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Quantitative electroencephalography (QEEG) analysis is commonly

adopted for the investigation of various neurological disorders, revealing

electroencephalogram (EEG) features associated with specific dysfunctions.

Conventionally, topographies are widely utilized for spatial representation

of EEG characteristics at specific frequencies or frequency bands. However,

multiple topographies at various frequency bands are required for a complete

description of brain activity. In consequence, use of topographies for the

training of deep learning algorithms is often challenging. The present study

describes the development and application of a novel QEEG feature image

that integrates all required spatial and spectral information within a single

image, overcoming conventional obstacles. EEG powers recorded at 19

channels defined by the international 10–20 system were pre-processed

using the EEG auto-analysis system iSyncBrain
R©

, removing the artifact

components selected through independent component analysis (ICA) and

rejecting bad epochs. Hereafter, spectral powers computed through fast

Fourier transform (FFT) were standardized into Z-scores through iMediSync,

Inc.’s age- and sex-specific normative database. The standardized spectral

powers for each channel were subsequently rearranged and concatenated

into a rectangular feature matrix, in accordance with their spatial location on

the scalp surface. Application of various feature engineering techniques on

the established feature matrix yielded multiple types of feature images. Such

feature images were utilized in the deep learning classification of Alzheimer’s

disease dementia (ADD) and non-Alzheimer’s disease dementia (NADD)

data, in order to validate the use of our novel feature images. The resulting

classification accuracy was 97.4%. The Classification criteria were further

inferred through an explainable artificial intelligence (XAI) algorithm, which
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complied with the conventionally known EEG characteristics of AD. Such

outstanding classification performance bolsters the potential of our novel

QEEG feature images in broadening QEEG utility.
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Introduction

Electroencephalogram (EEG) is an electrical pattern
measured at multiple channel locations on the scalp, reflecting
cortical activities of the underlying brain regions. Quantitative
electroencephalography (QEEG) enables mapping of specific
brain functions with the features extracted from digitized EEG
through various techniques, such as spectral analysis (Nuwer,
1988).

Raw EEG signals can be decomposed into various
waveforms defined by oscillation frequencies through Fourier
transform, typically consisting of five frequency bands,
designated delta, theta, alpha, beta, and gamma. Delta and theta
waves are dominant during the sleeping state, whereas alpha
waves (resting state rhythm) are dominant in eyes-closed resting
state. Beta waves become dominant when put under stress or
during concentration and gamma waves are found when highly
alert. However, gamma waves are easily contaminated with a
signal artifact that arise from muscle movements (Malik and
Amin, 2017; Moini and Piran, 2020).

Quantitative electroencephalography has been employed in
the diagnosis of several neurological disorders (Livint Popa et al.,
2020), in view of the fact that atypical spectral properties during
a certain state correspond to clinically relevant abnormalities.
Furthermore, employment of a age- and sex-differentiated
normative database can aid in the standardization of the spectral
powers, which eliminates variations that arise due to differences
in age and sex.

Visualization of EEG spectral powers is crucial for the
inspection and diagnosis of abnormalities. Several studies
adopt topographic representation, which maps the EEG powers
measured at pre-defined channels onto their respective locations
over the surface of the scalp. The process can be performed
at various frequencies or bands of frequencies, and at different
power scales (Yuvaraj et al., 2014).

Although spectral topographies are useful for the
visualization of brain activity, it is often difficult to
interpret brain functionality as a whole from a single
topography which represents spectral power distribution
at a specific frequency band. Thus, several topographies
at various ranges of frequencies are required to provide
a more complete description of brain functionality. Due
to this, the use of topographies as feature images for the

training of deep learning algorithms becomes problematic
seeing as how multiple topographies are required to fully
describe a single class label. Therefore, the present study
developed a novel QEEG-derived feature image which is
capable of overcoming the disadvantages of prior QEEG-
based feature sets. The novel feature image sufficiently
holds both spatial and temporal information with high
resolution and is fully adapted for the training of deep
learning algorithms.

