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Abstract: Phagocytosis of invading microorganisms by
specialized cells such as macrophages and neutrophils is a
key component of the innate immune response. These
cells capture and engulf pathogens and subsequently
destroy them in intracellular vacuoles—the phagosomes.
Pathogen phagocytosis and progression and maturation
of pathogen-containing phagosomes, a crucial event to
acquire microbicidal features, occurs in parallel with
accentuated formation of lipid-rich organelles, termed
lipid bodies (LBs), or lipid droplets. Experimental and
clinical infections with different pathogens such as
bacteria, parasites, and viruses induce LB accumulation
in cells from the immune system. Within these cells, LBs
synthesize and store inflammatory mediators and are
considered structural markers of inflammation. In addition
to LB accumulation, interaction of these organelles with
pathogen-containing phagosomes has increasingly been
recognized in response to infections and may have
implications in the outcome or survival of the microor-
ganism within host cells. In this review, we summarize our
current knowledge on the LB-phagosome interaction
within cells from the immune system, with emphasis on
macrophages, and discuss the functional meaning of this
event during infectious diseases.

Introduction

Phagocytosis of invading microorganisms by specialized cells

such as macrophages and neutrophils is a key component of the

immune innate response. Phagocytosis is also a fundamental

process for removal of cells undergoing apoptosis. The first stage of

the elimination process is the internalization of the pathogens or

apoptotic bodies into a plasma membrane-derived vacuole, known

as phagosome (Figure 1A and 1B). Newly formed phagosomes,

however, lack the ability to kill pathogens or to degrade the

ingested targets. These properties are acquired during the course

of phagosome maturation when the phagosome membrane and

contents undergo considerable remodeling to transform the

initially inert environment into a microbicidal one. Phagosomes

mature by sequential fusion with endocytic (early and late

endosomes) and lysosomal compartments culminating with the

formation of the phagolysosome (Figure 1C), a highly acidic (pH

between 4.0 and 5.0) compartment, in which the ingested

pathogen is degraded (reviewed in [1,2]).

In cells from the immune system, mainly macrophages, both

pathogen phagocytosis and progression of pathogen-containing

phagosomes generally occurs in parallel with accentuated forma-

tion of lipid-rich organelles, termed lipid bodies (LBs) or lipid

droplets [3–7]. These organelles, largely associated with lipid

storage in the past, are now recognized as dynamic and

functionally active organelles, involved in a variety of functions

such as lipid metabolism, trafficking, and signaling. LBs have also

attracted considerable attention due to their link with human

diseases such as obesity, inflammatory diseases, and cancer

(reviewed in [8–10]). Experimental and clinical infections with

different pathogens such as bacteria [3,4,11–15], parasites [5–

7,16,17], and viruses [18,19] induce LB accumulation within

different cell types. One intriguing aspect of LBs formed in

response to infections is the ability of these organelles to relocate in

the cytoplasm and interact with phagosomes, suggesting a

significant and yet ill-understood association between these

structures [3–6,12,14]. This interaction occasioned attention

because it may have implications for the microorganism outcome

or survival within host cells. Here, we summarize our current

knowledge on the LB-phagosome interaction within cells from the

immune system, with emphasis on macrophages, key players in the

initial resistance to the infection, and discuss the functional

meaning of this event during infectious diseases.

LB Structure and Composition

LBs are intracellular organelles of all cell types including plants

and microorganisms (reviewed in [20]). Despite variations in

function, appearance, and composition between different organ-

isms and their cell types, all LBs are recognized by a distinctive

architecture—the presence of a core containing neutral lipids

mainly tryacylglycerols (TAG) and sterol esters (SE) surrounded by

a phospholipid hemimembrane with associated proteins [20,21].

Therefore, in contrast to all cytoplasmic organelles and vesicles

that have an aqueous content surrounded by a phospholipid

bilayer membrane, the LB surface lacks a delimiting unit

membrane structure (Figure 2). This unique feature of LBs
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facilitates the identification of these organelles by transmission

electron microscopy (TEM) compared to other intracellular

membranous organelles (Figure 2) [6].

