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Background: Honokiol (HK) is a natural bioactive compound with proven antineoplastic 
properties against melanoma. However, it shows very low bioavailability when administered 
orally. Alternatively, topical administration may offer a promising route. The objective of the 
current study was to fabricate HK transfersomes (HKTs) for topical treatment of melanoma. 
As an ultradeformable carrier system, transfersomes can overcome the physiological barriers 
to topical treatment of melanoma: the stratum corneum and the anomalous tumor micro-
environment. Moreover, the immunomodulatory and stemness-regulation roles of HKTs were 
the main interest of this study.
Methods: TFs were prepared using the modified scalable heating method. A three-factor, 
three-level Box–Behnken design was utilized for the optimization of the process and 
formulation variables. Intracellular uptake and cytotoxicity of HKTs were evaluated in 
nonactivated and stromal cell–activated B16F10 melanoma cells to investigate the influence 
of the complex tumor microenvironment on the efficacy of HK. Finally, ELISA and Western 
blot were performed to evaluate the expression levels of TGF-β and clusters of differentia-
tion (CD47 and CD133, respectively).
Results: The optimized formula exhibited a mean size of 190 nm, highly negative surface 
charge, high entrapment efficiency, and sustained release profile. HKTs showed potential to 
alleviate the immunosuppressive characteristics of B16F10 melanoma in vitro via down-
regulation of TGF-β signaling. In addition, HKTs reduced expression of the “do not eat me” 
signal — CD47. Moreover, HKTs possessed additional interesting potential to reduce the 
expression of the stem-like cell marker CD133. These outcomes were boosted upon combi-
nation with metformin, an antihyperglycemic drug recently reported to possess different 
functions in cancer, while combination with collagenase, an extracellular matrix–depleting 
enzyme, produced detrimental effects.
Conclusion: HKTs represent a promising scalable formulation for treatment of the aggressive 
B16F10 melanoma, which is jam-packed with immunosuppressive and stem-like cell markers.
Keywords: honokiol, melanoma, transfersomes, heating method, tumor microenvironment, 
immunosuppressive, stem-like cell

Introduction
Recently, great advances in the field of pharmaceutical biotechnology have been 
achieved. However, cancer and infectious diseases still occupy the second rank in 
threats to humanity after cardiovascular diseases. Skin cancer (melanoma) 
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originates from melanin-producing melanocytes, present-
ing the subtype with the highest mortality and highest 
potential to metastasize throughout the systemic circula-
tion and lymphatic system traveling to reach distant 
organs, such as the brain, lungs, and liver.2–5

Nowadays, surgical resection is considered the first line 
of melanoma therapy, in addition to traditional chemother-
apy, radiotherapy, immunotherapy, and biological therapy.6 

The failure of most therapeutic agents is due to the 
immunosuppressive7–9 and stem-like10,11 nature of B16F10 
melanoma cells, in addition to the complex structure of 
tumor tissue. The complexity of tumor tissue is due to the 
tumor microenvironment (TME) which includes a variety of 
cellular components that contribute to tumor invasion, 
metastasis, and drug resistance.12 On one hand, B16F10 
melanoma cells exhibit high levels of the “do not eat me” 
ligand CD47. This is a ligand for SIRPα, an immunoinhi-
bitory receptor, which is expressed on myeloid cells, includ-
ing macrophages and dendritic cells. The binding of CD47 
to SIRPα is a tumor-immunoevasion strategy via inhibition 
of phagocytosis of tumor cells by immune-system cells.7–9 

In addition, B16F10 melanoma cells express high levels of 
CD133 (Prom1), which is a membrane glycoprotein char-
acteristic of cancer stem cells (CSCs). CSCs exhibit high 
potential for tumor growth and metastasis, inhibition of 
apoptosis, recurrence, and resistance to different therapeutic 
approaches.10,11 The key cellular players in the TME are 
tumor-associated fibroblasts (TAFs) and tumor-associated 
macrophages (TAMs).13 TAFs perform multiple activities 
in tumor formation. They induce the proliferation of tumor 
tissue contribute to the secretion of collagen and tumor- 
associated proteins (growth factors), which constitute the 
dense extracellular matrix (ECM). They also regulate the 
innate and adaptive immune system by secreting TGF-β, 
leading to the suppression of antitumor immunoresponses.14 

Furthermore, TAFs contribute to the regulation of polariza-
tion of TAMs to their immunosuppressive phenotype M2.15 

This phenotype of TAMs maintains several protumoral 
functions represented in supporting the progression of 
tumor growth by increasing the secretion of growth factors 
and facilitating angiogenesis and metastasis.16 Various stra-
tegies have been employed for TME remodeling, eg, col-
lagenase has been utilized as an ECM-depleting enzyme to 
digest collagen, facilitating the diffusion of therapeutic 
agents in tumor tissue.17–19 Furthermore, metformin, an 
FDA-approved first-line treatment of type2 diabetes, is cur-
rently receiving great attention for its anticancer effects and 

potential for targeting CSCs.20 It has been reported that 
metformin mediates macrophages polarization from the 
M2 to M1 phenotype21,22 and possesses a suppressive role 
on TGF-β signaling.23–26

Lately, plant-derived compounds have been proven to 
have safe pharmacological chemotherapeutic action 
against various cancer types compared to synthetic che-
motherapeutics, with lower toxicity.27