Alzheimer’s disease (AD), which the present study focuses
on for the verification of the novel feature image, is an
irreversible neurodegenerative disorder which is associated with
the formation of beta amyloid plaques or neurofibrillary tangles
resulting from the dysfunction of microtubule-associated
protein tau. The plaques form inside or outside of neurons
in the brain, progressively destroying neurons and shrinking
the brain, resulting in a gradual decline in cognitive function
(Iqbal et al., 2005; Murphy and LeVine, 2010). Patients are
usually diagnosed as having AD dementia (ADD) if they are
incapable of independent daily living and exhibit imaging β-
amyloid plaques and/or tauopathy above a certain threshold,
which is most evident in positron emission tomography
(PET) scans (Haller et al., 2020). However, PET scans are
highly costly, and many nations lack sufficient access to
PET scanners. Hence, there have been previous attempts
to screen for ADD through QEEG-based features, which
are easier to access. For example, Meghdadi et al. (2021)
claims that there are resting state EEG biomarkers that can
sufficiently indicate characteristics of ADD and mild cognitive
impairment (MCI), with strong emphasis on the spectral
band theta and alpha. Porcaro et al. (2022) also attempted
discrimination of ADD from MCI and an elderly control
group using P300 response which is an event-related potential
(ERP) component. However, their studies did not employ deep
learning algorithms.

Instead, we performed deep learning classification of
clinically labeled ADD and non-ADD (NADD) data in the
present study, using the novel feature image dataset. Provided
that the deep learning model developed in the present study
yields a promising classification performance, our novel feature
images bear great potential for application in deep learning
classification of several other neurological diseases, ultimately
resulting in the expansion of QEEG utility.
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Materials and methods

Electroencephalogram recording and
processing

All EEG data employed in the present study were recorded
using wet sensor-based Mitsar-EEG systems (Mitsar Co. Ltd.,
St. Petersburg, Russia) in the eyes-closed resting state, at
the 19 channel locations defined by the international 10–20
system (Fp1, Fp2, F7, F8, F3, F4, Fz, T3, T4, C3, C4, Cz, T5,
T6, P3, P4, Pz, O1, O2) with linked-ear reference. Electrical
impedance was kept at 10 k� or below for all channel electrodes.
All data were digitized in continuous recording mode for
approximately 2–3 min, with sampling rate of 250 Hz which
prevents aliasing effects. The ground electrode was located
between the AFz and Fz electrodes. All recorded data were re-
referenced to a common average reference post-data collection
for standardization of the data.

The re-referenced data were further processed using an AI-
driven auto-analysis system iSyncBrain R© (Ver. 3.0, iMediSync,
Inc., Seoul, South Korea) which performs bandpass filtering of
signals outside the frequency band of interest (1–45.5 Hz), bad
epoch rejection, and independent component analysis (ICA).
Electrical patterns detected at multiple channels on the scalp
represent a complex weighted sum of several electrical signals,
comprised of components originating from electrical sources
in the brain, non-stationary noises such as drowsiness or poor
contact between electrodes and the scalp, and stationary noises
such as eye movement (electrooculography), muscle movement
(electromyography), and heartbeats (electrocardiography). Bad
epoch rejection aids in elimination of non-stationary noises,
while ICA can separate stationary noises as well as help identify
their origins (Jutten and Herault, 1991). The ICA components
for all data were carefully inspected to assure robust data quality
through the removal of artifact components.

Feature engineering

Standardization of the electroencephalogram
data

Brain functionalities are known to vary with gender and
clearly degenerate with age. To account for this, our study
utilized iMediSync, Inc’s normative database ISB-NormDB
which holds EEG data of 1,289 healthy control subjects (553
males, 736 females) aged 4.5–81 years old (Ko et al., 2021). The
database provides standardized age- and sex-specific features
referred to as Z-scores, which are common and statistically
robust measures of variation from norms and capture standard
deviation. Use of such features can also help reduce a strong
dominance of alpha waves, commonly observed in the resting
state EEGs of healthy adults measured in the eyes closed
condition (Halgren et al., 2019).

