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Abstract: In many dairy products, Leuconostoc spp. is a natural part of non-starter lactic acid
bacteria (NSLAB) accounting for flavor development. However, data on the genomic diversity
of Leuconostoc spp. isolates obtained from cheese are still scarce. The focus of this study was the
genomic characterization of Leuconostoc spp. obtained from different traditional Montenegrin brine
cheeses with the aim to explore their diversity and provide genetic information as a basis for the
selection of strains for future cheese production. In 2019, sixteen Leuconostoc spp. isolates were
obtained from white brine cheeses from nine different producers located in three municipalities in the
northern region of Montenegro. All isolates were identified as Ln. mesenteroides. Classical multilocus
sequence tying (MLST) and core genome (cg) MLST revealed a high diversity of the Montenegrin
Ln. mesenteroides cheese isolates. All isolates carried genes of the bacteriocin biosynthetic gene
clusters, eight out of 16 strains carried the citCDEFG operon, 14 carried butA, and all 16 isolates
carried alsS and ilv, genes involved in forming important aromas and flavor compounds. Safety
evaluation indicated that isolates carried no pathogenic factors and no virulence factors. In conclusion,
Ln. mesenteroides isolates from Montenegrin traditional cheeses displayed a high genetic diversity
and were unrelated to strains deposited in GenBank.

Keywords: Leuconostoc mesenteroides; diversity; Montenegro; traditional cheese; whole genome
sequencing; virulence; antimicrobial resistance; flavor; food safety

1. Introduction

The genus Leuconostoc (Ln.) currently comprises 14 species and eight subspecies, all
being Gram-positive, non-spore-forming, non-motile Lactic Acid Bacteria (LAB). Within
the genus Leuconostoc, Ln. mesenteroides, Ln. pseudomesenteroides and Ln. lactis have their
role in food fermentation and can be isolated from various food-related ecological niches,
including beverages, meat and dairy products, and some plant materials, implying wide
distribution and specialized adaptation to these diverse environments [1–4]. The first
description of Ln. mesenteroides was by Van Tieghem in 1878 and was later proposed as the
type strain [5]. In 1983, Ln. dextranicum and Ln. cremoris were reclassified as subspecies of
Ln. mesenteroides due to the common properties they shared [6] and their high degree of
relatedness shown by DNA—DNA hybridization [5].

In the food production, Leuconostoc spp. are usually applied as an adjunct culture
in combination with the fast acid producing Lactococcus spp., as undefined mixed (DL)
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type starter cultures, contributing to aroma and texture formation of the final products
through citrate degradation and production of diacetyl, acetoin, and carbon dioxide [7,8].
Due to its aroma producing traits, Ln. mesenteroides has become known as “the aroma
bacterium” [9]. Leuconostoc spp. are characterized by heterolactic fermentation [10] through
the phosphoketolase pathway (PKP), resulting in the formation of aroma and flavor com-
pounds such as lactic acid, acetic acid, ethanol, and CO2 (responsible for “eye formation”
in some cheeses) [8]. Genetic elements involved in the production of aroma and flavor
compounds include the acetoin reductase gene butA, the citrate inducible cit operon, and
genes involved in the biosynthesis of branched aminoacids like the acetolactate synthase
gene alsS and genes of the isoleucine-leucin (ilv) synthesis operon. These compounds
contribute to the flavor of the products, while biosynthesis of bacteriocins [11–13] has
preservation potential by inhibiting the growth of pathogenic bacteria like Listeria spp.,
Escherichia coli, Staphylococcus aureus, or Salmonella enterica serovars Typhimurium and
Typhi [11–13], positively affecting the quality and safety of the final product [14].

Many traditional dairy products are manufactured without starter cultures [15] and
are recognized as an essential part of a country’s identity, culture, and heritage [16,17].
In these traditional dairy products, naturally occurring Leuconostoc spp., together with
mesophilic lactobacilli known as non-starter LAB (NSLAB), play an important role in
flavor development, accounting for the characteristics and the quality of traditional food
products [15]. In addition, Leuconostoc spp. strains obtained from traditional cheese
products can be valuable for future dairy food production [17], by improving the product
quality [18], since their properties ultimately affect the characteristics and quality of the final
products. Therefore, the isolation and accurate characterization of Leuconostoc spp. strains,
as well as other NSLAB species, can provide necessary information for their selection
and application with the aim of preservation and improvement of quality and safety of
traditional food products [17]. With the evolution of sequencing technologies from Sanger
sequencing to whole genome sequencing (WGS), the genome-based characterization of
Leuconostoc spp. may present an innovative tool to ensure consistent manufacturing of
high quality and safe traditional food products [19,20]. Despite the proven influence of
Leuconostoc spp. to the final characteristics of cheeses, information on the genomic diversity
of Leuconostoc spp. obtained from cheese is still scarce [20–22]. Up to now, three different
multilocus sequence typing [MLST] schemes have been published to investigate strain
diversity of approximately 200 isolates from environmental and dairy sources [23–25].
Among all those 200 isolates, only seven cheese isolates were analyzed by MLST [23–25].
Unfortunately, publicly available databases do not exist for any of the three published
MLST schemes [23–25], making a direct strain comparison impossible. In addition, in
today’s genomic era, only seven Ln. mesenteroides genomes (DSM20484, FM06, LbT16,
LbE15, LbE16, LN25 and T26) derived from cheese are available in GenBank (accessed 15
June 2021) [20–22,26,27]. However, genome sequencing remains the most powerful tool for
characterization of bacterial strains. Prospective comparison and coupling of genome data
and other “omics” data [19,28] with phenotypic data and the use of genome-scale metabolic
models [GSMMs] may facilitate the prediction of metabolic patterns and easier comparison
of metabolic capacities of organisms [8]. The combination of all these modern technologies
may assist the rapid and efficient genetic marker-based selection of the most suitable
strains even though predictive microbiology is currently still a complex and challenging
process [8,19,29].