LBs contain a collection of proteins with numerous biological

functions. LB-specific structural proteins, the PAT family of

proteins (recently renamed to perilipin family proteins [22])—

perilipin/PLIN1, adipose differentiation-related protein (ADRP/

Adipophilin/PLIN2) [23], and tail-interacting protein of 47 kDa

(TIP47/PLIN3) [24]—are constitutively associated with the

circumferential rim of LBs (Figure 2) and participate in the

Figure 1. Ultrastructure of nascent phagosomes and phagolysosomes within phagocytic cells in a murine model of tuberculosis. (A)
Nascent phagosomes containing phagocytosed mycobacteria (arrows) are seen in the cytoplasm of a neutrophil. In (B), macrophage pseudopods
encircle an apoptotic cell (arrowheads). (C) Typical phagolysosomes (Ph) within a macrophage show heterogenous content and varying sizes and
electron-density. A degenerating bacterium is observed (arrow). Mice were infected with Mycobacterium bovis bacillus Calmette-Guerin (BCG) and
cells from the pleural cavity processed for transmission electron microscopy as before [3]. Scale bars, 1 mm (A, B), 500 nm (C).
doi:10.1371/journal.ppat.1002729.g001
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regulation of cellular lipid metabolism [25]. Moreover, enzymes of

lipid metabolism, membrane trafficking proteins including small

GTPases of the Rab family (critical regulators of vesicular traffic

and organelle interaction), endoplasmic reticulum (ER) proteins,

and molecular chaperones are frequently identified in LB fractions

(Figure 2) [26]. In fact, a growing list of proteins, provided mainly

Figure 2. Lipid body (LB) structure and composition. (Ai–Aiii) A LB within a human blood eosinophil is observed by transmission electron
microscopy (TEM) at different magnifications (boxed area in Ai is shown in Aii and Aiii). LBs are delimited by a monolayer of phospholipids differing
from the structural organization (phospholipid bilayer membrane) of all other organelles, vesicles, and plasma membrane (arrowheads in Aii and box
in Aiii). Structural proteins from the perilipin family are associated with the LB surface while the LB core contains mainly sterol esters (SE),
triacylglycerols (TAG), diacilglycerols (DAG), and cholesterol. Numerous proteins are frequently found in LBs such as Rab GTPases, lipid metabolism
enzymes, kinases, caveolins, and chaperones. Nu, nucleus; Gr, secretory granule. Scale bar, 600 nm.
doi:10.1371/journal.ppat.1002729.g002
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by proteomic studies, has been described in association with LBs as

summarized in several reviews [27–29]. The LB protein compo-

sition greatly varies depending on the cell type and its

physiological state. Interestingly, LBs may act as platforms for

managing the availability of proteins, functioning as transient sites

for proteins that will be released, delivered, or destructed [30].

However, how proteins are specifically targeted to LBs is still

poorly understood.

It has been recognized that proteins are not restricted to the LB

surface, but they are also embedded in the LB core. For example,

freeze-fracture immunocytochemistry and EM revealed that

perilipin, caveolin-1, ADRP, and TIP47 are present in the LB

cores of adipocytes and macrophages [31]. How polar proteins

such as TIP47 and ADRP are arranged within these organelles

remains to be defined.

LB Composition in Cells from the Immune System
As noted, LBs within a cell differ regarding function and

metabolic status and these characteristics are reflected in their

composition. In cells from the immune system, LBs are recognized

as sites for generation of inflammatory mediators (eicosanoids) and

therefore have specific molecules linked to this synthesis (reviewed

in [8,32]).

LBs from macrophages, eosinophils, neutrophils, and mast cells

contain stores of arachidonic acid (AA) associated with pools of

phospholipid and/or neutral lipids [33–35]. AA is a 20-carbon

fatty acid and a key signaling molecule acting as intracellular

second messenger, as paracrine mediator of cell activation, and as

a substrate for enzymatic conversion into eicosanoids [36].

The major enzymes involved in the enzymatic conversion of AA

into eicosanoids are also present within LBs from activated cells of

the immune system, mainly macrophages, eosinophils, and

neutrophils. These enzymes include cyclooxygenases (COX)

[3,7,33,37–39], 5-and 15-lypoxygenases (5-LO and 15-LO)

[39,40], and leukotriene C4 (LTC4)-synthase [39]. Moreover,

phospholipase A2 (cPLA2) and its activating protein kinases,

mitogen-activated protein (MAP) kinases (ERk1, ERK2, p85, and

p38), the upstream involved in AA liberation, have been described

within LBs [41].