A natural bioactive compound derived from species of 
the Magnoliaceae family(Magnolia officinalis, M. grand-
iflora, and M. obovata), HK has proven antineoplastic 
properties against melanoma,28,29 pancreatic,30 lung,31 

colorectal,32 and ovarian cancer,33 head and neck squa-
mous-cell carcinoma,34 breast cancer,35 and even hepato-
cellular carcinoma.36 HK has proved to have a lot of 
striking anticancer activities: it can inhibit angiogenesis, 
provide direct cytotoxicity, potentiate apoptosis, inhibit 
multiple-drug resistance, and deregulate cancer cell–sig-
naling pathological pathways involved in growth and 
malignancy, which it can target.28,37 HK shows very low 
oral bioavailability (5%), due to the first-pass effect and 
low absorption. Alternatively, topical application may 
offer a promising route, as it is patient-compliant and it 
can augment HK therapeutic action.6,38,39 Nevertheless, 
topical delivery is still challenging, due to the presence 
of physiological barriers: the stratum corneum, the anom-
alous TME, and the interstitial matrix.40,41 Consequently, 
several nanocarriers have been developed to circumvent 
the stratum corneum, whereby they can deliver hydrophilic 
compounds and biomacromolecules to deeper skin layers, 
achieve a sustained local effect, and enhance topical drug 
delivery and thus provide high drug bioavailability.42,43 

The structure of transfersomes (TFs) resembles liposomes 
in composition — both formed of phospholipids — but 
TFs show superior advantages due to the presence of an 
edge activator in their composition.44 An edge activator is 
a single-chain surfactant that destabilizes the 
vesicle’s phospholipid bilayer and increases its deform-
ability, rendering it an ultradeformable elastic vesicle45 

that can squeeze itself through the intercellular space of 
the stratum corneum and penetrate deeper skin layers.44

Volatile organic solvents like chloroform, ether, or 
methanol are used in most TF-preparation methods, such 
as solvent evaporation46 and thin lipid–film hydration.47 

This leads to the presence of residues of these organic 
solvents, which may cause toxicity and affect the stability 
of the final TF preparation. Accordingly, it is advised to 
avoid the usage of toxic solvents in preparation 
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procedures.48,49 This has led to the evolution of the heat-
ing method, which can be conducted without the utiliza-
tion of organic solvents. This method was introduced by 
Mozafari et al, and involves the application of heat, not 
lower than the phase-transition temperature (Tc) of the 
lipids, as below this temperature lipids are present in the 
gel state and cannot form a closed continuous bilayered 
structure.50 The heating method has proved to be 
a scalable, safe, less time-consuming, and more cost-effec-
tive method of nanovesicular preparation.51 Using drug- 
delivery systems of these plant-derived compounds formu-
lated by a technique based on green synthesis is an eco-
friendly and safe therapeutic modality for human use that 
can be applied to large-scale production with low cost.52

The aim of this study was to follow a green optimized 
fabrication process of an HK TF–nanodelivery system in 
order to improve HK bioavailability and skin penetrability. 
Furthermore, the potential effect on modulating the TME 
of B16F10 melanoma cells was evaluated in monotherapy 
or in combination with two TME-remodeling agents — 
metformin and collagenase — focusing on evaluation of 
the immunosuppressive and stem-like cell characteristics 
of B16F10 melanoma cells in response to mono- or com-
binatorial therapies via evaluation of TGF-β, CD47, and 
CD133.

Methods
Materials
HK of purity 98% (HPLC) was purchased from Stanford 
Chemicals, sodium deoxycholate (SDc) from Janssen 
Pharmaceuticals, soy lecithin and cholesterol from Alfa 
Aesar, metformin hydrochloride from Sohan Healthcare, 
and collagenase from Sigma-Aldrich, Germany. 
Fluorescein isothiocyanate was obtained from Biotium, 
absolute ethanol from Medico, and HPLC-gradeacetoni-
trile from Thermo Fisher Scientific. All other chemicals 
were of analytical grade. Murine melanoma (B16F10, 
CRL6475), fibroblast (L929, CCL1), and macrophage 
(RAW264.7, TIB71) cell lines were purchased from 
the American Type Culture Collection.

Experimental Design
In the present study, three-factor, three-level Box–Behnken 
design was used to investigate the influence of formulation 
and process factors and interaction effects on TF charac-
teristics. This design is an optimum approach for ascer-
taining the effects of formulation/process factors 

(independent variables) and their associated effects on 
measured responses (dependent variables).53 Based on 
preliminary studies, drug amount (X1), stirring speed 
(X2), and homogenization speed (X3) were chosen as the 
independent variables. Particle size (PS;Y1), PDI (Y2), 
Zeta-potential (ZP; Y3), and drug entrapment efficiency 
(EE%) (Y4) were selected as the dependent variables. 
Table 1 shows the levels of the independent variables 
and the constraints of the obtained responses/dependent 
variables. A design matrix comprised of 15 experimental 
runs with three central points was obtained, as listed in 
Table 2. After polynomial equations relating the dependent 
and independent variables had been generated, the process 
was optimized.