The present study utilized sensor level relative power values
ranging from 1 to 45 Hz, with a resolution of 0.25 Hz. Z-scores
were then calculated via reference to ISB-NormDB, which
returned 176 Z-score values at 19 electrode locations. We also
grouped the spectral powers into eight different frequency
bands, namely, delta (1–4 Hz), theta (4–8 Hz), alpha1 (8–10 Hz),
alpha2 (10–12 Hz), beta1 (12–15 Hz), beta2 (15–20 Hz), beta3
(20–30 Hz), and gamma (30–45 Hz). Alpha band was subdivided
into slower and faster alpha bands (alpha1 and alpha2) since
resting state alpha waves are highly related to the cognition
status (Ramsay et al., 2021). Beta bands were also subdivided
into low, mid, and high beta bands (beta1, beta2, and beta3)
in order to dissociate the characteristics of the sensorimotor
rhythm (Arroyo et al., 1993).

Feature matrix
Channel locations specified by the international 10–20

system were split into left and right regions, where the central
electrodes were taken to belong in both regions. Through
rearrangement of the locations into a rectangular format
(Figure 1), a single feature matrix was created with the x-axis
representing the frequency, and the y-axis representing the
channels. Each side of the rearranged matrix consists of 176
frequency bins with a 0.25 Hz resolution, hence the x-axis holds
352 bins in total when both sides are summed. The 19 channels
were also rearranged with foremost channels at the top of the
matrix and central channels included in both sides. As a result,
we acquired a matrix with a shape of 352 by 11.

Feature image
Topographies visualize spatial representation of EEG data,

at a given frequency band (Arab et al., 2010) while power
spectral density presents the amplitude of EEG power per
frequency bins describing frequency characteristics (Shim and
Shin, 2020). Rearrangement of channels and spectral powers
into the above rectangular orientation adopts both the spatial
and spectral benefits of topographies and power spectral density.
Figure 2 represents the feature matrix visualized as an image
with the range of color scale set as -1.96 to 1.96 Z-score,
and topographies, yielded from the same EEG data using
iSyncBrain R©.

Multiple feature engineering approaches were applied to the
matrix, yielding four types of feature images. The established
datasets were used to train and test neural network models.
Thereafter, the effects of varying feature images on the
classification performance were analyzed.

The first method applied nearest interpolation to the feature
matrix, which simply stretches the matrix in the y-direction to
match the sizes of the x-axis and y-axis. This yields a square
image with a shape of 352 by 352 pixels, with clear edges between
consecutive rows and columns (Figures 2, 3A).

In order to smoothen out the edges, bicubic interpolation
was applied instead to the feature matrix as the second method.
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FIGURE 1

Feature matrix which redistributes the channels into a rectangular arrangement.

FIGURE 2

Comparison between the novel feature image and traditional topographies showing clear spatiotemporal resemblance.

Bicubic interpolation adopts a third degree polynomial to
resample data points in both the x- and y- directions, resulting
in smoother color transitions (Figure 3B). Equation 1 represents
the third degree polynomial used to compute data points
through bicubic interpolation. Given that we want to estimate
the value of the interpolation surface within the four points
(x, x), (x, y), (y, x), and (y, y), spatial derivatives from the 16
neighboring points to the point (x, x) are expressed in terms of
16 coefficients a (a00–a33) using Eq. 1. The interpolation surface

p (x, y) can be calculated through the determined values of a
(Gao and Gruev, 2011).

p
(
x, y

)
=

3∑
i=0

3∑
j=0

aijxiyj (1)

All EEG data were measured in a calm resting state with the
subjects’ eyes closed. It is commonly accepted that alpha waves
are dominant in such a state, whereas very high frequency waves
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FIGURE 3

(A) Feature image created using nearest interpolation. (B) Feature image created using bicubic interpolation from the same
electroencephalography (EEG) data.

are easily contaminated by electromyography or external noise.
Hence, we created a weight map which zero pads the image
regions representing beta3 and gamma frequency bands. In
doing so, zero padded pixels appear black when mapped into
RGB values (Figure 4), losing their significance as distinguishing
features.

