjθÞ
 !

ð1Þ

In order to explore the properties of distribution of Z(t) in real world situations, we collect
data from a number of independent experiments (either from published sources or executed
for this study). We aim to collect data that represent a large variety of conditions encountered
in lymphocyte studies (Table 2), and cover a range of cell types (wild type B or T cells, as well
as knock outs), stimulation protocols, and treatments in vitro and in vivo. Importantly, the def-
inition of a group (i.e., what is being measured) varies across experiments. For example, experi-
ments b–cd40 and t–n4 represent typical proliferation assays based on the use of CFSE or CTV
dyes. In these, and similar experiments, for each time point, Z(t) is a vector comprising the esti-
mated number of cells per generation. In contrast, measurements Z(t) in dataset t–vv–qsc are
two-dimensional vectors containing total cell number, as well as the number of cells returned
to a quiescent state. Quiescent cells were estimated based on FUCCI expression and cell size.
Six datasets were obtained from previous studies, while the remaining four experiments were
conducted specifically for this study. These include a proliferation assay with 9 replicates per
time point (dataset b–bimko). A typical number of replicates (st) is 3 to 5, and a dataset with a
large number of replicates is useful in studying the distribution of measurements. Finally, we
include two experiments where proliferating B cells are treated with mitotic inhibitors (b–gfp
and b–tot). These two datasets cover a combination of drugs, but contain only one time point
for each condition. All data can be found in S1 Dataset.

Mean–variance relation
Previous approaches have made specific assumptions about the marginal variances of Z(t)
(Table 1). Therefore, we first inspect the relation between means and marginal variances for
each vector component for samples TðtÞ ¼ fzðt;1Þ; . . . ; zðt;st Þg. Our datasets represent a range of
experimental conditions and measured quantities. Strikingly, despite this variety, measure-
ments from all experiments tend to follow a power law (Fig 3 and S1 Table). Marginal variances
of measurements, as well as log-transformed measurements span several orders of magnitude
and there is a statistically significant correlation with measurement means (S1 Fig and S1
Table). As such, constant variance assumptions of SSR and LogNrm methods are strongly
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violated. Moreover, we estimate the power exponent using a linear regression on a log-trans-
formed axes, and find that in almost all datasets 95% confidence intervals for the estimated
power exponent do not include 1, which is not consistent with the linear scaling assumption of
LVS model. We conclude that the data does not support any of the previously used assumption
sets listed in Table 1.

Points in Fig 3 can represent different quantities, such as the number of cell in a particular
generation, or the number of differentiated cells. It is therefore interesting that all experiments
exhibit a similar pattern. For example, residuals after power law fits tend to follow the same dis-
tribution across experiments (Kruskal-Wallis test p-value 0.998, number of points ranging
from 12 to 321); and in each experiment, residuals tend to be centered around 0 (sign test p-
values above 0.02 for each dataset, see S1 Table). Consistent with a previous observation [22],
this may indicate that the experimental error originating from sources common to all datasets
dominates variation in measurements. Such sources can include pipetting error, sample recov-
ery by the flow cytometer, and effects of manual gating. Regardless of whether variability in
these data originated mostly from biology or experimental procedure, we make an empirical
observation that superficially measurement variance scales with mean according to a power
law (that can have a different exponent for different datasets).

Application of the maximum entropy principle
Computing the likelihood of parameters requires specification of the shape of a multivariate
distribution of measurements Z(t), and an MVN with independent components is a popular
choice [11, 24, 28]. The literature on computational immunology says little about the justifica-
tion of these assumptions. The central limit theorem can be used to argue for an MVN-distrib-
uted true cell numbers, but this argument is difficult to apply for measurements that include
various sources of experimental errors. Therefore, we find it useful to present a systematic
approach for justifying the choice of measurement distribution in the context of lymphocyte
responses.

Table 2. Summary of experimental data used in this work.

