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Abstract

Analysis of an invasive species’ niche shift between native and introduced

ranges, along with potential distribution maps, can provide valuable informa-

tion about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a

rapidly emerging and economically important invasive species in the southern

United States. It is originally from east-central South America and has also

invaded Colombia and the Caribbean Islands. Our objectives were to generate a

global potential distribution map for N. fulva, identify important climatic dri-

vers associated with its current distribution, and test whether N. fulva’s realized

climatic niche has shifted across its invasive range. We used MaxEnt niche

model to map the potential distribution of N. fulva using its native and

invaded range occurrences and climatic variables. We used principal component

analysis methods for investigating potential shifts in the realized climatic niche

of N. fulva during invasion. We found strong evidence for a shift in the realized

climatic niche of N. fulva across its invasive range. Our models predicted

potentially suitable habitat for N. fulva in the United States and other parts of

the world. Our analyses suggest that the majority of observed occurrences of

N. fulva in the United States represent stabilizing populations. Mean diurnal

range in temperature, degree days at ≥10°C, and precipitation of driest quarter

were the most important variables associated with N. fulva distribution. The

climatic niche expansion demonstrated in our study may suggest significant

plasticity in the ability of N. fulva to survive in areas with diverse temperature

ranges shown by its tolerance for environmental conditions in the southern

United States, Caribbean Islands, and Colombia. The risk maps produced in

this study can be useful in preventing N. fulva’s future spread, and in managing

and monitoring currently infested areas.

Introduction

Rapidly increasing global trade and human movement

have accelerated the rate of species introductions and

establishment into novel areas across the world (Mack

et al. 2000). Invasive species can negatively affect native

ecosystems, agriculture, forestry, animal, and human

health and cause enormous economic losses (Pimentel

et al. 2005). They can also cause local extinction of rare

and unique native species resulting in biotic homogeniza-

tion and are considered as one of the greatest threats to

biodiversity worldwide (Sax et al. 2002). Maps of species’

current and potential distributions are valuable tools for

resource managers for preventing the introduction or

establishment of invasive alien species, and for designing

an effective early detection and rapid response system

(Peterson 2003; Jimenez-Valverde et al. 2011). Non-native

species, when introduced to new geographic areas, may

establish in environmental conditions different from their

native range because of absence of natural enemies or
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local adaptation. Therefore, analysis of how a species’

niche may have changed between native and introduced

ranges may be useful in understanding range expansion

and invasion potential (Gonz�alez-Moreno et al. 2015).

Several invasive ant species around the world have

caused economic losses, affected human health, decreased

agricultural production, damaged infrastructure, and

reduced the diversity of local ant and arthropod assem-

blages (Holway et al. 2002a; Gutrich et al. 2007). An

alien ant species, the tawny crazy ant, Nylanderia fulva

(Mayr) (Hymenoptera: Formicidae), previously Para-

trechina fulva (LaPolla et al. 2010), and originally

referred to as Paratrechina nr. pubens, is invading the

southern United States (Gotzek et al. 2012). Its occur-

rence in the United States (US) was first documented in

Houston in 2002 (Meyers and Gold 2008) and may have

arrived in Florida earlier (Klotz et al. 1995; Deyrup et al.

2000), but collections of the very similar P. pubens from

Florida dating back to the 1950s (Trager 1984) prevent

an accurate identification of early pest populations. At

present, populations of this species occur in 27 counties

in Texas, 27 counties in Florida, and several counties in

southern Mississippi (MacGown and Layton 2010) and

southern Louisiana (Hooper-Bui et al. 2010; Fig. 1).