Lastly, we rescaled the proportions of frequency bands
within the feature image. High frequency regions (beta3–
gamma) were first deleted from the feature matrix. A rectangular
image with size of 152 by 152 pixels was created by adopting
bicubic interpolation, which includes six frequency bands
ranging from 1 to 20 Hz (delta–beta2). Each frequency band
has a resolution of 0.25 Hz, resulting in a different number of
bins. Hence, their proportions are different when visualized as
an image, which could influence the effect of a specific frequency
band on classification. In order to avoid this, we rescaled each
region into matching widths and recreated the feature image
(Figure 5 and Table 1).

Four different image datasets were created using the
feature engineering techniques described above and were
subsequently used in the deep learning-based classification of
ADD and NADD data.

Classification data

Diagnostic criteria
The present study utilized community-based subjective

cognitive decline (SCD), MCI, and ADD data received

FIGURE 4

Weight map image where frequencies over 20 Hz are zero
padded.

from multiple clinical institutions in South Korea: Chung-
Ang University (CAU) hospital; Hanyang university hospital;
Inha university hospital; Seoul National University Boramae
Medical Center (SNUBMC); Yonsei Severance hospital. Clinical
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FIGURE 5

Rescaling the proportions of frequency bands composing the feature image.

TABLE 1 Size of each frequency band region before and after the
rescaling process.

Region Frequency
band

Initial size
(x by y)

Rescaled
size (x by y)

1 Delta (1–4 Hz) 12 by 152 20 by 240

2 Theta (4–8 Hz) 16 by 152 20 by 240

3 Alpha1 (8–10 Hz) 8 by 152 20 by 240

4 Alpha2 (10–12 Hz) 8 by 152 20 by 240

5 Beta1 (12–15 Hz) 12 by 152 20 by 240

6 Beta2 (15–20 Hz) 20 by 152 20 by 240

Dementia Rating (CDR) was the main diagnostic criterion along
with several other factors, including the clinicians’ independent
judgements based on their experiences. CDR is a globally
employed method for clinical judgment of the individual’s
cognition status through the assessment of six cognitive and
behavioral categories (Kim et al., 2017). SCD data is comprised
of individuals that met the following criteria commonly used by
the Korean AD society (Ho and Yang, 2020): CDR = 0; 60 years
old or older; persistent subjective complaints of cognitive
decline; completed 6 years of primary school or more; memory
test and cognitive test scores below the normative mean within
0–1.5 standard deviations.

Mild cognitive impairment data is comprised of individuals
that met the following criteria: CDR = 0 or 0.5; 60 years old
or older; persistent subjective complaints of cognitive decline;
completed 6 years of primary school or more; memory test
and cognitive test scores below the normative mean by more
than 1.5 standard deviations; normal performance in activities

of daily living (ADL). In addition, clinicians further examined
and diagnosed the patients through more comprehensive tests.

Alzheimer’s disease dementia data is comprised of
individuals that met the following criteria: CDR ≥ 1; 60 years
or older; completed 6 years of primary school or more; memory
test and cognitive test scores severely below the normative
mean; poor performance in ADL.

Quantitative electroencephalography-based comparisons
between the ADD group and NADD group can help identify
distinguishing characteristics of ADD and begin to reveal
the nature of progression from MCI to ADD. One obvious
application for such research includes improving early detection
by extending diagnostic signs beyond the current imprecise
measure of ADL (Mlinac and Feng, 2016).

Dataset establishment
The dataset was segregated into two groups, ADD and

NADD. The NADD group consisted of subjective cognitive
decline (SCD) and mild cognitive impairment (MCI) data, along

TABLE 2 Table describing the dataset used in classification.