The aim of this study was to explore the genetic diversity of Ln. mesenteroides isolates
obtained from Montenegrin brine cheeses using whole genome sequencing to prove the
origin of the Montenegrin strains that can be used in future industrial cheese production.
This could lead to more controlled cheese production featuring improved product safety
with the preserved indigenous sensory characteristics as an added value. The use of these
genome data could represent a useful tool for authentication of traditional dairy products.



Microorganisms 2021, 9, 1612 3 of 16

2. Materials and Methods
2.1. Origin and Cultivation of Isolates

Bacteria were isolated from 13 different white brine ripened traditional cheeses col-
lected during spring and summer 2019 from nine producers from the three municipalities
Pljevlja, Šavnik, and Žabljak in the northern region of Montenegro (Supplementary Figure S1
Regions of Montengro), as described previously [30]. Briefly, for each sample, 20 g of cheese
was added to 180 mL sterile 2% (w/v) sodiumcitrate solution and homogenized for 2 min
in an Omni mixer (Omni International, Waterbury, CT, USA). For enumeration, serial
dilutions in Ringer’s solution were plated on de Man, Rogosa, Sharpe (MRS), and M17
agar plates (HiMedia, Mumbai, India) and incubated at 30 ◦C for 72 h. Isolates were
biochemically characterized for their acidification and post-acidification ability, growth at
different temperatures and NaCl concentrations, and their ability for lactose degradation.
Isolates were stored in MRS and M17 medium supplemented with 15% glycerol (v/v) at
−80 ◦C, and, for revitalization, subcultured three times in the respective broths (MRS and
M17) at 30 ◦C overnight.

Up to ten single colonies were selected from MRS and/or M17 agar plates and subcul-
tured for further processing. Species confirmation was carried out using matrix assisted
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) [31] on
a MALDI-TOF Microflex LT/SH with database MBT Compass IVD 4.2 according to the
manufacturer’s instructions (Bruker, Billerica, MA, USA).

2.2. Biochemical Testing
2.2.1. Growth at Different Temperatures

Overnight cultures grown at 30 ◦C were inoculated in MRS broth and incubated for
24 h at 4, 10, 15, 30 (optimal growth temperature, used as control), and 45 ◦C. The optical
density was measured on a Jasco UV/VIS spectrophotometer V-730 (Jasco, Cremella, Italy)
at 560 nm (OD560).

2.2.2. Production of CO2

The production of CO2 from glucose was determined as described previously [32].
Briefly, bacterial cultures (50 µL) were added into a test tube containing 10 mL of suitable
broth supplemented with 1% of glucose (Tokyo Chemical Industry, Tokyo, Japan) and a
Durham’s tube. After 24–48 h of incubation at 30 ◦C, gas production was assessed: if the
gas accumulated in the Durham’s tube to more than one third of its capacity, the result was
considered positive.

2.2.3. Salt Tolerance

The evaluation of salt tolerance was performed as described previously [32,33]. Briefly,
salt content of tubes containing 3 mL of MRS broth was adjusted to a final concentration of
2%, 3%, 4.5%, or 6.5% (w/v) NaCl. Tubes were inoculated with overnight cultures of the
strains and incubated at 30 ◦C for 24 h. Bacteria grown in MRS broth without NaCl were
used as controls. The optical density was measured on a Jasco UV/VIS spectrophotometer
V-730 at 560 nm (OD560).

2.2.4. Acidification and Post-Acidification Ability in Milk

Acidification and post acidification ability was tested as described previously by
inoculating 50 mL ultra-high temperature (UHT) processed skimmed cow’s milk (Imlek,
Belgrade, Serbia) [34] with 50 µL of broth culture and incubated at 30 ◦C for 48 h. The result-
ing pH values, measured after 2, 4, 6, 8, 12, and 24 h post-acidification, were investigated
by measuring the pH of the inoculated skimmed milk after 48 h of incubation [34]. pH of
milk was measured with a WTW pH Meter inoLab ph 7110 (Xylem Analytics, Weilheim,
Germany).
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2.2.5. Catalase Testing

Bacterial cells from a solid nutrient medium were transferred to empty Petri dishes.
In addition, 1–2 drops of 3% hydrogen peroxide were dropped on the cells. Formation of
air bubbles (production of oxygen due to the presence of catalase) was examined visually.