Overall, LBs from cells of the immune system compartmentalize

the substrate (AA) and the entire enzymatic machinery for

eicosanoid synthesis. Because eicoisanoids are non-storable medi-

ators, newly formed and rapidly released upon cell stimulation, the

detection of these molecules is not simple. However, by means of a

new strategy to cross-link newly formed eicosanoids at its sites of

synthesis, the presence of eicosanoids has been directly demonstrat-

ed within LBs [42]. prostaglandin E2 (PGE2) was found in LBs from

mouse macrophages infected with Mycobacterium bovis BCG, which

causes bovine tuberculosis [3], or with the intracellular protozoan

parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, a

debilitating cardiac illness [7]; LTC4 was demonstrated in LBs from

human eosinophils and basophils stimulated with the chemokines

eotaxin/CCL11 and RANTES/CCL5 [43] and in eosinophil LBs

from murine models of allergic inflammation [44], and LTB4in LBs

from neutrophils and macrophages during sepsis [45].

In summary, there is good evidence that LBs are able to change

their composition in concert with cell activation acting as

inflammatory organelles with roles in the innate immune response

to infections and inflammatory processes.

Pathogen Induction of LB Formation

Pathogens induce several changes in the host cell signaling and

trafficking mechanisms. One prominent pathogen-mediated

change is the formation of LBs in the host cell cytoplasm. Most

cells contain a small number of cytoplasmic LBs, but they can be

rapidly stimulated to form new LBs under interaction with

pathogens. This interaction is also able to increase LB size and to

induce LB ultrastructural alterations. LB biogenesis is a process

that happens in vivo and in vitro in response to a variety of

pathogens.

Parasites
The first observation of newly formed LBs in response to an in

vivo parasite infectious disease dates to 2003 [5]. By investigating

inflammatory macrophages from rats infected with a virulent

strain of T. cruzi (Y strain), a significant increase of the LB numbers

in peritoneal macrophages at day 6 and 12 of the infection was

found. While control peritoneal macrophages presented

,2.1960.4 (mean 6 SEM) LBs/cell, peritoneal macrophages

from infected animals showed ,18.0961.4 LBs/cell at day 12 of

infection. At this time, the most intense inflammatory process and

parasitism in the heart, a target organ of Chagas’ disease,

compared to other points during the acute phase in rats, is

observed [5]. Accordingly, inflammatory macrophages recruited

to the heart exhibited a striking increase in LB numbers (Figure 3)

[5]. T. cruzi is also capable to induce in vitro LB formation within

mouse peritoneal macrophages through a Toll-like receptor -2

(TLR2)-dependent mechanism [7]. At 24 h of murine infection,

both the cells containing internalized parasites as well non-

parasitized cells showed an increased number of LBs compared to

control, non-infected cells, suggesting a bystander amplification of

the response [7]. Interestingly, parasitized cells showed a

significantly higher number of LBs (3-fold) compared to non-

parasitized cells, demonstrating that the uptake of the parasite

directly induces LB biogenesis [7].

Pathological studies of target organs of malaria, such as kidney

and liver, found the presence of a high number of LBs in infected

mice, indicating that the parasite Plasmodium berghei, the causative

agent of the disease, induces LB accumulation in host cells [46,47].

Other parasites such as Toxoplasma gondii, which causes human

toxoplasmosis [16], and Leishmania amazonensis, a causal agent of

human leishmaniasis [48], trigger LB formation during the in vitro

infection of human fibroblasts and mouse peritoneal macrophages,

respectively.