Method of Fabrication
Fifteen TF formulations (Table 2) were fabricated using the 
modified heating method.54 Firstly, lecithin (180 mg) and 
SDc (20 mg) were hydrated individually in 2 mL PBS (pH 
7.4) for 1 hour at room temperature, then placed into 
a preheated mixture of glycerol (3% v/v) and HK (different 
amounts) at 70°C while stirring at different speeds (1,000, 
1,250, and 1,500 rpm) for 1 hour on a hot-plate magnetic 
stirrer (MSH-20D, 280 V, 50/60 Hz, 660 W, Daihan 
Scientific). Then, the mixture was left to cool for 30 minutes, 
leaving the vesicles to anneal and stabilize. Later, the for-
mulations were homogenized using a WiseTis homogenizer 
(280 W, 50/60 Hz, Daihan Scientific) for 5 minutes, with 60 
seconds on and 30 seconds off cycles. Finally, the vesicles 
were stored in a refrigerator at 4°C for further investigations. 
The whole fabrication process was performed in a six- 
baffled homemade vessel (Figure 1) simulating the specially 
designed glass bottle introduced by Mozafari.55

Table 1 Independent and dependent variables of Box–Behnken 
design utilized to prepare honokiol-loaded transfersome 
formulations

Independent variables (factors) Levels

X1: HK amount (mg) 10 25 40
X2: Stirring speed (rpm) 1,000 1,250 1,500

X3: Homogenization speed (rpm) 0 5,000 10,000

Dependent variables (responses) Desirability constraints

Y1: Particle size (nm) Minimize
Y2: Polydispersity index Minimize

Y3: Zeta-potential (mV) Maximize
Y4: Entrapment efficiency (%) Maximize
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Mean Particle Size, Particle-Size 
Distribution, and ZP
PS and PDI of all formulations were analyzed using 
a Zetasizer Nano ZS (Malvern Instruments) using dynamic 
light scattering. ZP was determined from electrophoretic 
mobility with the same instrument by injecting the samples 
into a universal folded capillary cell with platinum electrodes 
at both ends.56 Freshly prepared TF dispersions were diluted 
tenfold by deionized water, then PS, PDI, and ZP were 

measured. Measurements were performed three times and 
mean PS, PDI, and ZP were calculated.

Determination of HK-Entrapment 
Efficiency
HK entrapment in the TF vesicles was determined using the 
indirect method. Briefly, a known volume of the sample was 
centrifuged at 15,000 rpm for 2 hours at 4°C (Centurion Pro- 
Research K241R), the supernatant was then separated, and 

Table 2 Experimental runs, independent variables and observed responses of 15 honokiol transfersome formulations prepared 
according to Box–Behnken design

X1 (mg) X2 (rpm) X3 (rpm) Y1 (nm) Y2 Y3 (mV) Y4 (%)

HKT1 25 1,000 10,000 213.3±2.86 0.472±0.020 −40.00±0.96 60.00±1.24

HKT2 40 1,000 5,000 306.5±0.64 0.422±0.034 −35.37±1.06 76.24±1.62

HKT3 10 1,000 5,000 475.3±3.82 0.488±0.011 −38.83±1.55 49.46±0.87
HKT4 40 1,250 10,000 139.1±1.85 0.413±0.014 −39.33±1.65 62.60±0.97

HKT5 25 1,250 5,000 234.2±1.02 0.465±0.003 −50.20±2.45 75.00±1.36

HKT6 10 1,250 10,000 131.3±1.54 0.385±0.011 −39.23±1.77 32.60±0.88
HKT7 10 1,250 0 566.8±1.63 0.549±0.011 −44.70±1.22 74.40±1.57

HKT8 40 1,250 0 463.4±1.77 0.435±0.010 −42.50±1.61 89.90±0.96
HKT9 25 1,500 10,000 166.7±0.81 0.444±0.024 −37.47±1.27 76.57±0.47

HKT10 25 1,250 5,000 211.9±3.78 0.469±0.008 −52.93±3.05 77.50±0.99

HKT11 25 1,250 5,000 220.6±1.06 0.48±0.0150 −49.86±2.12 75.75±1.78
HKT12 40 1,500 5,000 314.3±1.87 0.364±0.030 −36.53±0.15 84.38±1.69

HKT13 25 1,500 0 416.2±1.46 0.503±0.011 −44.57±1.52 81.23±0.75

HKT14 10 1,500 5,000 252.20±0.97 0.565±0.007 −43.00±0.34 67.99±0.69
HKT15 25 1,000 0 506.0±2.46 0.588±0.019 −42.93±2.37 84.64±0.73

Notes: X1, HK amount; X2, stirring speed; X3, homogenization speed; Y1, particle size; Y2, polydispersity index; Y3, Zeta potential; Y4, entrapment efficiency (%). 
Abbreviation: HKTs, HK-loaded transfersomes.