2.2.6. Ability for Formation of Exopolysaccharides (EPS)

EPS formation ability was performed by identifying mucous-producing colonies
grown on MRS agar plates. Additionally, mucoid colonies were stretched with an inocula-
tion loop to detect the production of long filaments. If the mucus producing colonies or the
formation of long filaments was missing, the strain was considered EPS negative.

2.3. Antimicrobial Susceptibility Testing

The Kirby–Bauer disk diffusion test was used to determine antimicrobial susceptibility
of strain INF36 against erythromycin (15 µg, Bioanalyse, Ankara, Turkey) and of strain
INF117 against ampicillin (10 µg) and penicillin (1U) (Bioanalyse, Ankara, Turkey). The
disk diffusion patterns were evaluated according to the microbiological breakpoints for
selected lactic acid bacteria as defined by EFSA [35,36].

2.4. DNA Extraction and Whole Genome Sequencing

For whole genome sequencing, high quality genomic DNA was isolated from overnight
cultures grown in M17 or MRS using the MagAttract HMW DNA Kit (Qiagen, Hilden,
Germany) according to the protocol for Gram-positive bacteria following the manufac-
turer’s instructions (Qiagen). The amount of input DNA was quantified on a Lunatic
instrument (Unchained Labs, Pleasanton, CA, USA). Ready to sequence libraries were
prepared using the Nextera XT DNA library preparation kit (Illumina, San Diego, CA,
USA) according to the instructions of the manufacturer. Paired-end sequencing with a
read length of 2 × 300 bp using Reagent Kit v3 chemistry (Illumina, San Diego, CA, USA)
was performed on a Miseq instrument (Illumina, San Diego, CA, USA) according to the
instructions of the manufacturer (Illumina).

2.5. Sequence Data Analysis

All study isolates were sequenced to obtain a coverage of at least 20-fold. Raw reads
were quality controlled using FastQC v0.11.9 and de novo assembled using SPAdes
(version 3.11.1) [37] to produce draft genomes. Contigs were filtered for a minimum
coverage of 5× and a minimum length of 200 bp using SeqSphere+ software v7.2.3 (Ridom,
Münster, Germany). Confirmation of species identification was done by 16S rRNA analy-
sis [38], https://tygs.dsmz.de (accessed on 27 November 2020), Mash distance v2.3 [39],
and ribosomal multilocus sequence typing (rMLST) [40]. Average nucleotide identity (ANI)
was determined using FastANI v1.32 [41] in all-versus-all fashion using default parameters.
A Type Strain Genome Server analysis (TYGS) tool from the German Collection of Microor-
ganisms and Cell Cultures GmbH (DSMZ) was used for digital DNA-DNA hybridization
(dDDH) using formula d4 as recommended for draft genomes (https://tygs.dsmz.de (ac-
cessed on 27 November 2020)) to assign the isolates to Ln. mesenteroides subspecies [40],
https://tygs.dsmz.de (accessed on 27 November 2020).

Subtyping of all 16 Ln. mesenteroides isolates was conducted in SeqSphere+ v7.2.3 using
a recently published eight-gene multilocus sequence typing (MLST) scheme comprising
the eight loci carB, groeL, murC, pheS, pyrG, recA, rpoB, and uvrC [25] and a newly defined
ad hoc core genome multilocus sequence typing (cgMLST) scheme. For definition of
the cgMLST scheme, a genome-wide gene-by-gene comparison was performed using
the complete genome of strain Ln. mesenteroides subsp. mesenteroides ATCC 8293 as a
reference genome and 18 complete genomes of Ln. mesenteroides available in GenBank as
query genomes (Supplementary Table S1 cgMLST_scheme_data). The resulting ad hoc
cgMLST scheme comprised 960 core genome target genes and 935 accessory genome target
genes. Sixty genes of the ATCC 8293 genome were discarded since they did not fulfil

https://tygs.dsmz.de
https://tygs.dsmz.de
https://tygs.dsmz.de
https://tygs.dsmz.de
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the default quality criteria (Supplementary Table S1 cgMLST_scheme_data). Seven of the
eight MLST targets [25] were also part of our cgMLST scheme while one target (uvrC)
belonged to the accessory genome. For phylogenetic analysis, a minimum spanning tree
(MST) was calculated based on the defined 960-target cgMLST scheme. Based on the 17
allelic differences observed between the query strains NBRC107766 and ATCC19254 (both
are the same strain but originating from different repositories and sequenced at different
laboratories), an arbitrary complex type threshold of 45 allelic differences was applied for
detection of related isolates.