Bacteria
Interaction of pathogenic bacteria with host cells leads to LB

biogenesis. Tuberculosis caused by Mycobacterium tuberculosis is

characterized by a tight interplay between M. tuberculosis and host

cells within cellular aggregates (granulomas) [4,49]. The induction

of foamy macrophages—a granuloma-specific cell population

characterized by its high lipid content compartmentalized in

LBs—has been extensively reported during the progression of

tuberculosis caused by M. tuberculosis in both humans and

experimental settings [4,13,49]. In experimental studies with

Mycobacterium bovis bacillus Calmette-Guerin (BCG), it was found

that this pathogen is capable of inducing a dose- and time-

dependent increase on LB formation within pleural macrophages

[3]. LB formation initiates rapidly and significantly increased LB

numbers are noted within 1 h, reaching maximum levels within

24 h, and remaining increased for at least 15 d after BCG

infection [3]. Remarkably, nonsteroidal anti-inflammatory drugs

(NSADs), such as aspirin and NS-398, drastically inhibited M. bovis

BCG-induced LB formation within 24 h. In parallel, the BCG-

induced PGE2 generation was completely abrogated [3].

Accumulation of lipid-filled foamy macrophages is also a

hallmark of lepromatous leprosy, a chronic disease caused by
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Mycobacterium leprae. Leprosy is characterized by widespread skin

lesions in which M. leprae lives and replicates in foamy

macrophages. These macrophages are highly positive for ADRP

[11,50] and perilipin [50]. Moreover, M. leprae infection increases

expression of ADRP/perilipin mRNA in THP-1 cells, a human

promonocytic cell line [50]. These observations indicate that the

foamy aspect of macrophages is derived from LB accumulation

induced during M. leprae infection. In fact, the capacity of M. leprae

to induce LB formation was confirmed in vivo via an experimental

model of mouse pleurisy and in in vitro studies with human

monocytes and murine peritoneal macrophages [11].

LB formation within macrophages is also driven by infection

with Chlamydia pneumonia and characterizes the early atherosclerosis

in the presence of low-density lipoprotein (LDL) [15]. More

Figure 3. Lipid bodies (LBs) increase in number and interact with phagosomes within heart inflammatory macrophages during
parasite infection. LBs with different sizes are seen as electron-dense or electron-lucent organelles surrounding and in contact (arrow) with a large
phagolysosome containing an intact amastigote (*), the intracellular form of the parasite Trypanosoma cruzi. Rats were infected with the Y strain of T.
cruzi and samples of the heart, a target organ of the parasite, processed for transmission electron microscopy at day 12 of infection [6,68,69]. Nu,
nucleus. Scale bar, 800 nm.
doi:10.1371/journal.ppat.1002729.g003
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recently, an in vivo ultrastructural study during the initial infection

with Chlamydia muridarum, which causes genital infection in mice,

demonstrated that epithelial host cells accumulate LBs in parallel

to bacteria replication [51].

Interestingly, the bacterium uptake does not seem essential for

LB formation within macrophages and other cells. In human

peripheral blood monocytes and murine macrophages exposed to

M. leprae, LB biogenesis is observed in the cytoplasm of both cells

bearing bacteria and cells with no bacteria [11]. However, as

noted in macrophages cultured with T. cruzi [7], cells with

internalized pathogens showed higher LB formation compared to

cells that were exposed to the pathogens but did not engulf them

[11], indicating that phagocytosis potentiates LB biogenesis.

Bacterial derivates such as lipopolysaccharide (LPS) present in

all Gram-negative bacteria [15,52] and the mycobacterial cell wall

component lipoarabinomannan (LAM), a virulence factor of M.

tuberculosis [3], are also able to induce LB formation in

macrophages.

Distinct signaling pathways can trigger LB formation within

cells from the immune system. Specific bacteria- and receptor-

mediated pathways activate intracellular signaling that leads to

enhanced LB formation. For instance, M. bovis BCG [3], but not

the non-pathogenic bacteria Mycobacterium smegmatis or Bacillus

subtilis [3], induces toll-like receptor 2 (TLR2)-mediated formation

of LBs in macrophages; TLR6 but not TLR2 drives LB biogenesis

in M. leprae-infected Schwann cells [53], and TLR2 but not TLR4

are involved in the formation of LBs in macrophages infected with

Chlamydia pneumonia [15].

Viruses
LB formation is also induced by infection with viruses such as

the hepatitis C virus (HCV), the major causative pathogen

associated with liver cirrhosis and hepatocellular carcinoma [18],

and dengue virus (DENV), an emerging viral disease transmitted

by arthropods to humans in tropical countries [19]. Pharmaco-

logical inhibition of LB formation greatly decreases DENV and

HCV replication [19,54], suggesting LBs as targets for antiviral

strategies.