Introduction of N. fulva in Colombia caused extensive

ecological and agricultural damage (Zenner de Polania

1990). In the Southern United States, N. fulva displaces

red imported fire ants (Solenopsis invicta), and regionally

distributed native species, thereby reducing both biologi-

cal and functional diversity (LeBrun et al. 2013). Nylan-

deria fulva can also transport pathogens of plants,

humans, and other animals (McDonald 2012). Nests

within populations contain multiple queens (Zenner de

Polania 1990). Interconnected nests of these ants form

extraordinarily dense populations that greatly exceed the

combined densities of all ants in adjacent uninvaded

assemblages (LeBrun et al. 2013). They feed on small

insects and vertebrates, and honeydew secreted by aphids

(Zenner de Polania and Bola~nos 1985). They invade peo-

ple’s homes, nest in crawl spaces and walls, and damage

electrical equipment resulting in millions of dollars of

losses (Blackwell 2014). Populations spread about 200 m

per year as a result of nest fission at the invasion front

(Meyers and Gold 2008). Female reproductives of

N. fulva have not been observed to engage in alate

flights, so long-distance dispersal occurs largely as a

result of human transport of nesting ants. Despite

N. fulva being a potentially devastating invasive species,

no information currently exists on its potential distribu-

tion in the United States. There is an acute need for cli-

mate-based projection of the invasion potential of

N. fulva in the near-term to guide conservation (e.g.,

potential biocontrol; Waltari and Perkins 2010).

Availability of suitable environmental conditions is

a prerequisite for population establishment. Species

environment matching models, also called habitat

models, ecological niche models (ENM), and species

distribution models (SDM), quantify the range of

environmental conditions to assure viable popula-

tions. These models are based on the “niche” concept

(hereafter niche models), which can be defined as the

multivariate environmental space within which a spe-

cies can live indefinitely without immigrational sub-

sidy (Grinnell 1917; Hutchinson 1957). The

fundamental niche represents the conditions where a

species can live indefinitely, whereas a species’ real-

ized niche is where a species actually lives; species do

not occupy all portions of their fundamental niche

because of biotic constraints (e.g., competition or

lack of host species) or dispersal limitations (Peterson

et al. 2011). Niche models can be broadly classified

as correlative models or process-based/mechanistic

models (Dormann et al. 2012). The correlative niche

models map the realized or potential distribution of

a species by associating occurrence data with environ-

mental data (Jimenez-Valverde et al. 2011) and are

widely used tools for assessing the risk of invasive

species (e.g., Peterson 2003; Kumar et al. 2009, 2014;

Menke et al. 2009; Roura-Pascual et al. 2009; Stohlg-

ren et al. 2010).

Numerous correlative niche modeling techniques are

available for mapping the risk of invasive species

(Peterson et al. 2011). These can be broadly categorized

into presence-only (e.g., BIOCLIM, DOMAIN), pres-

ence-background (e.g., MaxEnt, GARP), and presence–
absence (GLM, GAM, CART) models. Presence-only

and presence-background (i.e., randomly selected

absences from areas that have been accessible to the

species) niche models are better suited for modeling

potential distributions of invasive species because

absence data for such species may not be reliable; a

species may go undetected or it may not have had

enough time to disperse to new locations yet (Jimenez-

Valverde et al. 2011). The presence–absence models are

more suitable for estimating actual distributions of a

species.

The use of presence-only or presence-background cor-

relative niche models for mapping the potential distribu-

tions of introduced invasive species can be challenging

because the species may not yet have reached equilib-

rium within its invaded environment (Vaclavik and

Meentemeyer 2009). Therefore, a model trained only

with invaded range occurrences may highly underesti-

mate areas where a species may potentially exist (Jime-

nez-Valverde et al. 2008), thus providing inaccurate

information for management actions and policy develop-
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ment. This problem can be overcome by developing a

model using species occurrence data from native and

invaded ranges (e.g., Fitzpatrick et al. 2007; Broenni-

mann and Guisan 2008). The presence-only data, if not

collected using statistically designed field surveys, may

also have locational and taxonomic uncertainties, envi-

ronmental and spatial bias, and may come from sink

populations (Wolmarans et al. 2010). Therefore, care

must be taken in using data from a variety of sources,

and models must be corrected for potential biases for

accurate predictions.

Despite the high economic and ecological importance

of N. fulva, very little information currently exists on its

global distribution or the potential environmental factors

that constrain its distribution. Land managers urgently

need such information for managing currently infested

areas and planning for prevention of future invasions.

Our objectives were to: (1) map the global potential dis-

tribution of N. fulva; (2) identify climatic drivers associ-

ated with N. fulva distribution; (3) test whether the

climatic niche of N. fulva has shifted during invasion;

and (4) make inferences about the invasion stages of

N. fulva in the United States.

Methods

Species occurrence data

Occurrence data for N. fulva were compiled from speci-

mens at natural history museums, personal collections,

scientific literature, and field surveys (Fig. 1; see Table S1

in Appendix S1 in Supporting Information). Taxonomic

details on how we defined native and invasive ranges of

N. fulva, and acceptance criteria for occurrence records

are provided in Appendix S1.