NADD

ADD Normal MCI Total

NormDB SCD

Clinical institutions 137 0 262 142 541

iMediSync, Inc. 0 224 0 0 224

Total 137 224 262 142 765
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with iMediSync, Inc.’s EEG data of healthy individuals from ISB-
NormDB (Ko et al., 2021). The inclusion of MCI data in the
NADD group was crucial for the identification of significant
ADD-specific characteristics that are not observed in the pre-
clinical stage of ADD. The final dataset (N = 765; 137 ADD, 628
NADD) was established, in which 10% of the data (N = 77; 14
ADD, 63 NADD) were randomly selected and excluded as test
data for later verification of the developed classification model.

Data imbalance is often inevitable when the classification
task involves community-based clinical data collected from
clinical institutions. The dataset provided for the present study
consisted of significantly less ADD data. Hence, a 9 to 1 train
to test ratio was selected, since deep neural networks often
require significantly more information for a sufficient training
of the network due to its more complex structure in comparison
to machine learning algorithms. Although this may raise
concerns in chances of overfitting, the significant differences
in ADD and NADD QEEG characteristics aid in prevention of
overfitting. Thorough verification has also been carried out via

an explainable artificial intelligence (XAI) algorithm to make
certain that the models are not overfitted.

Table 2 describes the established dataset. Age and sex
information were not included since age-and sex-standardized
Z-scores were employed in the study.

Classification model

Transfer learning is a commonly employed method in
computer vision research. Building a neural network structure
from scratch is time consuming, since various structures must
be trained and tested in order to find a structure that outputs
a sufficient classification performance. Hence, structures of
various pre-established image networks that are known to result
in an outstanding image classification performance can be
imported and used to train custom datasets (Best et al., 2020).
Various image classification tasks, namely, in the detection
of objects within images, adopt convolutional neural network
(CNN) based image network structures that have already been

FIGURE 6

Typical feature images representing the classes Alzheimer’s disease dementia (ADD) and non-Alzheimer’s disease dementia (NADD).

FIGURE 7

Modeling pipeline which summarizes model yielding and verification processes.
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pre-trained with large-scale data, due to difficulties in the
collection of sufficient data needed to train the network from
scratch. However, the use of such pre-trained networks is only
applicable when classifying similar types of images, in which
the network has been pre-trained with. The image datasets
established in the present study significantly differ from the
dataset that were employed in the pre-training of such image

networks. Hence, we adopted only the network structures,
training them from scratch.

The objective of the present study is the verification of
novel feature images as features for deep learning training, not
the development of a state-of-the-art classifier. Hence, complex
fine tuning of the image networks had not been performed.
Instead, various user-provided sets of hyperparameters were

TABLE 3 Confusion matrices for selected best models trained with different types of image networks and images constructed through varying
feature engineering techniques.

18-layer ResNet

1. Nearest 2. Bicubic

True ADD True NADD True ADD True NADD

Pred ADD 12 5 Pred ADD 13 4

Pred NADD 2 58 Pred NADD 1 59

3. Weight map 4. Rescaled

True ADD True NADD True ADD True NADD

Pred ADD 14 2 Pred ADD 13 5

Pred NADD 0 61 Pred NADD 1 58

16-layer VGGNet

1. Nearest 2. Bicubic

True ADD True NADD True ADD True NADD

Pred ADD 12 5 Pred ADD 13 5

Pred NADD 2 58 Pred NADD 1 58

3. Weight map 4. Rescaled

True ADD True NADD True ADD True NADD

Pred ADD 13 2 Pred ADD 13 5

Pred NADD 1 61 Pred NADD 1 58

AlexNet

1. Nearest 2. Bicubic

True ADD True NADD True ADD True NADD

Pred ADD 12 5 Pred ADD 13 4

Pred NADD 2 58 Pred NADD 1 59

3. Weight map 4. Rescaled

True ADD True NADD True ADD True NADD

Pred ADD 13 3 Pred ADD 12 5

Pred NADD 1 60 Pred NADD 2 58
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used to train the following pre-established image networks: Alex
Network (AlexNet); 16-layer visual geometry group network
(VGGNet); 18-layer ResNet. High-performance models that
met the set threshold of classification accuracy for each type of
image networks were selected and saved. They were then further
compared and verified using XAI techniques.