BAGEL4 [42] was used to screen for bacteriocins, and antiSMASH5 [43] was used to
screen for secondary metabolite “biosynthetic gene clusters”. To address biosafety concerns
towards starter culture microorganisms, all 16 isolates were analyzed for the presence of
pathogenic factors [44], plasmids [45], and virulence genes [46] using PathogenFinder 1.1,
PlasmidFinder 2.1, and VirulenceFinder 2.0 available from the Center for Genomic Epidemi-
ology [http://www.genomicepidemiology.org/ (accessed on 3 December 2020)]. Antibiotic
resistance genes were detected using the ResFinder 4.1 tool with default settings (>90%
identity and >60% coverage) [47] and the Comprehensive Antibiotic Resistance Database
(CARD) applying perfect and strict hits search criteria [48].

2.6. Gene Presence and Absence

Detailed analysis of additional genomic information was performed for all 16 genomes
and 12 reference strains: KMB608, ATCC8293, 406, 213M0, WC0331, DRC1506, ATCC19254,
LN08, DSM20484, LN32, NBRC100495, and LbE15. The contigs of each assembly were
filtered for a minimum length of 1000 nucleotides. Genes were predicted using prodi-
gal v2.6.3 [49] with default parameters, and orthologous groups were calculated with
OrthoFinder v1.4.2 [50]. Orthologous groups with differences in presence/absence were
selected for visualization. Additionally, a species tree was created from the orthologous
groups using default parameters for Orthofinder. Annotation of predicted genes was
performed using NCBI BLAST+ v2.10.0 [51].

2.7. Nucleotide Sequence Accession Numbers

This Leuconostoc mesenteroides whole genome shotgun (WGS) project has been de-
posited in DDBJ/ENA/GenBank under the BioProject No. PRJNA706746. This Whole
Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the ac-
cession JAGFYI000000000—JAGFYL000000000, JAFREA000000000—JAFREC000000000,
and JAFRDS000000000—JAFRDZ000000000. The version described in this paper is ver-
sion JAGFYI010000000—JAGFYL010000000, JAFREA010000000—JAFREC010000000, and
JAFRDS010000000—JAFRDZ010000000.

3. Results
3.1. Biochemical Properties

Sixteen Ln. mesenteroides isolates were successfully isolated and identified by MALDI-
TOF-MS from 13 Montenegrin brine cheeses (Supplementary Figure S1 Regions of Mon-
tenegro, Table 1). All isolates were Gram-positive, catalase negative, and had no ability for
formation of exopolysaccharides (EPS). The mean number of viable bacterial cells was in
the range between 41 to 92 cfu/g cheese. The acidification ability of the tested strains was
in the range of pH 4.3–5.9 (24 h), while post acidification ability was between pH 4.2–5.7
(48 h). After 48 h of incubation at 30 ◦C, the pH in broths supplemented with 1% lactose
was in the range of 4.4 to 5.5. Six tested isolates exhibited an ability to grow at 6.5% NaCl
concentration, 11 strains at 4.5%, while three strains did not grow at 2% NaCl concentration.
Both isolates obtained from producer A (INF2 and INF3b) showed growth ability at a
salt concentration of 2%, but did not grow at higher salt concentrations. Isolate INF82b
(producer D) was only growing at a salt concentration of 4.5%. Ten isolates showed an
ability to grow at 45 ◦C, three isolates INF3b (producer A), INF36 (producer B), and INF46
(producer C) had the ability to grow at 4 ◦C (Table 1).

http://www.genomicepidemiology.org/
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Table 1. Data on origin, subspecies, growth, and biochemical parameters of the investigated Ln. mesenteroides strains. (nd) not done, (pg) poor growth, (cfu) colony forming units, (P)

producer, (Cat) catalase (
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3.2. Species and Subspecies Identification