Dataset Cells Summary Groups Ref.

b–cd40 B cells In vitro stimulation with anti-CD40 in the presence of interleukins 4 and 5
(4 conditions)

cell number per generation
(CFSE)

[24]

b–cpg B cells In vitro stimulation with LPS (5 conditions) cell number per generation
(CFSE)

[24]

b–lps B cells In vitro stimulation with CpG (3 conditions) cell number per generation
(CFSE)

[24]

t–il2 OT-I Bim-/- CD8+ T cells In vitro stimulation using cognate peptide and various concentrations of
interleukin 2 (8 conditions)

cell number per generation
(CTV)

[4]

t–vv–
qsc

OT-I FUCCI R/G CD8+ T
cells

In vivo stimulation via HKx31-N4 influenza infection (2 conditions) total cell number, quiescent
cell number

[4]

t–vv–tot IL2Rα+/+ or IL2Rα-/- OT-I
CD8+ T cells

In vivo stimulation via HKx31-N4 or HKx31-Q4 influenza infection (3
conditions)

total cell number [4]

b–
bimko

Bim-/- and Bim-/+ B cells In vitro stimulation with CpG (1 condition) cell number per generation
(CTV)

this
work

b–gfp Blimp-GFP B cells B cells stimulated with anti-CD40 in vitro and treated with mitotic
inhibitors Etoposide or Purvalanol A

total cell number, number of
GFP+ cells

this
work

b–tot B cells B cells stimulated with anti-CD40 in vitro and treated with mitotic
inhibitors Aphidicolin, Etoposide, or Purvalanol A

total cell number this
work

t–n4 CD8+ T cells In vitro stimulation with SIINFEKL peptide (1 condition) cell number per generation
(CTV)

this
work

doi:10.1371/journal.pone.0146227.t002
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Fig 3. Empirical power-law relation between the mean and variance of measurements. Each point represents a single component of a sample of
repeated measurements (replicates). For example, a point can represent repeated estimates of the number of cells falling in the GFP+ gate, or the number of
cells in generation two for a particular time point. Each plot corresponds to all measured groups and time points for a particular dataset. The combined plot is
composed of a collection of 20 random points sampled uniformly from each dataset. Red lines show fitted power law relations (variance) = α(mean)β, and the
fitted power exponent is indicated for each dataset. Green lines show function (variance) = (mean)2/9. Most of the points are located below the green line,
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In principle, for each experimental scenario, one could perform a large number of replicates
to infer the distribution. However, this approach is not practical, due to a large number of pos-
sible scenarios (e.g., those listed in Table 2). Therefore, we start with a theoretical argument
justifying a particular choice of the distribution a priori. Further, we have implemented one
experiment with 9 replicates, and in three other datasets we have samples with 5 or 6 replicates
(dataset b–bimko in Table 2), and we use these data to test the a priori hypothesis.

When the information is incomplete (we do not know the true distribution), but a decision
has to be made (we need to compute the likelihood), the safest choice would be to minimize
the amount of additional information introduced by the decision. A formalization of this prin-
ciple is the well known principle of maximum entropy [29]. Suppose we have a method for pre-
dicting mean and covariance of Z(t) as a function of model parameters. Since measurements
are non-negative quantities, among all possible probability distributions with the given first
and second moment, a truncated multivariate normal (TMVN) distribution has the maximum
differential entropy (S2 Text). Thus, according to the principle of maximum entropy, TMVN is
a feasible choice for the distribution of measurements a priori. Interestingly, our data suggests
that if measurements follow a TMVN distribution, most of the mass of the underlying MVN is
located in R

pþ (in Fig 3, means tend to be larger than 3 standard deviations).
Therefore, we adopt multivariate normality as a reasonable approximation for measure-

ments. In most practical cases, the number of replicates will not be sufficient for reliable selec-
tion of the distribution based on data, and this is where the principle of maximum entropy can
be useful. In experiments with large numbers of replicates the choice of the distribution can be
guided by data. In our data collection, we have only several time points (from different experi-
ments) with more than 5 replicates, and we have assessed normality on these data (S3 Text). In
most cases, the data was consistent with the proposed MVN distribution, and we therefore
decided to use it in all cases for consistency. Future measurement models may depart from this
decision by using, for example, mixture models, or selecting the shape of the distribution sepa-
rately for each time point.

The principle of maximum entropy is also implemented in Dempster’s covariance selection
method [30]. Reliable estimation of off-diagonal covariance elements of Z(t) is challenging,
given that in typical experiments the number of replicates is smaller than the number of
dimensions. We observe that in the situation where marginal variances can be predicted, and
off diagonal elements are unknown, Dempster’s method suggests a diagonal covariance matrix
as the most feasible choice (S2 Text). We conclude that the principle of the maximum entropy
provides a systematic way for justifying the shape of the distribution of measurements.