A list of pathogens that induce LB biogenesis within different

mammalian cells is shown in Table 1.

Pathogen-Mediated LB Structural Changes
Newly formed LBs within pathogen-infected macrophages can

show changes in size and ultrastructure. In scoring the diameters

of LBs within inflammatory macrophages from rats experimentally

infected with T. cruzi, 74% of LBs had a size ,0.5 mm in non-

infected whereas 54% of LBs from infected animals were

.0.5 mm, reaching up to 3 mm. When macrophages from T.

cruzi-infected animals were challenged in vivo with higher parasite

load, a significant increase of LB sizes compared to LBs induced

by the infection alone was observed [6].

One interesting ultrastructural aspect of LBs is their electron-

density (osmiophilia), which is dependent on the cell type and can

change in response to pathogens. When observed by TEM,

macrophages from mice infected with M. bovis BCG show distinct

morphology, becoming larger and less dense organelles compared

to LBs from non-infected cells [3]. Accordingly, LBs formed in

response to the in vivo T. cruzi infection within inflammatory

macrophages also exhibited changes in electron-density compared

to uninfected cells [6]. Interestingly, LBs change their electron-

density in macrophages stimulated in vivo with higher parasite

load. Rats were exposed to a single, high dose of gamma

irradiation 1 d before infection, which depletes the humoral and

cellular immune responses except for the phagocytic activity of

macrophages. Inflammatory macrophages from irradiated-infect-

ed animals showed an increase in the numbers of both light-dense

and strongly electron-dense LBs compared to infection alone [6].

Pathogen-mediated LB morphological changes may reflect differ-

ences in lipid or protein composition, stages of formation of new

LBs, mobilization, and/or neutral lipids/phospholipids ratio

within LBs [6].

Interaction of LBs with Phagosomes

The first documentation of a significant interaction between LBs

and phagosomes dates to 1983 [55]. In an autoradiographic

ultrastructural study of the incorporation of 3H AA by macro-

phages that were also exposed to zymosan particles for phagocy-

tosis, a striking approximation of 3H AA-incorporated LBs with

phagolysosomes was observed (Figure 4). Moreover, 3H AA-

labeled LBs occasionally fused with phagolysosomes membranes

and many cells exhibited autoradiographic grains over phagolyso-

somes (Figure 4) [55]. This was the first evidence that LBs not only

were able to associate with phagosomes but also discharged their

contents into these structures [55]. However, this interaction

received scant attention for two decades.

In 2003, a study of inflammatory macrophages triggered by the

in vivo infection with T. cruzi demonstrated a clear association of

LBs with phagosomes in parallel to LB formation (Figures 3 and 5)

[5]. Detailed quantitative TEM analyses of the LB-phagosome

interaction induced by the experimental T. cruzi infection revealed

that 47% of newly formed LBs were associated with phagolyso-

somes within inflammatory macrophages, mainly in the heart. LBs

were seen surrounding or attached to phagosomes (Figures 3 and

5) and even within the lumen of these structures (Figure 5),

indicating that the LB-phagosome interaction can result in LB

internalization into parasite-containing phagosomes [6]. Later the

identification by TEM of LB-phagosome interaction in macro-

phages from both animal models and humans infected with

mycobacteria brought new attention to LBs as organelles

connected with the life cycle of pathogens [3,4].

Other studies have been demonstrating LB translocation into

the lumen of bacteria-containing phagosomes using live cell

fluorescence microscopy and/or TEM [12,14,51]. In an experi-

mental model of infection with the intracellular pathogen

Chlamydia trachomatis, which causes several ailments such as

trachoma, conjunctivitis, epididymitis, and pelvic inflammatory

disease, it was shown that LBs dock at the surface of the bacteria-

containing vacuole (termed ‘‘inclusions’’) within Hep2 or HeLa

cells, penetrate the vacuole membrane, and intimately associate

with reticulate bodies, the replicative form of Chlamydia [14,56].

Nerve biopsies of patients infected with M. leprae also show

accumulating LBs in close association with M. leprae-containing

phagosomes within Schwann cells, a target cell of this pathogen.