Twenty-seven presence records were collected from

N. fulva’s native range including Argentina, Brazil, and

Paraguay (Fig. 1; Table S1 in Appendix S1). We collected

311 records from the invaded range outside the continen-

tal United States (CONUS), and 1061 records from

within CONUS (Florida, Louisiana, Mississippi, and

Texas). Colombian data were provided by A. Arcila. Thus,

a total of 1399 occurrence records covering South Amer-

ica, Caribbean islands, and southern United States were

available for modeling. The total number of presence

records was reduced to 307 after removing duplicate data

points (i.e., more than 1 point within a ~1 km2 grid cell)

Figure 1. Known native (blue triangles) and invasive (red circles) occurrences of Nylanderia fulva in South America, Caribbean islands, and

southern United States.
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and applying spatial filtering to reduce the effect of spatial

autocorrelation on models (Boria et al. 2014).

Environmental data

A total of 20 bioclimatic variables were considered in

developing N. fulva potential distribution models

(Table S2 in Appendix S1). These included 19 bioclim

variables from the WorldClim dataset at ~1-km resolution

(Hijmans et al. 2005). These bioclim variables were

derived using monthly temperature and precipitation data

covering a period from ~1950 to 2000, and represent

average temperature and precipitation, seasonal variables,

and climatic extreme indices (Hijmans et al. 2005). They

are considered biologically meaningful as they aggregate

climate information that influences biological processes.

Additionally, “degree days with average temperature

≥10°C” variable was generated in Arc Map (ESRI, Red-

lands, CA) using average monthly temperature data based

on N. fulva’s responses to different temperatures (Arcila

et al. 2002a,b; McDonald 2012). These variables were cho-

sen based on our knowledge of N. fulva ecology (McDon-

ald 2012; LeBrun et al. 2013), and their use in previous

invasive ant species modeling studies (Menke et al. 2009;

Roura-Pascual et al. 2009). Highly collinear variables

(Pearson correlation coefficient, |r| ≥ 0.80) were removed,

and only one variable from a set of highly correlated vari-

ables was included in the same model (Table S3 in

Appendix S1). All geographical information system (GIS)

layers were projected to an equal area projection (World

Cylindrical Equal Area Conic projection, Datum

WGS1984).

Model calibration and validation

Maximum entropy model, MaxEnt (version 3.3.3k; Phil-

lips et al. 2006), was used for mapping potential distribu-

tion of N. fulva. The MaxEnt model was chosen because

(1) it uses presence-background data; species true

absences are not required; (2) generally performs better

than other niche modeling algorithms (Evangelista et al.

2008; Kumar et al. 2009); and (3) is relatively robust to

small sample sizes (Guisan et al. 2007a,b; Kumar and

Stohlgren 2009). MaxEnt uses species occurrence data

and spatial environmental variables and produces an

index of relative suitability that varies from 0 (unsuitable

or most dissimilar to presence locations) to 1 (most suit-

able or most similar to presence locations). Background

points (50,000 for the MaxEnt model) were randomly

selected from areas that have been accessible to N. fulva

using the “Biotic-Abiotic-Mobility” (BAM) framework

(Soberon and Peterson 2005). We suspected a sampling

bias because the occurrence data were not collected

randomly and came from multiple sources. Thus, we gen-

erated a bias surface using a kernel density estimate using

SDMToolbox (Brown 2014). The bias surface was used in

MaxEnt to weight the selection of background points to

account for sampling intensity and potential sampling

bias (Elith et al. 2010; Syfert et al. 2013). Three models

were fitted: (1) invasive range model calibrated using only

the continental US occurrence data (IRM-CONUS); (2)

native and invasive range model calibrated using occur-

rence data from the Americas (NIRM-Americas); and (3)

all occurrence data with the global background (NIRM-

Global; Table 1). Background points for NIRM-Global

model were randomly drawn from all terrestrial areas of

the world assuming unlimited dispersal (Table 1).

As default settings in MaxEnt do not always produce

the best predictions (Merow et al. 2013; Kumar et al.