Figure 1 The six-baffled homemade glass vessel simulating Mozafari’s glass bottle.
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the absorbance of the free HK was determined with UV- 
visible spectroscopy (JASCO V-630) at a wavelength with 
maximum absorbance at 219 nm. EE% was calculated:57

EE% ¼
Total HK � Free HK in supernatant

Total HK
� 100 (1) 

Optimization of Process Variables
Based on the results obtained, optimization of the variables 
was conducted using Design-Expert 11 (Stat-Ease) based on 
the criterion of desirability. The desirability function was intro-
duced by Derringer and Suich.58 It relies upon the concept that 
the quality of a novel formulation developed, which has many 
features, is totally unacceptable if one of the features is outside 
the desirable limit.59 The desirability function is used to corro-
borate compliance with the criteria selected for all involved 
responses and to provide the best value of compromise in 
a desirable joint response.60 This can be achieved by convert-
ing the multiple responses evaluated into a single one, combin-
ing the individual responses into a composite function, 
followed by its optimization. To confirm the validity of the 
optimization process, the suggested HK transfersome (HKT)– 
optimized formula (HKTopt) with the highest desirability and 
predicted levels of formulation and process variables was 
prepared. It was then characterized, and observed values of 
the responses were compared to the predicted values. The 
HKTopt formula was then subjected to further investigations.

Transmission Electron Microscopy
The morphology of the HKTopt formula was investigated 
using transmission electron microscopy (TEM). A drop of 
the TF suspension was placed on a carbon-coated copper 
grid and then air-dried at room temperature. The sample 
was examined at 80 kV with a Hitachi H600.

Deformability Index
For determination of the elasticity of TFs in comparison to 
liposomes (of relevant composition), the HKTopt and the 
corresponding liposomal suspension were extruded 
through a polycarbonate membrane of pore size 50 nm 
(Thermo Fisher Scientific) applying a constant pressure of 
250 kPa (Haug Kompressoren). Deformability-index 
values were calculated as an indicator of elasticity:61,62

D ¼
J

tðrv � rpÞ
2 (2) 

where D is the deformability index (mL/second), J the 
quantity of dispersion extruded (mL), t is the extrusion 

time (seconds), rv the vesicle size after extrusion (nm), and 
rp the pore size of the extrusion membrane (nm).

Fourier-Transform Infrared Analysis
To assess interactions among HK, lecithin, and SDc, 
Fourier-transform infrared (FTIR; JASCO FTIR-6200) 
spectroscopy was performed for these components indivi-
dually and the HKTopt formula in the 4,000–400 cm−1 

wavelength range at room temperature with a resolution 
of 4 cm−1.

In Vitro Release Study
For the determination of HK in vitro release kinetics from 
TFs, 500 µg HK of the HKTopt and the same amount of 
free HK in ethanol (1.64 mg/mL) as control were used to 
compare between the release kinetics of the pure drug and 
the HKTopt. Each of the HKTopt and the free HK was filled 
in a dialysis bag made of semipermeable cellulose mem-
brane with molecular weight 12–14 kDa (Spectrum 
Medical). Each dialysis bag was incubated in a beaker 
containing a dissolution medium formed of 50 mL 0.5% 
sodium lauryl sulphate in PBS (pH 7.4 to achieve sink 
conditions). The whole set was immersed in a shaking 
water bath (Sci FineTech, 220 V, 50 Hz) at 37°C±1° 
C and 100 rpm. The experiment was conducted for 24 
hours. At predetermined time points, the samples were 
withdrawn and replaced by an equal volume of the freshly 
prepared medium. The concentration of the released HK 
was quantified spectrophotometrically at 219 nm, and the 
cumulative release profile with time was calculated. This 
experiment was performed in triplicate.63

Establishment of Tumor-Associated 
Macrophage– and Tumor-Associated 
Fibroblast–Activated B16F10 Melanoma 
Culture
For the establishment of TAM-activated and TAF-acti-
vated melanoma cultures, B16F10 melanoma cells were 
cultured in 50% RAW246.7 macrophages or L929 fibro-
blast-derived conditioned media in fresh culture media for 
48 hours. The conditioned media was obtained from con-
fluent cultures of RAW246.7 macrophages or L929 fibro-
blasts. Successful activation of B16F10 melanoma cells 
was assessed via evaluation of the concentration of TGF-β 
from culture supernatants of activated and nonactivated 
melanoma cells via ELISA. TGF-β secreted by TAMs 
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and TAFs promotes several hallmarks of 
tumorigenesis.64–67

Intracellular Uptake of 
Fluorescein-Loaded TFs and Mechanism 
of Endocytosis
For determination of the intracellular concentration of TFs, 
a modified protocol by Sebak et al68 was followed. 
A noncytotoxic concentration of 250 μg/mL fluorescein- 
loaded TFs was incubated with the activated and nonacti-
vated B16F10 melanoma cells under 37°C and 5% CO2. 
After the predefined incubation of 24 hours, the culture 
medium containing the noninternalized TFs was discarded. 
Cells were then washed three times with PBS and fresh 
media added for the measurement of the fluorescence inten-
sity of the internalized TFs using a multimode microplate 
reader (Victor 3 V 1420, PerkinElmer) at excitation/emis-
sion wavelength of 485/535 nm. A freshly constructed cali-
bration curve of fluorescein-loaded TFs in complete culture 
medium was utilized for the calculation of the intracellular 
concentration of TFs.