Allowing non-zero means for experimental error
To summarize, given a dataset D, a ML or Bayesian parameter estimation routine can use the
likelihood estimated as follows: (1) for each time point, compute ηt(θ) = E[Z(t)|θ], where θ is
the candidate parameter vector; (2) estimate dataset-specific power law parameters α and β
from D; (3) estimate marginal variances υii = α � ηt(θ)β; and (4) compute likelihood LðθjDÞ
using Eq 1 and using the density of MVN with a diagonal covariance matrix.

Going back to step one, consider a lymphocyte response model that predicts means μt(θ),
and assume that prediction is perfect, and the experimental error has a zero mean, i.e.,

indicating that sample means tend to be larger than 3 standard deviations. If one assumes a Gaussian shape for the distribution of the measurements, this
tendency indicates that most of the distribution mass is located in the positive Euclidean subspace.

doi:10.1371/journal.pone.0146227.g003
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μt(θ) = E[Z(t)|θ]. This assumption can lead to an anomaly illustrated in Fig 4. In the figure, the
predicted mean is small and so is the predicted variance. Therefore, the likelihood of the green
fit is essentially zero, despite the fit visually appearing to be good.

A possible solution to this problem is to assume a minimummeasurement variance, i.e.,
υii =max(c, α � ηt(θ)β) [24]. However, this approach contradicts the data. For example, dataset
t–il2 alone has over 10 samples consisting of all zeros (i.e., {0, 0, 0}). All-zero samples are also

Fig 4. The problem of assuming zeromean for experimental error. Consider two fits to the same data
extracted from t–il2 dataset for 316 U/mL condition. In this experiment, a data sample comprises repeated
estimates of number of cells in a particular generation. The green fit goes through all generation means,
except for the first sample pointed by the arrow. The blue fit predicts an arbitrary value everywhere. Intuitively,
the green fit is more feasible, but the blue fit is more likely. This happens because for the first sample variance
is close to zero which makes the whole green fit nearly impossible. In practice, mismatch at the first sample
can be attributed to a non-zero mean of modeling or experimental noise.

doi:10.1371/journal.pone.0146227.g004
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observed in other datasets, which suggests that when the real number of cells is close to 0, so is
the measurement variance. Instead, we note that the real reason, the green fit in Fig 4 can be
considered feasible, is understanding that (a) a response model is never a perfect representation
of reality, and (b) the mean of experimental error can be non-zero. In other words, there can be
a difference between the mean of the measurement distribution, and the predicted mean of the
response model. We call this differencemeasurement offset, and propose to model measure-
ment means as ηt(θ) = μt(θ)+δ, where δ represents the offset. This offset can be estimated from
the data, but needs specification of a prior distribution (otherwise an arbitrary fit can be con-
sidered a good fit with a large offset). We developed a maximum a posteriori (MAP) parameter
estimation method, where user needs to specify a reasonable variance on δ (S2 Text). This is
the only user-provided input (denoted ε) in the our parameter estimation routine, and the
choice of ε is guided by data. We call our measurement model a three factor (3F) model,
because it accounts for the lymphocyte response model, modeling error, and experimental
error (S2 Text).

Evaluation of measurement models
Our ultimate aim is to fit a response model to experimental data. To this end, we take a proba-
bilistic approach where a response model is embedded within a measurement model (Fig 2),
and focus on different choices for the measurement model. In this section, we assess the perfor-
mance of the 3F model and its applicability to fitting. Note that in principle, our conclusions
are not restricted to any particular responsemodel. For this evaluation, two previous models
were chosen as representative examples, namely Age Dependent Multitype Branching Process
(ADMBP) as summarized in reference [11], and the Cyton model as defined in reference [4].
Both models predict the number of cells per generation over time. The Cyton model with 12
parameters is more elaborated than the ADMBP model with 11 parameters. However, note
that here we do not aim to compare proliferation models.

In regards to measurement models, we consider those listed in Table 1. For the purposes of
evaluation, it is tempting to generate synthetic data with known response parameters, and
assess how these parameters are recovered by different measurement models. However, it is
not clear how to generate realistic measurement noise on synthetic data in the first place, since
using any of known measurement models, would make the evaluation in favor of that model.
Instead, we assess model performance using AICc, and also discuss some theoretical aspects of
fitting using different measurement models. In addition, we present a quantitative evaluation
using a hypothetical ideal response model. For a given dataset, the hypothetical model simply
yields predictions equal to sample means from that dataset. In other words, the hypothetical
model mimics the behavior of some accurate model, because an accurate model would be
expected to predict values close to the sample means. By the way it is defined it will always out-
perform any actual model, such as Cyton or ADMBP in terms of the likelihood of resulting fits.
In terms of the AICc, the “number of parameters” for the hypothetical model is controlled
artificially.