2014), it was run with combinations of different feature

types and regularization multiplier values (ranging from 1

to 3). The ENMTools (Warren et al. 2010) was used to

calculate Akaike’s information criterion (AIC) values for

MaxEnt models with different settings at different extents

of calibration, and models with optimal complexity were

retained for further evaluation (Table S4 in Appendix

S2). The 10-fold cross-validation was used in MaxEnt,

and the area under the ROC (receiver-operating charac-

teristic) curve (AUCcv; Fielding and Bell 1997) values

were reported. In addition, the partial area under the

ROC curve (pAUC) ratio was used for evaluating model

performance (Peterson et al. 2008). The pAUC ratio val-

ues were calculated using a Visual Basic program (Barve

2008). A pAUC ratio >1.0 indicates better than random

model performance. The sensitivity index (i.e., number of

correctly classified presences) was also used as an addi-

tional metric to evaluate model performance. Test sensi-

tivity was calculated at 0% and 10% training omission

rates (see Liu et al. 2013; Kumar et al. 2014). The best

models for each extent of calibration were selected based

on AIC, AUCcv, pAUC values, and omission rates. In

addition, the response curves generated by MaxEnt were

evaluated for their biological relevance to N. fulva, and

models that resulted in biologically nonsensical (i.e.,

highly jagged or multimodal) curves were eliminated or

ranked low (Table S4 in Appendix S2).

Realized niche shift and invasion stage
analyses

The principal component analysis (PCA) approach pro-

posed by Broennimann et al. (2012) was used to test any

potential niche shift by quantifying climatic niche space

for N. fulva at different extents. This method compares

the environmental conditions available for a species

within a defined study extent (background) with its

ª 2015 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4631

S. Kumar et al. Tawny Crazy ant Niche Shift and Invasion Potential



observed occurrences and calculates the available environ-

mental space defined by the first two axes from the PCA.

The same 20 climatic variables, as used in MaxEnt, were

used for the PCA. This method automatically corrects for

sampling bias using a smooth kernel density function

(Broennimann et al. 2012). The niche overlap score for

each comparison was calculated using Schoener’s D index

(Schoener 1970), which varies from 0 (no overlap

between niches) to 1 (complete overlap). The statistical

significance of niche overlap index (D) was tested against

chance using 100 randomizations (alpha = 0.05). The R

code for the PCA was modified from Broennimann et al.

(2012). We compared native and invasive niche spaces for

N. fulva using three regional contrasts: (1) native vs. inva-

sive_CONUS (invasive occurrences from the continental

US); (2) native vs. invasive_Non-CONUS (invasive occur-

rences from outside CONUS); (3) invasive_CONUS vs.

invasive_Non-CONUS; and (4) native vs. invasive (all

invasive range occurrences).

We adopted a theoretical framework suggested by Gal-

lien et al. (2012) to identify stages of N. fulva invasion in

the continental United States by plotting predicted proba-

bilities from the “invasive_CONUS” model (regional)

against the native and invasive occurrences combined

model (NIRM-Americas). This framework helps in mak-

ing inferences about the stages of invasion for different

populations of a species in the ecological niche space

(Gallien et al. 2012). In the niche space, a species would

be at quasi-equilibrium if the regional and global models

predict higher probabilities (e.g., >0.5) for the species’

presence (stabilizing populations); regional colonization

occurs when the regional model predicts low probability

of presence, but the global model predicts high probabil-

ity. However, if the regional and global models predict

low probability of presence, these occurrences may repre-

sent population sinks. In contrast, evidence that some

form of regional adaptation may be occurring arises when

the regional model predicts high probabilities of presence

for some set of occurrences, but the global model predicts

low probabilities (Gallien et al. 2012).

All GIS analyses were performed using ArcGIS version

10.2.2 (ESRI). All statistical analyses were conducted in R

(R Development Core Team, 2013).

Results

Model performance and variable
importance

All three models (IRM-CONUS, NIRM-Americas, and

NIRM-Global) performed better than random with

AUCcv values ranging from 0.94 to 0.97, and pAUC val-

ues from 1.82 to 1.96 (Table 1). The models had low

omission rates; test sensitivity at 0% training omission

rate varied from 0.003 to 0.006, and at 10% training

omission rate varied from 0.105 to 0.114 (Table 1). The

best model for the continental United States (IRM-

CONUS) included four climatic variables, whereas

NIRM-Americas and NIRM-Global models each included

six variables (Table 2). The best IRM-CONUS model

included Linear, Quadratic, and Hinge features (regular-

ization multiplier [RM] = 1.5), whereas the NIRM-Amer-

icas model included Linear, Quadratic, and Product

features (RM = 2.5). The NIRM-Global model included

Linear, Quadratic, Product and Hinge features

(RM = 2.5; Table 1). The NIRM-Global model with mod-

erate level of complexity ranked highest compared to

other models with lower or higher levels of complexity

(Table S4 in Appendix S2).