Image network structures

Alex network
AlexNet structure consists of five convolutional layers with

selective max pooling layers, and three fully connected layers
with 1,000-way softmax at the end. AlexNet employs rectified
linear unit (ReLU) activation function instead of the tanh
function, which was the standard before the introduction of
AlexNet. Dropout regularization method was also applied for
the prevention of overfitting (Krizhevsky et al., 2017). Although
it showed outstanding classification performance at the time,
the network employs large convolution kernels, which results in
rapid decline of the feature map size and resolution. Hence, the
structure is prone to loss of local features (Xiao et al., 2017; Li
et al., 2021).

TABLE 4 Accuracy, sensitivity, and specificity of the established best
models trained with different types of image networks and images
constructed through varying feature engineering techniques.

18-layer ResNet

Models Accuracy Sensitivity Specificity

1. Nearest 90.9% 85.7% 92.1%

2. Bicubic 93.5% 92.9% 93.7%

3. Weight map 97.4% 100.0% 96.8%

4. Rescaled 92.2% 92.9% 92.1%

16-layer VGGNet

Models Accuracy Sensitivity Specificity

1. Nearest 90.9% 85.7% 92.1%

2. Bicubic 92.2% 92.9% 92.1%

3. Weight map 96.1% 92.9% 96.8%

4. Rescaled 92.2% 92.9% 92.1%

AlexNet

Models Accuracy Sensitivity Specificity

1. Nearest 90.9% 85.7% 92.1%

2. Bicubic 93.5% 92.9% 93.7%

3. Weight map 94.8% 92.9% 95.2%

4. Rescaled 90.9% 85.7% 92.1%

Visual geometry group network
The structure VGGNet was established through the

investigation of the effect of network depth on the classification
performance. As opposed to large convolutional filters adopted
by the AlexNet, VGGNet adopts 3 × 3 convolutional kernels,
which enables building of deeper network structure, since there
is a slower decline of feature map size and resolution (Simonyan
and Zisserman, 2015).

Residual network
Residual network (ResNet) structure resolved vanishing

gradient problem and overfitting, which are downsides of
conventional neural network structures, through the use of
residual blocks. A residual block passes the input x through
the first convolutional layer, followed by ReLU activation
and second convolutional layer. The output of the second
convolution which is referred to as f(x) is added to the original
input x. The added value f(x) + x is then passed onto ReLU
activation function (He et al., 2016). Although a deeper network
with more residual blocks may result in improved classification
performance, it is computationally expensive due to the large
number of parameters (Okinda et al., 2020).

Inference of classification criteria:
Explainable artificial intelligence

Neural networks are commonly referred to as “black boxes,”
since we cannot directly observe or determine the means
by which the model classifies unseen data. However, the
use of algorithms such as Local Interpretable Model-Agnostic
Explanations (LIME) allows us to infer which features the
model used for classification. The LIME algorithm creates
locally perturbed samples at the borders of a model’s decision
function. Each sample carries weights in accordance with the
distance between the sample and the initial instance. LIME then
learns a local linear predictive model, which is repeated for
the multiple borders that exist, but which we cannot discern.
Equation 2 represents how the explanations about classification
are produced by LIME. L represents local fidelity functions,
which is a measure of how unfaithful the prediction model g is
in approximation of the classification probability f in the locally
defined space πx. � represents the complexity measures of the
prediction model (Ribeiro et al., 2016; Gramegna and Giudici,
2021).

ξ (x) = argmin
g∈G

L
(
f , g,πx

)
+�(g) (2)

In short, LIME explanations are computed through the
minimization of L while keeping � low enough for sufficient
interpretability of the prediction model. Hereafter, regions that
affect the local predictive function are highlighted in order to aid
in the understanding of the model’s prediction.
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FIGURE 8

Local Interpretable Model-Agnostic Explanations (LIME) algorithm highlighting summed area of top N regions of importance in classification for
a randomly selected Alzheimer’s disease dementia (ADD) and non-Alzheimer’s disease dementia (NADD) test data.