Mash distance analysis, 16s rRNA gene sequence analysis (Supplementary Figure S2
16S rRNA), and ribosomal multilocus sequence typing (rMLST) (https://pubmlst.org/
rmlst (accessed on 20 November 2020)) and ANI analysis (>97% identity; cut-off >95% iden-
tity) (Supplementary Table S2 ANI, Supplementary Figure S3 ANI) confirmed the MALDI-
TOF-MS identification of all 16 isolates as Ln. mesenteroides. Type Strain Genome Server anal-
ysis (TYGS) assigned 10 isolates to the subspecies Ln. mesenteroides mesenteroides and two
each of the isolates to subspecies Ln. mesenteroides dextranicum, Ln. mesenteroides cremoris,
and Ln. mesenteroides jonggajibkimichii (Figure 1). Digital DNA-DNA Hybridization (dDDH)
using formula d4 (https://tygs.dsmz.de (accessed on 20 November 2020)) revealed a simi-
larity of ≥92.5% of the ten Ln. mesenteroides mesenteroides to Ln. mesenteroides mesenteroides
ATCC 8293 (Supplementary Table S3 dDDH). Two isolates showed a dDDH similarity
to subspecies Ln. mesenteroides dextranicum DSM 20484 of ≥97.8%, while four isolates
were not clearly assignable to a subspecies by dDDH: INF2 and INF98 had dDDH values
of 90.5% to Ln. mesenteroides cremoris and ≥93% to Ln. mesenteroides dextranicum, and
INF117 and INF166 had dDDH values of ≥91.5% to Ln. mesenteroides jonggajibkimichii,
≥92.4% to Ln. mesenteroides dextranicum, and ≥92.6% to Ln. mesenteroides mesenteroides
(Supplementary Table S3 dDDH). ANI analysis (>97% identity, cut-off >95% identity) (Sup-
plementary Table S2 ANI, Supplementary Figure S3 ANI) and core genome analysis con-
firmed the dDDH results; cgMLST positioned these isolates on branches comprising strains
of different subspecies (Figure 2). The Montenegrin cheese Ln. mesenteroides isolates had a
genome size between 2.0 Mb and 2.3 Mb, had 2074 to 2368 genes, 1905 to 2221 coding genes,
85 to 151 pseudo genes, and 57 to 65 RNA genes (Supplementary Table S4 genome data).
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(MLST complex 3); INF36, INF90 and 213MO from producers B and D and GenBank, re-
spectively (MLST complex 4); and INF103 from producer E and M11, 406, and AtHG50 
from GenBank (MLST complex 5) (Supplementary Figure S4 MLST). CgMLST differenti-
ated the Montenegrin isolates by one to 860 alleles from each other (Figure 2). CgMLST 
confirmed the MLST based clustering of complex 1 to complex 3 when applying a core 
genome cluster type threshold of 45 alleles (Figure 2, Supplementary Table S4 genome 
data). MLST complex 1 isolates INF2 and INF98, MLST complex 2 isolates INF82b and 
INF94, and MLST complex 3 isolates INF46 and INF157 differed by 41, five, and one al-
lele(s) in their core genome, respectively (Figure 2). CgMLST revealed with an allelic dis-
tance of 41 a closer relatedness of isolate INF90 to the MLST complex 2 isolates INF94 and 
INF82b than to the MLST complex 4 isolates INF36 and 213MO with an allelic distance of 
>170 alleles (Figure 2). For MLST complex 5 cgMLST analysis differentiated isolate INF103 
from 138 to 163 alleles from the GenBank isolates 406, M11, and AtHG50. Isolates INF2 
and INF3 obtained from two cheeses of the same type from producer A differed by 839 
alleles in their core genome (Figure 2). Six isolates INF82a, INF82b, INF90, INF92, INF94, 
and INF98 obtained from three cheeses of the same type from producer D differed by five 
to a maximum of 860 alleles in their core genome (Table 1, Figure 2). Isolates INF82a and 
INF82b obtained from the same cheese from producer D differed by 860 alleles (Figure 2). 
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noacids acetolactate synthase alsS and isoleucine synthesis operon ilv. 
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Safety evaluation indicated that none of the 16 isolates carried pathogenic and viru-

lence factors. Five isolates carried plasmids. The CARD database identified a C656T tran-
sition in the 23S rRNA gene of isolate INF36, conferring resistance to erythromycin and 
clindamycin (100% identity, 10% coverage) using the CARD database. ResFinder did not 
detect this mutation in the 23S rRNA gene of isolate INF36. Disk diffusion testing revealed 
susceptibility of strain INF36 against erythromycin (Table 3). Isolate INF117 carried a par-
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tial blaTEM in isolate INF117 (97.5% identity and 55.94% coverage to several blaTEM) 

Figure 2. Minimum spanning tree (MST) based on cgMLST analysis of 88 Ln. mesenteroides isolates derived from GenBank
and Montenegrin brine cheeses. Numbers on connection lines represent allelic differences between isolates. Isolates are
colored according to their country of origin.

3.3. Whole Genome Sequence Based Subtyping

MLST and cgMLST based characterization of all 16 Ln. mesenteroides isolates and 72
Ln. mesenteroides genomes available in GenBank (72 genomes fulfilled the quality criteria
of at least ≥90% good core genome targets) revealed a high diversity of the Montenegrin
Ln. mesenteroides isolates (Figure 2, Supplementary Figure S4 MLST). MLST and cgMLST
showed comparable results but with the advantage of a higher resolution for the core
genome approach.