The mean diurnal range in temperature, degree days

with average temperature ≥10°C, and precipitation of dri-

est quarter were the most important climatic variables

associated with N. fulva distribution (Table 2). The

importance of variables slightly changed with the calibra-

tion extent (Table 2). For example, degree days at ≥10°C
was the top most important predictor in the IRM-

Table 1. Areas of calibration and performance statistics for different models.

Model Area of calibration/background extent MaxEnt settings Test AUCcv pAUC

Test sensitivity

0% OR 10% OR

IRM-CONUS Continental United States of

America (USA)

Linear, Quadratic and Hinge

features; b = 1.5

0.961 (�0.01) 1.96 (�0.01) 0.006 0.110

NIRM-Americas Continental USA, Caribbean

islands, and South America

Linear, Quadratic and Product

features; b = 2.5

0.937 (�0.02) 1.82 (�0.06) 0.006 0.114

NIRM-Global Global (all terrestrial areas

of the world)

Linear, Quadratic, Product and

Hinge features; b = 2.5

0.966 (�0.01) 1.91 (�0.03) 0.003 0.105

Note: b is regularization multiplier; OR is training omission rate. Test AUCcv is MaxEnt generated 10-fold cross-validation area under the ROC

curve; pAUC is partial AUC ratio calculated at 0% omission rate (Peterson et al. 2008). The AUCcv and pAUC values are not comparable across

models because models were calibrated at different extents.
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CONUS model, but it ranked second in NIRM-Americas

and NIRM-Global models (Table 2). The jackknife test of

variable importance showed that the degree days at ≥10°C
had the most information that was not present in other

variables (NIRM-Americas model; Figure S1 in Appendix

S3). The probability of N. fulva presence was highest

when mean diurnal range in temperature was between 6

to 11°C, and degree days at ≥10°C was between 3000 and

5000 (Figure S2A, B in Appendix S3). The probability of

N. fulva presence was higher at lower levels of tempera-

ture and precipitation seasonality (Figure S2C, D in

Appendix S3).

Predicted potential distribution of
Nylanderia fulva in the United States

The predicted potential distribution of N. fulva closely

matched observed occurrences (Figs. 2 and 3 vs. Fig. 1).

Both IRM-CONUS and NIRM-Americas models pre-

dicted highly suitable areas for N. fulva in southeastern

Texas, southern Mississippi, southern Louisiana, and most

of Florida (Fig. 2). The NIRM-Americas model predicted

low-to-medium suitability in southeastern parts of Cali-

fornia, southern Nevada, and southwestern Arizona,

whereas the IRM-CONUS model predicted very low

suitability in these areas (Fig. 2). The NIRM-Americas

and NIRM-Global models predicted low suitability for

N. fulva in northwestern Washington and northern Ore-

gon (Figs. 2 and 3). The partial model using N. fulva

invaded range occurrences from the southern United

States (IRM-CONUS; Fig. 2A) predicted less expansive

regions of the suitable habitat compared to a full model

using all native and invaded range occurrences (NIRM-

Americas; Fig. 2B). The full model predicted lower cli-

matic suitability for N. fulva as far north as southern

Missouri, Illinois, and Indiana (Fig. 2B). However, both

models largely agree on areas of high probability (>0.5)
of suitable conditions, these were largely restricted to the

Gulf and Southern Atlantic Coast regions, plus coastal

and Central Texas. The NIRM-Global model predicted

highly suitable areas for N. fulva in all the Hawaiian

Islands (see inset in Fig. 3).

Global potential distribution of Nylanderia
fulva

The NIRM-Global model predicted highly suitable areas

for N. fulva in eastern Mexico, the Caribbean islands, and

Central America (Fig. 3). The model predicted highly

suitable areas in western Colombia, western, southern and

eastern coastal Brazil, Ecuador (including the Galapagos

Islands), northern Peru, northern Bolivia, eastern Para-

guay, Uruguay, and western Argentina (Fig. 3). The

model predicted suitable areas in central parts of Africa,

eastern Madagascar, lower Himalayas in India and Pak-

istan, southern India and Sri Lanka, southeastern China

(including Taiwan), southeastern parts of Asia, eastern

Australia, and northern parts of New Zealand (Fig. 3).