Best fits obtained using all four measurement models for representative datasets are shown
in Fig 5 and S2–S4 Figs. In each figure, the data and response model are fixed, and the only dif-
ference between the fitted lines is the assumptions about measurement noise. Note that the
choice of the measurement model can lead to different fits (see also multiconcentration exam-
ple below). Further, note that visually use of the 3F model results in good fits compared with
other measurement models (the chosen response models do not necessarily allow perfect fits).
Quantitatively, the 3F measurement model offers the best explanation for the data as suggested
by AICc scores.
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Fig 5. Model fitting using different measurement models. The Cyton model was fitted to t–n4 data using different measurement models. Resulting AICc
scores are 2050.7 (3F), 3633.8 (SSR), 4001.7 (LogNrm), and 109231.8 (LVS). For the fit obtained using LogNrmmodel, AICc was computed using the SSR
measurement model.

doi:10.1371/journal.pone.0146227.g005
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Next, we note two theoretical inconveniences of the LogNrm model. First, this model
assumes that response predictions, such as those produced by ADMBP or Cyton models are
medians of measurements, whereas most proliferation models predict the means of the mea-
surements [4, 11]. A more severe inconvenience stems from the need of data capping for log-
transformation (S1 Text). Information criteria, such as AICc and BIC cannot be used to com-
pare fits performed on capped and original data, or data capped at different levels. Therefore,
in this section, for fits obtained using LogNrm model, we report the AICc computed using a
SSR model.

Further, for measurement means close to zero (e.g., 0.001), LVS and SSR models allow posi-
tive variances (e.g., 10), thus predicting an approximately 50% probability of a negative mea-
surement. This formulation contradicts the data, and can be one of the reasons for reduced
likelihood, compared to the 3F model (Fig 5). Moreover, fits using SSR treat all measurements
as equally important (having equal variance), which can lead to undesirable situations where a
model cannot predict values close to measurement means for all time points simultaneously.
This can be a confounding factor especially for multiconcentration fitting. A multiconcentra-
tion fitting is an emerging problem [4, 24], where an experiment is repeated with one of the
variables changed, e.g., T cells proliferate in the presence of different concentrations of interleu-
kin 2 (IL2). A response model can be then fit simultaneously to the data for all concentrations,
where certain proliferation parameters (e.g., starting cell number) are constrained to remain
the same across concentrations. In addition, in a multiconcentration experiment, it is common
to observe large differences in cell numbers, where weak stimulation results in rapid population
extinction, whereas string stimulation leads to a considerable growth. The use of SSR for such
data may result in the low concentration data being essentially ignored (Fig 6).

So far, we have considered ADMBP and Cyton response models. Note that for a given data-
set, an ideal response model would be the one that predicts measurement means. We therefore,
also implemented such a hypothetical model, and assumed that it has kresp parameters, where
kresp was set to 1%, 5% or 10% from the number of data points. We then embedded this model
within 3F, SSR, or LVS, and computed AICc for each dataset. We find that overall 3F offers the
best explanation for the data (S2 Table).

Finally, note that embedding a response model within a measurement model may increase
the total number of parameters. Additional parameters introduced by the 3F model are dis-
cussed in S2 Text. All of them, except one (denoted ε) are estimated from the data. In our eval-
uation, we use the default value ε� = 50. Further, in S2 Text we discuss situations when fitting
is not expected to be sensitive to the choice of ε. Indeed, when we repeated fitting several times,
each time starting from the same initial parameter guess, but varying ε from 0.25ε� to 4ε�, we
obtained similar results (S5 Fig). Overall, we conclude that the 3F measurement model offers a
reliable probabilistic way of fitting response models to lymphocyte data. This measurement
model tends to explain the data better than previous models, and does not suffer certain unde-
sirable effects, such as data capping or imbalanced fitting between data for different stimuli
concentrations.