These LBs are then promptly recruited to the bacteria-containing

phagosomes, a process that depends on cytoskeletal reorganization

and phosphatidylinositol 3 kinase (PI3K) signaling [12]. Thus, the

lipid-laden, bacterial-bearing vacuoles observed in heavily infected

SCs in lepromatous leprosy nerve biopsies might be formed by the

continuous formation and recruitment of LBs, giving rise to their

foamy appearance [12]. Another in vivo study using a model of

intracervical murine infection with Chlamydia muridarum demon-

strated the same phenomenon—multiple LBs in contact with the

pathogen-containing vacuole and LBs entering into the vacuole

within host cells [51].

Overall, infection with different pathogens leads to movement of

LBs into phagosomes. It is intriguing how pathogens target LB and

how intact and non-membrane-bound organelles such as LBs are
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Table 1. Pathogen-induced lipid body (LB) formation and LB-phagosome interaction in mammalian cells.

Pathogen LB Formation LB-Phagosome Interaction Cell Type Organism Refs

Bacteria

Acinetobacter baumannii + n.d. J774 macrophages Mouse [70]

Bacillus subtilis 2 2 Macrophages Mouse [3]

Chlamydia muridarum + + Epithelial cells
(cervix)

Mouse [51]

Chlamydia pneumoniae + n.d. Macrophages Mouse [15]

Chlamydia trachomatis + + Hep2 cell line Human [56]

+ + HeLa cell line Human [14]

Escherichia coli n.d. + THP-1 cell line
(macrophage-like)

Human [61]

+ n.d. J774 macrophages Mouse [70]

Klebsiella pneumonia + n.d. Peripheral blood
monocytes

Human [70]

+ n.d. J774 macrophages Mouse [70]

Mycobacterium bovis BCG + + Pleural macrophages Mouse [3]

Mycobacterium leprae + n.d. Skin macrophages Human [11]

+ n.d. Peripheral blood
monocytes

Human [11]

+ n.d. Peritoneal macrophages Mouse [11]

+ n.d. Pleural macrophages Mouse [11]

+ + Schwann cells Human [12]

Mycobacterium smegmatis 2 2 Macrophages Mouse [3]

Mycobacterium tuberculosis + + Foamy macrophages
(granuloma)

Human [4]

+ n.d. Macrophages Human [13]

Proteus vulgaris + n.d. J774 macrophages Mouse [70]

Pseudomonas aeruginosa + n.d. J774 macrophages Mouse [70]

Pseudomonas diminuta + n.d. J774 macrophages Mouse [70]

Staphylococcus aureus + n.d. J774 macrophages Mouse [70]

Staphylococcus epidermidis + n.d. J774 macrophages Mouse [70]

Staphylococcus salivarius + n.d. Peripheral blood
monocytes

Human [70]

+ n.d. J774 macrophages Mouse [70]

Vibrio cholera + n.d. Mucosal mast cells Human [71]

Bacteria Derivates

CpG-DNA + n.d. J774 macrophages Mouse [70]

Flagellin + n.d. J774 macrophages Mouse [70]

LPS (lipopolysaccharide) + n.d. Macrophages Mouse [15,52,70]

LAM (lipoarabinomannan) + n.d. Macrophages Mouse [3]

Parasites

Leishmania amazonensis + n.d. Peritoneal
macrophages

Mouse [48]

Plasmodium berghei + n.d. Kidney cells Mouse [47]

+ n.d. Liver cells Mouse [46]

Schistosoma mansoni derivates + n.d. Eosinophils Mouse [17]

Toxoplasma gondii + n.d. Fibroblasts Human [16]

Trypanosoma cruzi + + Heart macrophages Rat [5,6]

+ + Peritoneal
macrophages

Rat [5,6]

+ n.d. Peritoneal
macrophages

Mouse [7]

PLoS Pathogens | www.plospathogens.org 7 July 2012 | Volume 8 | Issue 7 | e1002729



translocated across the phagosome membrane. Bacterial proteins

seem to be involved in capturing LB into bacteria-containing

vacuoles while the translocation process seems to involve

displacement of the LB structural protein ADRP from the LB

surface to the phagosome membrane, as observed during the in

vitro infection with Chlamydia trachomatis [14]. Interestingly, both

ADRP and perilipin, were also immunolocalized on the membranes

of bacilli-containing phagosomes in macrophages from skin biopsy

specimens from patients with lepromatous leprosy [50]. However,

the mechanistic details underlying the LB-phagosome interaction

require further investigations to be deciphered.