Based on observed presences in the Americas (Fig. 1),

N. fulva currently occurs in areas with an average annual

temperature between 13 and 29°C, and an average annual

precipitation between 378 and 4900 mm (Table S2 in

Appendix S1).

Niche shift and stages of invasion

The principal component analysis (PCA) showed that the

realized climatic niche of N. fulva may have shifted and

expanded in the invasive regions examined; the center of

the realized climatic niche moved toward warmer temper-

atures and higher temperature seasonality, and there was

only 24% niche overlap between native and invaded

ranges (Schoener’s D = 0.24; Fig. 4A). The PCA showed a

similar realized niche shift and expansion in the southern

United States occurrences with only 24% niche overlap

(Fig. 4B); the climate space in the United States that is

currently “unfilled” (green shaded areas within solid red

contour line) by N. fulva. This may be representing

Table 2. Average percent contribution of environmental variables to

different Nylanderia fulva models; values were averaged across 10

replicate runs.

Variable IRM-CONUS

NIRM-

Americas

NIRM-

Global

Degree days with average

temp. ≥10°C (degdays10)1
90.1 25.3 24.5

Precipitation of driest

quarter (bio17; mm)

6.5 5.2 65.0

Mean temperature of

wettest quarter (bio8; °C)1
1.9 – –

Temperature seasonality

(SD 9 100) (bio4)2
1.4 17.8 –

Mean diurnal range

in temp. (bio2; °C)

– 26.2 0.4

Precipitation seasonality

(CV) (bio15)

– 16.8 3.1

Precipitation of wettest

quarter (bio16; mm)

– 8.6 2.6

Isothermality (bio3)2 – – 4.5

Note: IRM-CONUS is the invasive range model using occurrence data

from only continental United States; NIRM-America is the native and

invasive range model using data from Americas; NIRM-Global is the

native and invasive range model using data from Americas but cali-

brated using global extent background data.
1Variables highly correlated at NIRM-Americas and NIRM-Global

extents (Pearson’s correlation coefficient |r| ≥ 0.80).
2Variables highly correlated at all three extents.
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geographic areas where N. fulva is currently undetected

or absent. The amount of niche overlap was lower

between N. fulva’s native and invaded ranges outside the

continental United States (Schoener’s D = 0.16; Fig. 4C),

although the niche expansion was higher (i.e., red shaded

areas within solid red contour line; Fig. 4C). There was

little niche overlap (8%) between N. fulva’s invaded

ranges inside or outside the CONUS (Fig. 4D) suggesting

a more extreme shift in the realized niche during invasion

of the continental United States compared to Colombia

and the Caribbean islands.

The analysis of current stages of N. fulva invasion in

the United States based on regional (IRM-CONUS) and

global model (NIRM-Americas) predictions revealed that

the majority of observed N. fulva occurrences are stabi-

lizing populations; one population (Miami, Dade

(A)

(B)

Figure 2. Predicted potential distribution of

Nylanderia fulva in the continental United

States based on occurrences from (A) invaded

range in southern United States (IRM-CONUS),

and (B) native and invaded range combined

(NIRM-Americas).

Figure 3. Global potential distribution of Nylanderia fulva based on native and invasive range global (NIRM-Global) model.
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County, Florida) may be at colonization stage, two at

regional adaptation, and three represent sink popula-

tions (Fig. 5A). The majority of southern occurrences

are in the stabilizing zone, whereas colonization and

adaptation zones were predicted for northern popula-

tions toward the leading edge of N. fulva invasion

(Fig. 5B).

Discussion

Our study provides strong evidence of a shift in the

realized climatic niche of N. fulva during its spread

through Colombia, Caribbean islands, and southern

United States. We showed that a partial model using

invaded range occurrences from southern United States

(A)

(C) (D)

(B)

Figure 4. Native and invasive niches of Nylanderia fulva in different regions; multivariate climatic space was calculated using PCA-env method.