For determination of the mechanism of endocytic 
uptake, activated and nonactivated B16F10 melanoma 
cells were pretreated with endocytic inhibitors in their 
respective concentrations for 1 hour prior to the addition 
of the TFs. A 15×103 μM quantity of sodium azide, 103 μM 
methyl-β-cyclodextrin (MβCD), and 450 μM sucrose were 
utilized for evaluation of energy dependence, cholesterol 
dependence, and clathrin-pit dependence of TF uptake, 
respectively. Similarly, 20 μM nystatin and 50 μM amilor-
ide were utilized as inhibitors of caveolin-dependent endo-
cytosis and micropinocytosis, respectively.68–71

Cytotoxicity of HKTs
For determination of the cytotoxicity of HKTs on activated 
and nonactivated B16F10 melanoma, a standard MTT 
assay was used for 1–100 μg/mL of TFs-loaded HK after 
a predefined incubation time of 24 hours.72 For determina-
tion of the cytotoxicity of the combination therapy, cells 
were pretreated with the noncytotoxic concentration of 
metformin (100 μg/mL) or collagenase (50 μg/mL) for 
24 hours prior to the addition of HKTs.

Biomarker Analysis
For evaluation of the alteration of different biomarkers in 
response to the proposed treatment options, activated and 
nonactivated B16F10 melanoma cells were treated with 

the half-maximal inhibitory concentration (IC50) of HKTs 
for 24 hours under standard culture conditions. The bio-
markers selected were CD47 and CD133 (in cell lysates), 
and TGF-β (in the culture supernatant).

Enzyme-Linked Immunosorbent Assay
TGF-β was analyzed from the cell-culture supernatant 
according to the manufacturer’s protocol using a mouse 
transforming TGF-β ELISA kit (MBS160136) from 
MyBioSource.

Sodium Dodecyl Sulfate–Polyacrylamide Gel 
Electrophoresis and Western Blot (WB) Analysis
CD47 and CD133 (Prom1) were analyzed from cell lysates 
via SDS-PAGE and WB according to the previously pub-
lished, well-established protocol in the lab of Professor 
Laila Rashed, Biochemistry Department, Faculty of 
Medicine, Cairo University.73,74 CD47 (Thermo Fisher 
Scientific, 14–0471-82), CD133 (ThermoFisherScientific, 
14–1331-82), and β-actin (ThermoFisherScientific, MA1- 
140) monoclonal antibodies were used for the analysis. 
Bands for CD47, CD133, and β-actin proteins were visua-
lized by enhanced chemiluminescence (ECL Plus) and 
quantified relative to β-actin using densitometry and 
Molecular Analyst software (Bio-Rad).

Statistical Analysis
All experiments were conducted at least three times, and 
results are expressed as means ± SE. One-way and two- 
way ANOVA or t-test analyses were utilized for statistical 
evaluation of the data using GraphPad Prism 8.3. 
Significance was regarded as P<0.05. IC50 was determined 
by nonlinear regression analysis of the cytotoxicity data.

Results and Discussion
Analysis of Responses
After fabrication of the 15 HK transfersome (HKT) for-
mulations mentioned in Table 2 by the modified heating 
method, the impact of the three independent variables — 
HK amount (X1), stirring rate (X2), and homogenization 
speed (X3) — on PS (Y1), PDI (Y2), ZP (Y3), and EE% 
(Y4) was evaluated using Design Expert 11.

Effect of Process Variables on Particle 
Size and PDI
Y1 ranged from 131.3±1.54 nm to 506±2.46 nm, corre-
sponding to HKT6 and HKT15, respectively, as shown in 
Table 2. Vesicular Y1 was greatly affected by X3 (P<0.0001) 
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as speed increased from 0 to 10,000 rpm and decreased 
sharply from 506±2.46 nm to 131.3±1.54 nm, indicating 
that homogenization speed was a key parameter in control-
ling Y1. Figure 2A shows the response surface plot of the 
measured Y1 of the prepared formulations versus X2 and X3 

respectively. The polynomial equation used relating the par-
ticle size to the independent variables was:

Y1 ¼ 222:23 � 25:29X1 � 43:96X2 � 162:75X3
þ 57:72X1X2 þ 27:80X1X3 þ 10:80X2X3 þ 57:22X1
þ 57:62X2 þ 45:70X3

(3) 

The findings obtained can be explained by the increase 
inthe mechanical and hydraulic shear as a result of enhan-
cing the homogenization speed, which in turn causes 
a dramatic decrease in PS.75 Similar findings were gained 
by Song et al, who discussed the effect of high-pressure 
homogenization on the PS of soy protein–isolate suspen-
sions and found reductions in mean PS from 3,331.3 to 
146.7 and 135.8 nm after being processed by high-pressure 
homogenization for 30 passes at 137 and 207 MPa, 
respectively.76 Stirring speed produced similar effect on 
PS whereas smaller PS was obtained at higher stirring 
speed (1,000-1500).This goes in accordance with previous 
studies elaborating the effect of stirring speed on surface 

area77 and droplet size.78 As shown in Figure 2A, the 
lowest PS, 131.3±1.54 nm (HKT6), was achieved at the 
maximum applied stirring and homogenization speeds — 
1,500 and 10,000 rpm, respectively. The results proved 
that there was no significant effect of drug amount on PS 
(P>0.05), consistent with a study on paromomycin-loaded 
solid-lipid nanoparticles.79 Regarding interactions among 
the independent variables, statistical interpretation of the 
design coefficients indicated that the combination of both 
HK amount (X1) and stirring speed (X2) had a synergistic 
effect on particle size of the TF vesicles. The PDI ranged 
from 0.364±0.030 to 0.588±0.019, represented by HKT12 
and HKT15, respectively, as shown in Table 2. The poly-
nomial equation relating PDI (Y2) to the independent 
variables can be shown as such:

Y2 ¼ 0:4713 � 0:0441X1 � 0:0118X2 � 0:0451X3
� 0:0337X1X2 þ 0:0355X1X3 þ 0:0142X2X3
� 0:0339X1 þ 0:0223X2 þ 0:0081X3 (4) 

The PDI was used as a an indication of size distribution,80 

where a value of 0 was considered as a completely homo-
geneous system and a value of 1 indicated a highly hetero-
geneous distribution of vesicles.81 In reference to Table 2, all 
samples showed relatively small PDI, indicating their homo-
geneity and the reliability of all measurements. It was clear 

Figure 2 3-D surface response plots showing the relative effects of independent variables on (A) particle size, (B) PDI, (C) Zeta-potential, (D) drug EE%, and (E) 
desirability.
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that the homogenization speed had a significant impact on 
particle-size distribution (P=0.0161). The negative of X3 

indicated a negative relationship between homogenization 
speed and PDI, indicating more uniform size distribution 
and smaller PDI values with higher homogenization speed. 
Zidan et al affirmed similar outcomes.82 It was also found 
that drug amount had a significant effect on PDI (P=0.0175): 
its value was diminished by increasing the drug amount, as 
shown in Figure 2B. It was noticed that good PDI values 
were obtained in most of the formulations without the use of 
either sonication or extrusion, the most effective techniques 
for particle size–distribution reduction. This indicates that the 
modified heating method is an efficient preparation method 
that can be scaled up without using expensive organic sol-
vents or energy-consuming processes.

Effect of Variables on ZP
ZP ranged from −35.37±1.06 to −52.93±3.05 mV for 
HKT2 and HKT10, respectively (Table 2), showing that 
the TF preparations possessed good stability as ZP >30 
mV indicates the stability of the formulations.56 ZP 
was significantly affected by homogenization speed 

(P=0.0184). The polynomial equation relating particle 
size to the independent variables was:

Y3 ¼ � 51þ 1:50X1 � 0:555X2 þ 2:33X3 þ 0:7525X1X2
� 0:575X1X3 þ 1:04X2X3 þ 6:18X1 þ 6:38X2
þ 3:37X3

(5) 

The increase in homogenization speed from 0 to 
10,000 rpm resulted in ZP decreasing from −52.93±3.05 
to −35.37±1.06 mV, as shown in Figure 2C. This suggests 
that increasing the energy input in the system led to a 
decrease in the surface charge. In a study by Severino et 
al, it was observed that higher homogenization speed led 
to a reduction in ZP from 24 to 0 mV compromising the 
dispersion stability and promoting particle 
agglomeration.83

Effect of Process Variables on 
HK-Entrapment Efficiency
The hydrophobic drug HK was entrapped in lecithin nano-
vesicles containing SDc as an edge activator. In the experi-
mental design, we kept the quantities of lecithin and SDc 
fixed and varied the loading amount of HK to determine 

Figure 3 Desirability ramps for the independent variables, with the predicted value of each measured response.
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the effect of drug amount on EE%. EE% ranged between 
32.6%±0.88% to 89.9%±0.96%, which were the values for 
HKT6 and HKT8, respectively, as shown in Table 2. 
Linear regression showed significance (P=0.0008), and 
the linear model was suggested to best describe the effect 
of variables on Y4 as the difference between the adjusted 
R2 and predicted R2 being <0.2. Equation (6) describes the 
effect of the independent variables on EE%:

Y4 ¼ 71:22þ 11:08X1 þ 4:98X2 � 12:3X3 (6) 

Drug amount had a significant effect on HK EE% 
(P=0.0026). The positive X1 in the equation indicated that 
increasing the drug amount resulted in an increase in EE%. 
Despite that our finding contradicts those observed in a 
previous study in which the EE% of resveratrol in solid 
lipid nanoparticles was observed to decrease as drug amount 
increases.84 This could be explained on the basis of the 
hydrophobicity of HK whereas the lipid bilayer represents 
a better solubilizing vehicle to HK than the external phase 
composed mainly of PBS (Figure 2D).85 Statistical analysis 
also revealed a significant effect of homogenization on drug 
EE% (P=0.0013), and the negative X3 indicated an inverse 
effect of homogenization on EE%. This might be due to the 
ample shearing effect produced by the application of homo-
genization that caused disruption of the TF structure, leading 
to leakage of the drug and thus diminishing drug 
entrapment.86 These results are in agreement with a study 
on Pseudoephedrine HCl loaded nanoliposomes for trans-
dermal delivery.87 In the current study, the maximum HK EE 
% (89.9%) was achieved by incorporation of 40 mg of drug 
in the TFs without the application of homogenization.

Optimization of HKTs Formulation
The aim of the optimization process of HKTs formulation was 
to determine the levels of the factors studied required to 
produce a formulation of the highest-possible quality. 
According to the Box–Behnken model and based on criterion 
of desirability, the optimum values of the studied variables are 
suggested in Figure 2E. Desirability-function values range 
between 0 to 1. The function seeks the most favorable and 
compromising point in the design space that fulfils the goal for 
each dependent variable. The suggested values of the indepen-
dent variables are shown in the optimization ramp (Figure 3). 
The desirability value of the suggested HKTopt was 0.751.