Discussion
Flow cytometry is a popular tool for quantifying lymphocyte responses—and fitting mathemat-
ical models to these data is a common practical problem. Experimental noise originating from
pipetting, recovery and multiple gating errors poses a major challenge for fitting models to
such data. A common way to overcome this difficulty is to make simplifying assumptions as to
the distribution of measurements. The lack of a systematic assessment of variability in mea-
surements from lymphocyte response experiments has led to the situation where different
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research groups have adopted different sets of assumptions for fitting to the same type of data.
A further inconsistency with these methods is that fitting is sometimes performed using a heu-
ristic objective function, while the resulting fits are compared using a probabilistic criterion.

Here we addressed this problem by assessing commonly used assumptions on measure-
ments. We collected data representative of a wide range of experimental conditions and found
an empirical power law relation υ = αμβ, where μ is the sample mean and υ is the sample vari-
ance for measured replicates from each group (e.g., a sample of repeated measurements for
cells in generation 2 at 24 hours). From our data, we estimated β to fall between 1.3 and 1.8 (it
varies for different datasets) which violates common assumptions of the variance being con-
stant (SSR) or scaling linearly with the mean (LVS), as well as the assumption of log-normal
measurements (LogNrm).

Mathematically, the observed mean-variance relation is equivalent to the well-known
empirical Taylor’s law that has been found to apply in various biological domains [31–33].
Taylor described this law in an ecological context, counting the number of species per unit
area, and related the power exponent to the degree of aggregation of the organisms. The
emergence of a power law in the context of lymphocyte experiments is presumably due to
completely different reasons that are yet to be established. It is also likely that these reasons pri-
marily reflect idiosyncrasies of flow cytometry/gating workflow rather than biology, in which
case, the main interest in the power-law relation is for model fitting. Indeed, in our measure-
ment model we estimate α and β from data which enables us to achieve more reliable model fit-
ting compared to methods where α and β are fixed.

Multiconcentration fitting is an emerging task where a range of conditions, such as titration
of a cytokine, is tested within a single experiment. A fit is then performed simultaneously to the
results of all conditions, with some parameters (e.g., death rate) constrained to remain constant
across conditions. Since cell counts are likely to differ by several orders of magnitude for differ-
ent concentrations it is important to balance the contribution of each data point. Allowing
power law scaling helps to achieve this balance in our measurement model.

In our measurement model, the power law exponent is estimated independently for each
dataset, but is fixed for a dataset. Furthermore, we assume a single-component MVN distribution

Fig 6. SSR is not suitable for multiconcentration fitting. ADMBP and Cyton models are fitted to a low and high stimulation condition selected from t–il2
dataset. When a low concentration data is fitted independently, SSR can be used to fit models. However, when both concentrations are fitted simultaneously,
SSR tends to ignore low concentration data because the range of these data is comparable to measurement noise for the high concentration measurements.
At the same time, 3F tends to produce more balanced fits, because it scales measurement variance in accordance to the mean.

doi:10.1371/journal.pone.0146227.g006
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for all measurements. This decision was made in view that most of lymphocyte response models
assume a homogeneous population of cells with a fixed parameter vector describing the popula-
tion [4, 7, 11]. Our evaluation suggests that even this simple setup can lead to improvements
compared to the state-of-the-art. At the same time, future and more advanced measurement
models can consider, for example, specifying a distribution over the power law exponent, or a
mixture model for measurements as a consequence of presence of different cell types within a
population. Another possibility to explore is letting the power exponent to vary over time (S6
Fig). Our current work contributes an evaluation framework, and a new baseline facilitating
progress in the field.

In addition to the applications detailed above, we have addressed the theoretical foundation
of our method. We justify the choice of the measurement distribution using the maximum
entropy principle. This is a well-known principle in the field of signal processing, and here we
introduce this idea in the context of quantifying lymphocyte responses. Further, the theoretical
development of our model is not specific to lymphocytes and potentially can be applied to flow
cytometry experiments involving other cell types. In regards to lymphocyte responses, our
work lays a foundation for a consistent handling of flow cytometry data to support ongoing
and future model development in the field.