Figure 6 presents typical feature images representing
the classes ADD and NADD. The images clearly represent
differences in QEEG characteristics between the groups, but we
would not be able to identify what exactly the model interprets.
In the present study, LIME was employed for clarification of
the distinguishable characteristics between groups. The regions
which LIME interpreted as top distinguishing features for
classification were then used to verify the model’s credibility,
in which we take account of clinically known facts in relation
to ADD. We further examine the consistency of the selected
regions.

Final model selection

Due to limited computation power, relatively shallower
16-layer VGGNet and 18-layer ResNet were employed in the
present study along with the AlexNet. Classification models
that showed sufficient accuracy were selected for all types
of networks, and images constructed through varying feature
engineering methodologies. Each model was inspected through
LIME in order to select the best models for each type of image.
We then selected the final model which showcased the best
classification accuracy. Figure 7 summarizes model yielding and
verification processes.

Results

The same training and test datasets were applied to assess
and compare the results of the best classification models,
trained using varying types feature images drawn from the

aforementioned feature engineering techniques. The 18-layer
ResNet image network structure yielded the best classification
performance for all four types of images in comparison with
other image networks. Table 3 presents the achieved confusion
matrices of the best models selected for each network and
technique, and Table 4 lists each network’s accuracy, sensitivity,
and specificity.

All classification models showed adequate performance,
which suggests that the difference in QEEG characteristics
between the ADD and NADD groups was significant, and that
it was well-represented in our novel feature image. However,
the performance of the bicubic model was superior to that
of the nearest model, indicating that the block edges among
image pixels may negatively affect the classification performance
of image networks. The best performance was achieved from

TABLE 5 Final model (18-layer ResNet)’s presumed classification
criteria from the regions of importance selected by Local
Interpretable Model-Agnostic Explanations (LIME).

Models ADD classification
criteria

Non-ADD
classification criteria

1. Nearest High power of slower waves
(delta-theta).

High power of alpha waves
and low power of slower
waves (delta-theta).

2. Bicubic High power of slower waves
(delta-theta).

High power of alpha waves.

3. Weight map High power of slower waves
(delta-theta).

High power of alpha waves
and low power of slower
waves (delta-theta).

4. Rescaled Low power of faster waves
(beta 2) and high power of
slower waves (delta-theta).

Low power of slower waves
(delta-theta).
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the weight map model. This may be because waveforms at
faster frequencies are comparatively less important features for
classification of ADD. The present assumptions were further
verified using LIME, which allowed for comparison among the
extracted regions of high importance in classification. A random
data index from each group was drawn for comparison among
the models (Figure 8). N represents the number of regions that
has been added (i.e.,N = 1 image represents the region of highest
importance, and N = 3 image represents the sum of the top 3
regions of importance that affected the classification result).

From the regions of importance selected by LIME
represented in Figure 8, the classification criteria of the 18-layer
ResNet model have been presumed as shown in Table 5.

Discussion

Through the analysis of 18-layer ResNet classification
models via LIME, we can infer that the first three models’
classification criteria for ADD involve high power of slower
waves, while the rescaled model’s classification criteria involve
low power of faster waves. In addition, the rescaled model’s
classification criteria for NADD only involved low power
of slower waves. Moreover, the bicubic model’s classification
criteria for NADD were highly specific to the power of alpha
waves. After careful verification with the full test dataset, we
deduced that the weight map model yields the best classification
performance with foremost robustness.

The objective of the present study was in the establishment
and verification of our novel feature image’s capability to contain
all useful spatiotemporal information from the EEG data. Since
conventional features used for visualization of EEG, namely,
topographies are difficult to employ for the training of deep
learning models (neural networks), we developed novel feature
images from EEG data acquired in a clinical environment and

FIGURE 9

Alzheimer’s disease dementia (ADD) and non-Alzheimer’s
disease dementia (NADD) train dataset mini-mental state
examination (MMSE) density plot.

yielded an outstanding deep learning based ADD classification
model. The main advantage in use of our feature image is in the
visualization of classification criteria through XAI algorithms,
which enables more comprehensible analysis on the established
classification models.