To confirm the optimization process, the HKTopt was 
prepared and characterized, then the actual observed 
responses were compared to the predicted responses of 
Y1, Y2, Y3, and Y4 that are listed in Table 3. As seen 

from the table, there was reasonably good agreement 
between predicted and observed responses. The adequate 
predictive performance of the design model justifies its 
application in the rationalization of an optimal formula 
and the validity of the optimization design.

TEM of the Optimized HKT Formulation
Morphological examination of HKTopt vesicles was done 
using TEM, as illustrated in Figure 4. As seen in the figure, 
it was noted that spherical, well-defined, uniformly sized, and 
unilamellar vesicles existed as discrete dispersed entities.

Deformability Test
TF vesicles’ hallmark is their flexibility compared to lipo-
somes, enabling the TFs to pass easily through the biological 
membranes.88 Therefore, the HKTopt was formed of lecithin 
(the phospholipid) and SDc (the edge activator) at a ratio of 
9:1, and its corresponding liposomal suspension consisting 
of lecithin (the phospholipid) and cholesterol, instead of 
SDc, at a ratio of 9:1 were selected to be tested for elasticity. 
The test was conducted by extruding each of the vesicular 
suspensions through a polycarbonate membrane of pore size 
50 nm. The TFs exhibited a higher deformability index (13.9 
±0.9 mL/s) than the liposomes (3.94±1.2 mL/s) according to 
the deformability index as per equation (2). This is attributed 
to the presence of the edge activator in the TF structure, 
which rendered it higher elasticity than liposomes. The 
deformability index (D-value) of the TF preparation was in 
strong agreement with a previous study on the preparation of 
TFs encapsulating sildenafil, which found that the D-value 
of the best formula containing the optimum phospholipid: 
surfactant ratio was 14.88 mL/s.89 Another study done by 
Salama et al on olanzapine-loaded TFs containing SDc as 
edge activator showed that a phospholipid:edge-activator 
molar ratio of 10:1 achieved the highest deformability 
index in comparison to higher (100:1) or lower (5:1) ratios, 

Table 3 Predicted and observed responses of the optimized 
transfersomal formulation

Independent 
variables

X1 (mg) X2 

(rpm)
X3 (rpm)

32.86 1,300 5,562

Response Y1 (nm) Y2 Y3 (mV) Y4 (%)

Predicted 208.5 0.431 −47.98 76.65
Observed 189.9 

±1.06

0.471 

±0.0001

−53.4 

±1.63

78.92±1.22
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as increasing the concentration of SDc in which the phos-
pholipid:SDc molar ratio equaled 5:1 led to diminishing 
vesicle deformability owing to the steroid-like structure of 
the SDc, becoming bulkier and resulting in less flexible 
vesicles.90

Fourier-Transform Infrared Analysis
The FTIR spectra of HK, lecithin, SDc, and HKTopt are 
shown in Figure 5. In the HK spectrum, the peaks in the 
range of 3,550–3,100 cm−1 were due to OH vibration. 
A band was located at 1,601cm−1, representing the alkene 
C=C present in HK.91 The intense bands at 1,495 and 1,426 -
cm−1 were assigned to the aromatic ring-stretching vibrations 
of the HK molecule. Other bands were found at 1,205 and 
908 cm−1 (C–O) and 994 and 824 cm−1 (C–C).92 In lecithin, 
the broad band centered at 3,318 cm−1 was assigned to OH 
stretching, the principal bands at 2,861 cm−1 and 2,927 cm−1 

corresponding to symmetric and antisymmetric stretching, 
respectively, in the CH2 groups of alkyl chains, in addition 
to the scissoring vibrations at 1,404 cm−1 representing the 
CH2 groups. The characteristic phosphate-group vibrational 
band assigned to the PO2

− antisymmetric stretching mode 
was centered at 1,232 cm−1 and the PO2

− symmetric stretch-
ing mode at 1,083 cm−1.93 Regarding the SDc spectrum, the 
three distinctive features at 2,927, 2,861, and 1,556 cm−1 are 

infrared-absorption bands corresponding to CH stretching 
vibration and COO− stretching vibration.94 The FTIR spectra 
of HKTopt showed that the peaks of the individual samples 
were shielded or absent and new peaks appeared at 3,268 -
cm−1 and 1,636 cm−1 indicating the occurrence of molecular 
interactions among the components during TF preparation.