Materials and Methods

Mice, culture preparation, flow cytometry
Our dataset collection comprises 6 datasets from previous studies, and 4 datasets performed
for this study, and outlined below. All experiments were performed under the approval of the
Walter and Eliza Hall Institute (WEHI) Animal Ethics Committee. All mice used were main-
tained in specific pathogen-free conditions at WEHI animal facilities (Kew, Bundoora, and
Parkville, Victoria, Australia) in accordance with WEHI animal ethics committee regulations.
All transgenic mouse strains used were on a C57BL/6 background.

b–bimko. Small resting B cells, isolated from spleens from one B6/del339-/- (C57BL/6,
deficient for Bim) and one B6/del339+/- (heterozygous for Bim deficiency) were labelled with
5μMCTV and stimulated with 3μMCpG 1668 at 10,000 cells per well. Cell isolation procedure
and culture conditions were as described previously [21]. Measurements were performed in 9
replicates.

b–gfp and b–tot. Small, resting naÃ�ve B cells were isolated from the spleens of Blimp-
1GFP/+ reporter mice at 10–12 weeks of age using a percoll gradient (65/80% interface) and
magnetic-activated cell sorting B cell isolation kit (Miltenyi). Cells were stained with 7.5 μM
CTV and placed into culture with 10 μg/mL anti-CD40 antibody (1C10) and 1000 U/mL IL-4.
Cells were bulk cultured at 100,000 cells/mL for 3 days (under 37°C, 5% CO2, and humidity
control) before being harvested and plated at 20,000 cells per 200 μL in triplicate wells, in the
presence of stimuli as before, as well as cell-cycle inhibiting drugs at various concentrations
(b–gfp: etoposide, purvalanol A and vincristine; b–tot: etoposide, purvalanol A and aphidico-
lin). Further, 6,000 fluorescent beads were added to each well in 10 μL just prior to analysis at
day 4 (b–gfp) or day 7 (b–tot) on the BD Canto flow cytometer, along with 0.5 μM of propi-
dium iodide.

t–n4. Naive CD8 T cells were isolated from the lymph nodes of approximately 12 weeks
old OT-1 mice using a MACS CD8 II isolation kit. Anti-CD44-biotin antibody was added to
biotinylated purification cocktail to remove memory T cells. Purified naive CD8 T cells were
labelled with 5μMCTV and cultured at 10,000 cells /well in the presence of 1ng/mL IL-7 and
stimulated with 10ng/mL SIINFEKL peptide and 100U/mL IL-2. Cells were incubated in a
humidified atmosphere at 37°C and 5% CO2. At the time points indicated 10,000 beads and
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0.2% propidium iodide were added to each well immediately prior to analysis on a BD Canto
flowcytometer. Calculation of total cell numbers and cell numbers per division are described
in [4].

Datasets b–cd40, b–cpg, and b–lps were obtained from the authors of [24]. These data are
shown, respectively, in Supplementary Figures S4, S2 and S3 in reference [24]. Datasets t–il2,
t–vv–qsc, and t–vv–tot were obtained from the authors of [4]. These data are shown, respec-
tively, in Figures 2C, 1D and 4D in reference [4].

Statistical analysis of the datasets
For the statistics presented in S1 Table, Pearson correlation p-values were computed using a
Student’s t distribution for a transformation of the correlation. Power law parameters were esti-
mated using linear regression with two parameters (slope and intercept) on the log-log scale.
This estimation was performed separately for each dataset. Confidence intervals for linear
regression were estimated as bi±t(1−α/2, n−c) SE(bi), where SE(bi) is the standard error of the esti-
mate, t(1−α/2, n−c) is the 100 × (1−α/2) percentile of t distribution with n−c degrees of freedom,
n is the number of observations, and c is the number of regression coefficients.

Parameter estimation
Parameter estimation (model fitting) was performed as an optimization that maximizes the
likelihood (for SSR, LogNrm, and LVS models) or maximum a posteriori probability (for 3F) as
a function of θ. The optimization was implemented and tested in a MATLAB 2014b environ-
ment using the implementation of the interior point algorithm provided by the environment
(via standard fmincon function). The optimization result depends on the starting point θ0 2 Θ
[28], and we repeated optimization independently 10 times with randomly generated starting
vectors. Random starting vectors have each of their components sampled independently from
other components uniformly from the range of valid parameter values provided by the user.
For multiconcentration fitting, some parameters can be fixed, i.e., constrained to remain equal
across concentrations. These user-defined parameter ranges, as well as lists of fixed parameters
can be found in S1 Dataset. Each of the runs returned an estimate for the optimal parameter
vector, and the final result was the best vector across all runs. Source code for the fitting process
can be found in S1 File. Note that LVS and LogNrm involve additional parameters, and we

used ε = 50 for LVS, and c ¼ ffiffiffiffiffi
50

p
for LogNrm.