Briefly, the 16 Montenegrin brine cheese isolates were assigned to twelve different
MLST profiles differing between zero and eight alleles. Identical MLST profiles were
found for INF2 and INF98 from producers A and D (MLST complex 1); INF82b and INF94
both from producer D (MLST complex 2); INF46 and INF157 from producers C and H
(MLST complex 3); INF36, INF90 and 213MO from producers B and D and GenBank,
respectively (MLST complex 4); and INF103 from producer E and M11, 406, and AtHG50
from GenBank (MLST complex 5) (Supplementary Figure S4 MLST). CgMLST differenti-
ated the Montenegrin isolates by one to 860 alleles from each other (Figure 2). CgMLST
confirmed the MLST based clustering of complex 1 to complex 3 when applying a core
genome cluster type threshold of 45 alleles (Figure 2, Supplementary Table S4 genome
data). MLST complex 1 isolates INF2 and INF98, MLST complex 2 isolates INF82b and
INF94, and MLST complex 3 isolates INF46 and INF157 differed by 41, five, and one
allele(s) in their core genome, respectively (Figure 2). CgMLST revealed with an allelic
distance of 41 a closer relatedness of isolate INF90 to the MLST complex 2 isolates INF94
and INF82b than to the MLST complex 4 isolates INF36 and 213MO with an allelic distance
of >170 alleles (Figure 2). For MLST complex 5 cgMLST analysis differentiated isolate
INF103 from 138 to 163 alleles from the GenBank isolates 406, M11, and AtHG50. Isolates
INF2 and INF3 obtained from two cheeses of the same type from producer A differed by
839 alleles in their core genome (Figure 2). Six isolates INF82a, INF82b, INF90, INF92,
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INF94, and INF98 obtained from three cheeses of the same type from producer D differed
by five to a maximum of 860 alleles in their core genome (Table 1, Figure 2). Isolates
INF82a and INF82b obtained from the same cheese from producer D differed by 860 alleles
(Figure 2). The cgMLST based comparison of the Montenegrin Ln. mesenteroides isolates
with isolates available from GenBank revealed an allelic difference from 138 to a maxi-
mum of 646 alleles (Figure 2). The closest related strains available from GenBank were
Ln. mesenteroides strain 406 and 213MO, two strains isolated from Mongolian mare milk
differing by 138 alleles, respectively, and 165 alleles from strain INF103 from producer E
(Figure 2). CgMLST revealed 295 to 865 allelic differences between the Montenegrin
isolates and the Ln. mesenteroides subspecies reference strains (Supplementary Table S4
genome data). CgMLST results were concordant with TYGS and ANI analysis
(Supplementary Table S2 ANI, Supplementary Figure S3 ANI, Supplementary Table S4
genome data, Figure 1).

3.4. Detection of Bacteriocin and Secondary Metabolite Genes

All isolates but one carried genes of the bacteriocin biosynthetic gene clusters, ten out
of 16 carried a betalactone biosynthesis gene, and all carried a type III polyketide synthase
gene (T3PKS) (Table 2). Eight out of our 16 Leuconostoc strains carried genes necessary for
citrate metabolism (citCDEFG operon) (Figure 3), 14 isolates had the acetoin reductase gene
butA and all isolates carried genes necessary for the biosynthesis of branched aminoacids
acetolactate synthase alsS and isoleucine synthesis operon ilv.

Table 2. Genes of the bacteriocin gene cluster and biosynthesis of secondary metabolites identified
by BAGEL4 and AntiSMASH.

Isolate-ID Bacteriocin Betalactone T3PKS Other

INF2 IIc + + Enterocin_x_chain_beta

INF3b IIc, Mesen-
tericinY105 - + Enterocin_x_chain_beta

INF36 IIc + + Enterocin_x_chain_beta
INF38 IIc + + Enterocin_x_chain_beta
INF46 IIc + + Enterocin_x_chain_beta

INF82a IIc + + Enterocin_x_chain_beta

INF90 IIc +
LomaiviticinA//C-E + Enterocin_x_chain_beta

INF82b IIc LomaiviticinA//C-E + Enterocin_x_chain_beta
INF94 IIc LomaiviticinA//C-E + Enterocin_x_chain_beta
INF92 IIc - + Enterocin_x_chain_beta

INF117 IIc - + -
INF103 IIc - + -
INF98 IIc - + Enterocin_x_chain_beta

INF131 MesentericinB105 + + Enterocin_x_chain_beta
INF157 IIc - + Enterocin_x_chain_beta
INF166 - + + -

3.5. Safety Evaluation

Safety evaluation indicated that none of the 16 isolates carried pathogenic and vir-
ulence factors. Five isolates carried plasmids. The CARD database identified a C656T
transition in the 23S rRNA gene of isolate INF36, conferring resistance to erythromycin and
clindamycin (100% identity, 10% coverage) using the CARD database. ResFinder did not
detect this mutation in the 23S rRNA gene of isolate INF36. Disk diffusion testing revealed
susceptibility of strain INF36 against erythromycin (Table 3). Isolate INF117 carried a
partial blaTEM with 99.04% identity and 60.51% coverage to blaTEM-141 (and others)
using ResFinder. CARD analysis (using the loose hits criteria) confirmed the presence of a
partial blaTEM in isolate INF117 (97.5% identity and 55.94% coverage to several blaTEM)
(Table 3). A BLAST search of the contig containing the partial blaTEM was performed,
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resulting in 100% coverage and 99.65% identity match to Ln. mesenteroides ATCC8293. Disk
diffusion testing revealed susceptibility of strain INF117 against ampicillin and penicillin
(Table 3).
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3.6. Orthofinder Analysis

Orthofinder analysis assigned 57,889,803 genes (97.9% of total) to 3080 orthologous
groups. The number of orthologous groups identified for our isolates ranged from 1873
to 2111 (mean: 1979). There were 1280 orthogroups present in all Leuconostoc subspecies
and 1091 of these orthologous groups consisted entirely of single-copy genes (Figure 3).

Table 3. AMR targets, virulence genes, plasmids, pathogenicity, (S) susceptible, (Ery) erythromycin, (Amp) ampicillin, (Pen)
penicillin, (Inhz) inhibition zone, (-) negative, and (nd) not done.