LB-phagosome association has also been observed in other

situations. Contact sites between LBs and latex bead-containing

phagosomes were identified by high resolution Raman microscopy

in neutrophilic granulocytes [57] and by fluorescence microscopy

in dendritic cells [58]. By using time-lapse fluorescence microsco-

py, it was pointed out that the LB-phagosome association within

neutrophilic granulocytes seems transient, similar to ‘‘kiss-and-

run’’ behavior displayed by endosomes involved in phagosome

maturation [57]. LBs were also observed in close contact with

nascent autophagosomes within normal rat kidney (NRK) cells

[59], but the biology of LBs during autophagy is still not understood.

LB-Phagosome Interaction: Functional
Implications

As noted, the LB-phagosome interaction seems to be a general

event found during infections with different pathogens in both

humans and experimental models. Although little is known about

the functional meaning of this interaction, it raises intriguing

possibilities in light of the LB composition and functions.

Much interest has been focused on LBs as conduits for the

transport of potential nutrients, especially neutral lipids, to the

phagosome. The lipid content of LBs may, therefore, serve as a

nutrient source for the pathogen enabling its survival within the

cell [3,4,12,14,53]. The LB-phagosome interaction has been

considered as a pathogen strategy for accessing host lipids during

M. tuberculosis [4] and M. leprae [12] human infections and

experimental infection with Chlamydia trachomatis [14]. Considering

that M. tuberculosis bacilli are able to accumulate lipids during

dormancy from which it derives both carbon and energy for its

own metabolism [60], the mycobacteria-phagosome interaction

could be important for the pathogen growth and persistence [3,4].

Pharmacological inhibition of LB formation within pathogen-

infected cells was investigated. Using triacsin C, which prevents

LD biogenesis by specifically inhibiting the activity of a subset of

long chain acyl-coA synthetases (ACSL) required for triacylglycer-

ide and cholesterol ester biosynthesis, a decrease was observed in

the phagosome size and reduction of chlamydial growth within

Hep2 cells [56]. The use of another inhibitor of lipid metabolism,

C75, which inhibits fatty acid synthase (FAS), inhibited not only

the M. tuberculosis-induced LB formation but also the bacterial

viability in Schwann cells [53].

The possibility of LBs to deliver other nutrients into the

phagosome for pathogen growth was also raised. Complexes of

iron and mycobactins, lipophilic siderophores of mycobacteria,

accumulate in LBs within macrophages infected with Escherichia coli

[61]. It is suggested that a subsequent migration of iron-

mycobactin complex from LBs to phagosomes would facilitate

iron delivery to phagosomal mycobacteria, acting as an iron

source for the pathogen and consequently promoting their growth

[61].

Taken together, a picture emerges in which pathogens usurp

host, newly-formed LBs to obtain nutrients, mainly lipids, as a

survival strategy. Moreover, the enhanced capacity of host cells to

generate inflammatory mediators in the course of pathogenic

infections due to increased LB formation and compartmentaliza-

tion of signaling and eicosanoid production within LBs may also

be contributing to mechanisms that intracellular pathogens have

developed to survive in host cells. For example, high concentration

of PGE2 in macrophages act as a potent inhibitor of Th1 type

response [62] and of nitric oxide (NO) production [63], creating

thus an appropriate environment for optimal pathogen growth

[63].

On the other hand, lipids have been gaining attention as co-

directors of phagocytosis (reviewed in [64]). Lipids play multiple

roles as determinants of phagosomal formation and fate and as

coordinators of the recruitment and retention of key phagocytic

proteins [64]. In M. tuberculosis-infected macrophages, selected

lipids, including AA, can activate actin assembly, phagosome-

lysosome fusion, and phagosome maturation, resulting in bacteria

killing [65]. Lipids also help to activate the phagosome-resident

enzyme nicotinamide adenine dinucleotide phosphate (NADPH)-

oxidase [66], an event essential for the degradation of microbes

upon infection [1]. Because several subunits of NADPH oxidase

depend on AA, it was suggested that the AA content of LBs are

used by phagocytes to locally activate NADPH-oxidase [57].