Supporting Information
S1 Dataset. Experimental data used in this work. Detail of data format can be found within
the archive.
(ZIP)

S1 Fig. Variance of log-transformed data is not constant. Plots show means and variances of
log-transformed data for each of the datasets. Variance can span several orders of magnitude
and it depends on the mean. This violates assumptions of LogNrm approach.
(PDF)

S2 Fig. Model fits obtained using different measurement models. ADMBP model was fitted
to t–n4 data using different measurement models. Resulting AICc scores are 2320.7 (3F),
4046.2 (SSR), 4166.8 (LogNrm), and 311694.4 (LVS). For the fit obtained using LogNrm
model, AICc was computed using SSR model.
(PDF)
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S3 Fig. Model fits obtained using different measurement models. Cyton model was fitted to
b–bimko data using different measurement models. Resulting AICc scores are 8238.4 (3F),
10326.0 (SSR), 11602.7 (LogNrm), and 436803.5 (LVS). For the fit obtained using LogNrm
model, AICc was computed using SSR model.
(PDF)

S4 Fig. Model fits obtained using different measurement models. ADMBP model was fitted
to b–bimko data using different measurement models. Resulting AICc scores are 9085.5 (3F),
12024.4 (SSR), 13125.6 (LogNrm), and 2674181.0 (LVS). For the fit obtained using LogNrm
model, AICc was computed using SSR model.
(PDF)

S5 Fig. Fitting is not sensitive to the choice of parameter ε. Cyton model was fitted to a rep-
resentative dataset (in this case, b–lps), and the fitting was repeated several times using different
ε ranging from 0.25ε� to 4ε�, where ε� = 50. The choice of εmade little difference to results.
Note that this is a multiconcentration dataset, and the fit was performed to all concentrations
simultaneously. Further, each time point contains breakdown of the number of cells per gener-
ation, but in the figure, only the total number are shown.
(PDF)

S6 Fig. Analysis of the power law exponent over time. Each point shows the power law expo-
nent estimated from samples from a particular time point. Any given time point comprises sev-
eral measurement samples (e.g., number of cells in division 1 measured 3 times is one sample;
number of cells in division 2 measured 3 times is another sample, etc.). Each sample is then
summarized by sample mean and sample variance, a power law relation between mean and
variance is fit to data from a single time point, and the exponent is plotted against time. We
used only time points with more than 3 samples. Datasets b-gfp and b-tot did not have time
points that satisfy this criterion. Overall, there appears to be a slight increasing trend for each
dataset, and this observation can be exploited in future measurement models.
(PDF)

S1 File. Source code for parameter estimation.MATLAB implementation of 3F measure-
ment model, Cyton response model, as well as fitting and data analysis routines.
(ZIP)

S2 File. Compiled executables. These files can be used to reproduce figures and tables from
this paper, as well as for fitting to new data. Please refer to readme.txt for details.
(ZIP)

S1 Table. Statistics computed for experimental data. For each dataset, power law was fitted
as a linear regression on the log-log scale, and table shows the parameters of the regression. In
the fitted line, slope corresponds to the power exponent and intercept corresponds to the loga-
rithm of the scaling coefficient. Next, table shows p-values for the sign test for residuals of the
linear regression, and p-values of Pearson correlation between sample means and variances.
The final column shows p-values for Pearson correlation between sample means and variances
for log-transformed data. The last row shows statistics for the combined dataset, and it contains
p-value for Kruskal-Wallis test.
(XLSX)

S2 Table. Comparing performance of measurement models. For each dataset, we consider
the fit matching all measurement means, produced by a hypothetical response model with
kresp parameters. The number of response model parameters was set to 1%, 5% or 10% of the
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number of data points. Measurement model performance was assessed using AICc. Overall, 3F
outperforms other models.
(XLSX)

S1 Text. Previous measurement models. Formal description of some previously proposed
measurement models.
(PDF)

S2 Text. Description of our measurement model. Complete formal description of the pro-
posed measurement model and parameter estimation methods.
(PDF)

S3 Text. Testing normality of the data. Normality tests suggest that a MVN distribution is a
reasonable approximation for the distribution of measurements. Unless otherwise stated, p-
values are given for Lilliefors test.
(PDF)
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