PC1 and PC2 represent the first two axes of the principal competent analysis (PCA). The green and red shadings represent density of species

occurrences in different regions; blue represents overlap. Solid and dashed lines show 100% and 50% of the available (background)

environment. The red arrows show how the center of the climatic niche for N. fulva (solid) and background extent (dotted) has moved between

two ranges.
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underestimated the potential risk of N. fulva invasion in

the United States. Our models predicted potentially suit-

able habitat for N. fulva in southern parts of the United

States, Hawaii, and other parts of the world. The pre-

dicted potential distribution of N. fulva conforms well

to currently known occurrences in the southern United

States and southeastern South America (Figs. 1 and 3),

indicating that it meets biological expectations. The

model predicted large amounts of climatically suitable

areas in South America outside of the native range

region occupied by this species. The absence of N. fulva

from these areas suggests the existence of currently

unappreciated biological constraints on its realized

niche, potentially in the form of closely allied competi-

tors or natural enemies. However, it may change with

time with the arrival of new propagules through human

transportation.

By applying the Gallien et al. (2012) theoretical frame-

work, we found that the majority of observed occurrences

of N. fulva in the United States are likely stabilizing pop-

ulations. We quantified unfilled climatic niche space for

N. fulva in the United States, where range expansion and

colonization could occur. Indeed, new reports of N. fulva

in Albany, Georgia (Dowdy 2013) and Mobile, Alabama

(Carroll 2014) fall within this expansion zone. We identi-

fied the mean diurnal range in temperature, the number

of degree days at ≥10°C, and precipitation of driest quar-

ter as the most important variables associated with

N. fulva distribution.

Climatic niche shift

The niche shift and expansion quantified here shows

N. fulva’s potential to invade novel areas. Our models

(A)

(B)

Figure 5. (A) Nylanderia fulva observed

occurrences at different stages of invasion

based on global and regional model

predictions, and (B) mapped areas showing

potential (hypothesized) for population

stabilization, adaptation, colonization, and

sink.
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indicated that the realized niche of N. fulva has shifted to

warmer and drier conditions between the native and

invasive ranges (Fig. 4A), likely due to a release from

interspecific competition across the invasive range. Nylan-

deria fulva seems to occupy the majority of the climate

space in its introduced range, matching its native range

climatic space (Fig. 4A). However, the same results were

not observed across the continental United States

(Fig. 4B). This could be because N. fulva’s realized cli-

matic niches in its invaded range are different within and

outside the continental United States (Fig. 4D); the mag-

nitude of the shift in realized niche was greater during

N. fulva invasion into Colombia and the Caribbean

Islands compared to continental United States (Fig. 4D).

The niche shift showed here is not unique to N. fulva.

Several studies have documented climate niche shifts for

other invasive ants and plant species (e.g., Broennimann

et al., 2007; Fitzpatrick et al. 2007; Petitpierre et al., 2012;

Guisan et al. 2014). Positive species interactions can

expand the fundamental niche and range of a species,

especially when species experience physical and biological

stresses (He and Bertness 2014). Local adaptation of an

introduced species in new geographic areas can occur

because of its ability to exploit empty niches, or the fre-

quency and magnitude of local disturbances creating new

habitats, and the absence of its natural enemies (Sax et al.

2005).

Is the climatic niche of N. fulva evolving rapidly over

time? We do not know. The issue of rate of niche evolu-

tion is a subject of ongoing debate; several studies suggest

rapid niche evolution for some species (e.g., Holt and

Gaines 1992; Sexton et al. 2009; Guisan et al. 2014),

whereas other studies show niche conservatism over time

(e.g., Peterson et al. 1999; Peterson 2011). Further

research is needed to understand the changes and rates of

N. fulva’s fundamental niche shifts.

Caveats and uncertainties

Results from correlative niche models such as MaxEnt

should be interpreted with caution because of inherent

uncertainties and model specific assumptions. Niche

model predictions may be affected by sampling bias,

number of samples, incomplete species occurrence data,

failure to account for biotic processes (e.g., presence of

natural enemies), choice and spatial resolution of abiotic

variables, multicollinearity, and species characteristics

(Guisan et al. 2007a,b; Dormann et al., 2013; Syfert et al.

2013). A mismatch between the time period of species

occurrences and climatic data might also influence niche

estimates. Our models also do not account for microcli-

mates available to the species because of the coarser spa-

tial resolution (~1 km2) of climate dataset used in model

calibration. Finer-scale climate data (e.g., at a scale of a

few square meters) were not available at the global level;

the generation of such a dataset was beyond the scope of

this study and would be impractical (Bennie et al. 2014).