For further validation, several trials were made to extract
regions of importance from test images through LIME. Slight
differences were observed for each trial due to the random
image sampling algorithm used by LIME. However, each trial
showed adequate consistency, hence the classification criteria
did not vary. Our findings verified that the power of the
slow waves (delta and theta) and that of alpha waves (resting
state waves) were crucial factors in differentiating the groups,
based on the classification criteria inferred through LIME.
The result corresponds to the conventionally known EEG
characteristics of ADD, an increment in delta and theta power
and a parallel decrement in alpha and beta power in comparison
with normal subjects (Jeong, 2004). Moreover, the classification
results indicate no signs of overfitting. If the model is overfitted
due to an imbalance in the dataset, the model tends to classify
data toward the class with larger amount of data. However, the
classification model established in the present study resulted in
balanced sensitivity and specificity.

In addition, we have made a further comparison between
the novel feature image-based classification model established
in the present study, with a mini-mental state examination
(MMSE) score based method. MMSE is a cognitive mental status
examination which are widely in use to aid the diagnosis of
several neurological disorders. It consists of short and practical
cognitive-specific tests which requires approximately 10 min
to complete. The result is scored within the range of 0 which
suggests critical deterioration of cognitive functions, to 30 which
reflects healthy cognition (Folstein et al., 1975; Perneczky et al.,
2006).

The distribution of MMSE scores of the ADD and NADD
classes in the train dataset were visualized as a density plot
(Figure 9), smoothed off by kernel density estimation.

The classification standard was determined as a cutoff value
in accordance with the intersection point of the two density
plots: ADD (MMSE ≤ 22); NADD (MMSE > 22). As a result,
1 ADD data and 5 NADD data were misclassified, which is
inferior to the classification result of the final model established
in the present study.

In addition, we can observe a significant overlap of ADD
and NADD MMSE scores, in which signifying that MMSE based
classification is less robust. Chapman et al. (2016) also claim that
the use of MMSE score cutoffs for the diagnosis of ADD resulted
in limited accuracy and were insufficient in the discrimination of
MCI from ADD. As opposed to this, the inferred classification
criteria for our classification model via LIME is based on clear
QEEG characteristics that are visually distinguishable.

The novel feature images used here only utilized z-scores of
relative powers, which conveniently describe the ratio among
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FIGURE 10

Example outlier images that represent absolute Z-scores of electroencephalography (EEG) power magnitude.

the powers of waveforms at different frequencies, but not the
absolute powers in comparison to the age- and sex- specific
normative database. This was due to the fact that individuals
have various overall magnitudes of EEG power, which is
dependent on thickness of the skull (Hagemann et al., 2008).
Therefore, the outliers with excessively strong or weak EEG
magnitudes result in almost completely red or blue images when
mapped to a -1.96 to 1.96 Z-score color scale (Figure 10).

The downside of the feature matrix extraction method
proposed in this study is in the averaging of the time dynamics.
In order to account for this, multiple feature matrices can be
extracted using a time epoch window that slides over the data
and can be concatenated into a 3 dimensional feature matrix.
Epoch length used to create each image frame and overlap
between consecutive time windows can be altered to yield
various resolutions of the time dynamics.

Moreover, the presented feature matrix extraction method
is adapted for the spatial representation of 19-channel EEG
data since the y-axis of the matrix is essentially a stack of
the channels from frontal to rear side regions. Therefore, the
presented method might insufficiently represent the spatial
information for other commonly used 34- or 64-channel
EEG data with several lateral channels. For such cases, the
electrodes may be grouped into appropriate regions instead and
rearranged accordingly.

The classification model’s outstanding performance and
coherence with clinical facts suggest a high potential of the
usage of novel feature image as a clinical tool for the diagnosis
of several other neurological diseases. Not only limited to
this, it can also be utilized for brain-computer interface (BCI)
applications, provided that the third of the investigated cases
of BCI studies utilized spatiotemporal features (Alzahab et al.,
2021). The continual refinement in usage of novel feature

images will enhance the ensemble of tools available to more
comprehensively leverage the power of QEEG.
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