Strain ID
AMR

Plasmid Finder Virulence
Finder

Pathogen
FinderCARD ResFinder Susceptibility Testing

INF2 - - nd Rep3 - -

INF3b - - nd Rep3 - -

INF36

Clostridioides difficile
23S rRNA with C656T
mutation conferring

resistance to
erythromycin and

clindamycin, 98.97%
identity, 10.00%

coverage

-
S

Ery (15 µg)
Inhz 26 mm

- - -
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Table 3. Cont.

Strain ID
AMR

Plasmid Finder Virulence
Finder

Pathogen
FinderCARD ResFinder Susceptibility Testing

INF38 - - nd - - -

INF46 - - nd - - -

INF82a - - nd - - -

INF82b - - nd - - -

INF90 - - nd - - -

INF92 - - nd Rep3 - -

INF94 - - nd - - -

INF98 - - nd Rep3 - -

INF103 - - nd - - -

INF117

97.5% identity to
blaTEM 33, 55.94%

coverage
(using loose criteria)

beta lactam
resistance

99.04% identity
to blaTEM 141,

60.51%
coverage

S
Amp (10 µg)
Inhz 19.5 mm

Pen (1U)
Inhz 21 mm

- - -

INF131 - - nd - - -

INF157 - - nd - - -

INF166 - - nd RepA_N - -

4. Discussion

Traditional food products are an acknowledged part of the identity, culture, and
heritage of a country and, in addition, they may serve as a valuable resource for future
food production [16,17,52]. To explore the diversity of Leuconostoc spp. Isolates, we
characterized in this study 16 Leuconostoc mesenteroides (Ln. mesenteroides) isolates obtained
from 13 traditional Montenegrin brine cheeses from nine different producers by whole
genome sequencing (WGS). To the best of our knowledge, our study comprises the largest
set of Ln. mesenteroides strains from traditional cheese characterized biochemically and by
WGS.

The biochemical abilities of strains were in the range of expected technological signifi-
cance. Growth at low/high salt and or low/high temperatures of single isolates could not
be linked to genotypes.

Nevertheless, genome sequencing is considered as a suitable tool for the selection
of particularly suitable strains used as adjunct cultures for the production of traditional
cheese [15,21,22,26]. Leuconostoc species were “Generally Regarded As Safe” (GRAS) or-
ganisms by the US Food and Drug Administration (FDA) and the European Food Safety
Authority (EFSA) for food production [53,54]. Reports about clinical infections caused by
Ln. mesenteroides [55] in combination with the role of LAB as a reservoir for antimicrobial
resistances have changed the uncritical classification of LAB as GRAS. Antimicrobial resis-
tance and multi-resistance have been described for several Ln. mesenteroides isolates [36,56].
Safety evaluation of the Montenegrin brine cheese isolates revealed that they carried no
pathogenic factors and no virulence genes. However, two isolates carried antimicrobial
resistance determinants. One isolate carried a fragment of the blaTEM, which also ex-
ists in the genomes of several other Ln. mesenteroides strains including reference strains
ATCC 8293. For the second strain, we found for the first time in a Leuconostoc spp. isolate
a C656T point mutation in the 23S rRNA gene. This mutation was detected for the first
time in Clostridioides difficile (Clostridium difficile) conferring high resistance to erythromycin
and low resistance to clindamycin [57]. However, this point mutation was not found via
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ResFinder analysis. Phenotypic testing revealed that both strains were susceptible against
the respective antibiotics, which can be explained by the fact that the detected antimicrobial
resistance gene fragments are non-functional.

Analysis of genes essential for the biosynthesis of secondary metabolites revealed
that all but one strain carried genes of the bacteriocin biosynthetic gene clusters, which
is an important natural feature in cheese production through inhibiting the growth of
several important pathogenic bacteria. All strains carried a type III polyketide synthase
gene essential for the biosynthesis of important secondary metabolites [43] and all isolates
carried genes essential for the biosynthesis of branched aminoacids that contribute to flavor.
Interestingly, only 50% of our Montenegrin cheese isolates carried the cítrate operon, which
is essential for citrate metabolism and a characteristic of dairy Ln. mesenteroides strains [20].