Thus, our results are applicable to population-level

responses of N. fulva to macroclimate rather than

individual responses. Our models may have overestimated

the potential suitable areas because not all predicted areas

have suitable habitat for N. fulva (e.g., water bodies).

Additionally, occurrences in urban areas where the species

may be buffered from the natural climate envelope due to

human habitat alterations (e.g., irrigation and structures)

may cause the models to over predict suitability in

nonurbanized areas.

Nylanderia fulva is a member of a taxonomically diffi-

cult group. Because of similarity in the worker caste

among members of this genus, misidentifications in

museum collections, and the literature occur (Gotzek

et al. 2012). Due to the co-occurrence of the morphologi-

cally similar, closely related species, N. pubens, in the Car-

ibbean region records re-reported herein from that region

should be viewed as provisional and in need of additional

collection to verify. Examination of the climatic values

associated with these records from the Caribbean indi-

cates that they cover conditions from within the climatic

envelope for N. fulva (Appendix S1). Whether N. fulva as

defined represents a single coherent biological entity has

been questioned (Trager 1984; Kallal and Lapolla 2012).

Additional studies of species boundaries within this group

and population genetic studies of the source localities for

invasive populations are needed because introduction his-

tory might determine the genetic diversity and structure

of a species in invaded range (Ascunce et al. 2011; Le

Roux et al. 2011); subspecies may have distinct climatic

niches (e.g., Thompson et al. 2011).

The effects of environmental variables on species distri-

butions are scale-dependent. Environmental factors such as

climate are generally associated with species’ distributions

at regional or continental scales, whereas biotic factors such

as presence of a competitor or a host plant species control

species distributions at local scale (Austin 2002). At the

local scale, factors such as soil moisture and temperature

can influence ant distribution and abundance (e.g., Holway

et al. 2002b; Menke et al. 2009). Roura-Pascual et al.

(2004) found that the distribution of Argentine ants (Linep-

ithema humile Mayr) may be limited by cooler tempera-

tures and decreased humidity levels in the northern

latitudes. The introduction and establishment of an alien

insect species can also be affected by its behavior (e.g., nest-

ing biology and social organization) and life history traits

(Holway and Suarez 1999). Little is known about the abi-

otic, biotic, and phenological constraints that limit N. fulva

distribution in its native and invasive range; our study gen-
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erated hypotheses about these unknown factors, which

could be experimentally tested. For example, our study

showed that N. fulva is highly influenced by degree days at

≥10°C, and does quite well between 3000 and 5000 degree

days (Figures S1 and S2 in Appendix S3). This finding can

be tested in the laboratory.

Fine-scale environmental heterogeneity may affect dis-

tribution and abundance of ant species (Savage et al.

2014), a factor not considered in our models because of

the focus on climatic niche of N. fulva. Incorporating

variables representing the fine-scale heterogeneity at a

finer spatial resolution might improve local and regional

models. For example, remotely sensed indices such as

Normalized Difference Vegetation Index (NDVI), and

Enhanced Vegetation Index (EVI), soil moisture, and

anthropogenic factors (e.g., Human Footprint Index)

could be used to develop finer resolution local or regional

models of N. fulva distribution. Future research should

also investigate N. fulva’s response to climate change.

Given the strong association of climatic factors with the

distribution of N. fulva, it is highly likely that its future

distribution may be affected by climate change.

The eradication of N. fulva from its invasive range

appears to be an unachievable goal given its current levels

of infestation. Therefore, prevention and control would

be a better strategy for managing N. fulva invasion (Hoff-

mann et al. 2010). Prioritizing the prevention of further

spread of N. fulva, especially to at-risk areas (i.e., climati-

cally suitable; Figs. 2 and 3), might be the best way to

contain its future invasion (e.g., Bromberg et al., 2011).

The information on climatic niche expansion and risk

maps produced in our study can be useful tools in

managing and monitoring N. fulva future spread and

currently infested areas. For example, land managers in

at-risk areas can design policies and take appropriate

steps (e.g., quarantine measures) to stop movement of

N. fulva propagules to their regions, and thus, reduce

management costs due to N. fulva invasion.
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