Key molecules, such as Rab 5 and Rab 7, are involved in the

sequential interactions of early and late endosomes with phago-

somes [1,2]. Considering that LBs are sites for these GTPases

(Figure 2) [26,67], the association of LBs with phagosomes may

constitute a mechanism for Rab transport to and from the

phagosome for phagosome maturation [57]. Igtp (Irgm3), an ER-

resident 47 KDa immune-related GTPase involved in phagosomal

maturation and phagocytic cross-presentation, was also identified

in LBs within dendritic cells, indicating that LBs regulate cross-

Table 1. Cont.

Pathogen LB Formation LB-Phagosome Interaction Cell Type Organism Refs

Viruses

Dengue virus + n.a. BHK-21 cells Hamster [19]

Hepatitis C virus + n.a. CHO and HepG2
cell lines

Human [18]

Fungi

Candida albicans derivates + n.d. Macrophages Rat [72]

+ n.d. Hepatocytes Rat [72]

+, induced; 2, not induced; n.d., not determined; n.a., not applicable.
doi:10.1371/journal.ppat.1002729.t001
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Figure 4. Human lipid bodies (LBs) observed with an ultrastructural method for autoradiography after a pulse of tritiated
arachidonic acid and exposure to zymosan. (A) 3H-arachidonate incorporated by a human macrophage is localized predominantly in LBs in
association with zymosan-filled phagosomes. In (B), a LB labeled with numerous silver grains is seen in higher magnification. Note that the labeled
lipid content is projecting into the zymosan-containing phagosome lumen. Scale bars, 1 mm (A), 600 nm (B).
doi:10.1371/journal.ppat.1002729.g004

Figure 5. Lipid bodies (LBs) translocate to phagolysosomes in infected macrophages. (Ai) LBs with different electron-densities are
observed around a large phagolysosome (outlined in red in Aii) in the macrophage cytoplasm. Note that several LBs (highlighted in yellow in Aii) are
seen within the phagolysosome. Rats were infected with the Y strain of T. cruzi and heart samples processed for transmission electron microscopy at
day 12 of infection [6,68,69]. Nu, nucleus. Scale bar, 600 nm.
doi:10.1371/journal.ppat.1002729.g005
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presentation of phagocytosed antigens in these cells [58]. In

addition, the presence of contact sites between LBs and

phagosomes in dendritic cells may support a regulatory function

of LBs on phagolysosomal progression [58]. Thus, the enigmatic

LB-phagosome interaction cannot be solely viewed as a pathogen

strategy to prolong and sustain its own survival, but also might be a

host strategy to destroy or, at least, to ‘‘try’’ to kill the microbial

invader.

Summary and Perspectives

LBs emerge as key organelles involved in experimental and

clinical infections with different pathogens, such as bacteria,

parasites, and viruses. Within cells recruited in response to these

infections, especially macrophages, LBs contribute to the genesis of

inflammatory mediators and are considered as structural markers

of inflammation. In addition to LB accumulation, interaction of

these organelles with pathogen-containing phagosomes has

increasingly been recognized. Recent observations have indicated

that this intriguing and intimate association is a pathogen-driven

process, evolved as a strategy to survive within the host cells by

sequestering mainly host lipids. However, it should be noted that

the LB-phagosome interaction may be linked to defense events in

which the host cell seeks to kill the pathogen invader. Because

phagosomal membrane and luminal contents must undergo

remodeling to transform the initially inert environment into a

microbicidal one, attention should be paid to LBs as potential

determinant organelles in the phagocytic event. While this is more

speculative, to date we cannot answer whether LBs have a major

and a definitive role in the intracellular survival or destruction of

pathogens and/or if these organelles are able to interfere with

phagocytosis pathways. Other questions regarding how pathogens

target LBs and/or how LBs target pathogen-containing phago-

somes and are translocated into these vaccuoles await a lot of more

investigations. Novel approaches such as electron tomographic

analysis of the LB-phagosome interaction dynamics combined

with further refined functional analyses will be required to address

these questions. A better understanding of the cell biology of LBs

and their potential role during pathogen phagocytosis may be

crucial for the application of novel therapies addressing different

pathological conditions.
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