To investigate strain diversity, a previously published MLST scheme [25] and our
novel ad hoc core cgMLST scheme were used. Our ad hoc cgMLST scheme comprised
960 core targets in comparison to a recently published cgMLST scheme, which comprised
999 core genes [19]. We used a so-called “hard core genome” definition and 19 instead of
17 complete genomes for core genome generation, which resulted in the observed lower
number of 960 core genome targets. All tested isolates except four had more than 97%
good core genome targets. Type Strain Server Analysis (TYGS) [38] identified most of our
isolated strains as subspecies Ln. mesenteroides mesenteroides, confirming recent findings that
subspecies Ln. mesenteroides mesenteroides is better adapted to cheese production than other
subspecies and also than subspecies Ln. mesenteroides cremoris, which is mainly used in com-
mercial starter cultures [3]. In addition to subspecies Ln. mesenteroides mesenteroides, TYGS
analysis assigned the remaining six Montenegrin brine cheese isolates to subspecies Ln.
mesenteroides cremoris, Ln. mesenteroides jonggajibkimchii, and Ln. mesenteroides dextranicum.
Isolates identified as Ln. mesenteroides mesenteroides and Ln. mesenteroides dextranicum by
TYGS clustered appropriately with the respective subspecies available from GenBank when
using dDDH, ANI, or our cgMLST approach. Four isolates were not accurately assignable
by TYGS, ANI, or cgMLST to a Leuconostoc mesenteroides subspecies. All these methods
placed them between different Leuconostoc subspecies. Congruent with TYGS and ANI,
cgMLST analysis placed two of the Montenegrin isolates between strains previously identi-
fied as Ln. mesenteroides mesenteroides [20] and Ln. mesenteroides cremoris [26]. Two other
Montenegrin isolates were placed between Ln. mesenteroides dextranicum strains isolated
from Italian cheese [26] and Ln. mesenteroides mesenteroides strains isolated from sheep milk
in Slovakia [unpublished, https://www.ncbi.nlm.nih.gov/biosample/SAMN09398940]
(accessed on 25 February 2020). From this Italian study [26], diverse Ln. mesenteroides
subspecies were recently reassigned to Ln. mesenteroides lineage M4 and Ln. mesenteroides
lineage M1 [20], which confirmed our core genome results, i.e., clustering of these strains
on the same branches. In contrast, all other Ln. mesenteroides cremoris strains available
from GenBank clustered together and were unrelated to the Italian and our isolates. This
awkward subspecies assignment indicates that Ln. mesenteroides lineage M1 and M4
strains have some specific features from diverse subspecies [20]. The four Montenegrin
isolates that were not assignable to a subspecies (and related to lineage M1 and M4 iso-
lates according to Frantzen et al., 2017) [20] had, in comparison to the other Montenegrin
cheese isolates, a lower percentage of good core genome targets (≤97%). This lower
number of core genes is also characteristic for Ln. mesenteroides cremoris ATCC19254
and Ln. mesenteroides jonggajibkimchii DRC1506 due to the loss of genes of these two Leu-
conostoc subspecies as a consequence of adaptation to their ecological niches [19,20]. Our
results support recent findings that a taxonomic revision of the genus Leuconostoc should
be considered and that some of the isolates available in GenBank have been assigned to the
wrong subspecies due to the use of phenotypic properties [20,58].

MLST and cgMLST analysis revealed that the 16 Montenegrin Ln. mesenteroides
cheese isolates showed a high diversity, which contrasts with isolates obtained from
commercial starter cultures, which show a low genetic diversity [20,25]. This high diversity
underlines the importance of traditional food products as a valuable source for strains with
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unique and interesting features to be used in the dairy industry as novel starter cultures
or for production of functional dairy foods [15,18,52]. The observed high diversity of our
Montenegrin Ln. mesenteroides isolates and, in addition, their non-relatedness to genomes
of strains available from GenBank reflects that no commercial starter cultures were used
to produce the traditional Montenegrin brine cheeses included in this study. Although
we investigated only a small number of isolates, the observed diversity corresponds
with results from previous studies showing a high strain diversity of Ln. mesenteroides
obtained from a variety of food sources [23–25]. Isolation of different strains from the same
cheese product of the same producer and the diversity of strains obtained from the same
cheeses also indicate a variable composition of the Leuconostoc population in traditional
cheeses, which may also affect the sensory characteristics and quality of the final products.
However, more extensive studies are necessary to prove these findings. The differences
between isolates from the same producer as well as from the neighboring regions might be
explained by the specific natural plant biodiversity, which is strongly supported by the fact
that, in Montenegro, the feeding of animals is still to the highest extent based on natural
grazing, with a relatively low percentage of concentrate feeding [52]. Thus, genome-based
characterization of Leuconostoc spp. may present an innovative tool to prove the origin
of strains and to ensure consistent manufacture of high quality and safe traditional food
products [19,20]. In the future, with the ongoing progress in multi-omics technologies,
the prediction of gene functions, metabolic pathways, and inter-microbe interactions—
particularly within starter cultures—may allow a selection of strains based on specific
marker genes more efficiently [28]. Currently, the accurate prediction of metabolic patterns
and the comparison of metabolic capacities of organisms using genome-scale metabolic
models is still a major challenge or even impossible due to the lack of complete genomes [8].

In conclusion, Ln. mesenteroides isolates from the Montenegrin traditional brine cheeses
show a high genetic diversity, which can be explained by the high level of plant biodiversity
in Montenegro and the fact that the feeding of animals is mainly based on natural grazing.
WGS based strain-typing proves the Montenegrin origin and endogenous status of strains.
With the ongoing progress in predictive microbiology, indigenous cheese isolates with
specific properties will become selectable and become available for standardization of the
production, to preserve designation of origin as well as to create added-value sensory
characteristics.
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.3390/microorganisms9081612/s1. Table S1. cgMLST_scheme_data; Table S2. ANI; Table S3. Dddh;
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