In Vitro Release Study
The release profile (Figure 6) showed that only 50.1% 
±2.673% and 53.34%±2.535% of HK was released from 
the HKTopt after 24 and 48 hours, respectively, in contrast 
to the ethanolic solution of free drug, which showed 
97.629%±3.354% release after 1 hour, indicating the sus-
tained-release effect of the HKTopt. Similar patterns of 
sustained release were observed for lidocaine, a local 
anaesthetic, from transferosomes in comparison to the 
release profile of the free drug.63

Extent and Mechanism of Intracellular 
Uptake of TFs in Nonactivated and TAM- 
or TAF-Activated Melanoma Cells
The extent of TF accumulation in B16F10 melanoma cells 
increased upon their incubation with stromal cell–derived 
conditioned media (Figure 7A). Similar results of higher 
uptake and retention of nanosystems in activated versus 

Figure 4 Transmission electron microscopy of the optimized formula at 80 KV, with magnification (A) 80,000× and (B) 25,000×.
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nonactivated cells have been reported for TAFs versus normal 
fibroblasts95 and hypoxic versus normoxic phenotypes of 
breast cancer cells.96 The variation in the extent of intracellular 
accumulation of TFs can be explained on the basis of the 
mechanism of endocytic uptake. Treatment of B16F10 cells 
with sodium azide, an ATP-depleting agent, prior to the incu-
bation of TFs caused a reduction in the extent of their accu-
mulation, especially in nonactivated and TAF-activated cells 
(Figure 7B and D, respectively) suggesting the involvement of 
energy-dependent pathways in TFs uptake.68 Similarly, 
amiloride, which inhibits macropinocytosis,70 caused a very 
significant reduction in TF cellular concentration levels. 
Nystatin, which inhibits caveolin-dependent endocytosis,71 

did not result in a significant change in intracellular concentra-
tion of the TFs. Regarding the involvement of cholesterol- 
dependent endocytosis, as suggested from the effect of 

pretreatment with MβCD, a reduction in TF intracellular 
uptake was observed in both nonactivated and TAF-activated 
cells (Figure 7B and D, respectively). Surprisingly, the extent 
of TF intracellular uptake increased in the case of TAM- 
activated cells (Figure 7C) upon utilization of MβCD and 
sucrose, which inhibit cholesterol-dependent68 and clathrin- 
dependent97 endocytosis, respectively. This suggests that 
blocking one endocytic mechanism could facilitate the uptake 
of TFs via an alternative pathway, which could be more 
efficient and/or more rapid.98

Cytotoxicity of HKTs in Activated and 
Nonactivated Melanoma Cells
The effect of HKTs on the viability of B16F10 melanoma 
cells when cultured in fresh medium or conditioned medium 

Figure 5 FTIR spectra of pure honokiol, lecithin, sodium deoxycholate, and the optimized formula.
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derived from a culture of RAW264.7 macrophages and L929 
fibroblasts was assessed. HK has been previously reported to 
possess appealing anticancer effects in hepatocellular 
carcinoma,99 triple-negative breast cancer,100 hepatoma,101 

oral squamous-cell carcinoma,102 lung,103 thyroid,104 and 
ovarian cancer,105 and osteosarcoma.106 Upon activation of 
melanoma cells with conditioned media derived from stro-
mal-cell cultures, a significant increase in IC50 was observed 
(Figure 8). This contradicts the observed increase in the 
concentration of TFs in activated melanoma cells. This 
could be attributed to the development of resistance mechan-
isms upon induction of cell–cell interactions when cells were 
incubated with cytokine-rich conditioned media, as could be 
observed from the levels of TGF-β in TAM- and TAF-acti-
vated melanoma cells (Figure 10). TGF-β is a potent protu-
morigenic and immunosuppressive cytokine that regulates 
multiple functions in the TME.64–67

Intracellular Uptake and Cytotoxicity of 
TFs upon Pretreatment with TME- 
Remodeling Agents (Metformin and 
Collagenase)
Pretreatment with either metformin or collagenase did not 
result in any contribution to the extent of the intracellular 
accumulation of the TFs in nonactivated or TAF-activated 
B16F10 melanoma cells (Figure 9A). However, collagenase 
pretreatment significantly increased the intracellular concen-
tration of TFs in TAM-activated B16F10 melanoma cells. This 
could be explained by the ability of collagenase to digest dense 

ECM components, eg, collagen which could have 
facilitated uptake of the TFs. Enhancement in the uptake of 
magnetic nanoparticles in pancreatic cancer cells has been 
reported with pretreatment with collagenase.107 A similar 
observation was recorded for permeability of nanoparticles in 
3-D spheroids.18

Unexpectedly,the susceptibility of nonactivated mela-
noma cells to HK-mediated cytotoxicity decreased signifi-
cantly upon pretreatment with collagenase (Figure 9B). 
However, this could be explained on the basis of the ability 
of collagenase to increase TGF-β activation,108 consistent 
with our results elaborated in Figure 10, which has multiple 
implications in cancer resistance to different 
chemotherapeutics.109 On the contrary, metformin and col-
lagenase pretreatment were shown to increase the efficacy of 
HKTs in TAM- and TAF-activated melanoma (Figure 9C and 
D, respectively), pointing to a possible synergistic effect 
whereas both agents previously showed multiple roles in the 
TME.17–26

Role of HKTs on Immunosuppressive and 
Stem-Like Cell Characteristics of B16F10 
Melanoma Cells in Monotherapy or 
Combined with TME-Remodeling Agents 
(Metformin and Collagenase)
TAM- and TAF-activated melanoma cells exhibited higher 
levels of all the immunosuppressive (TGFβ and CD47) 
and stem-like cell (CD133) markers relative to 

Figure 6 In vitro release profile of honokiol, showing the cumulative percentage released from the optimized formula in PBS (pH 7.4) and the ethanolic solution of the pure 
form (n=3).
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nonactivated melanoma cells (Figure 10A and B, respec-
tively). It is well known that TGF-β can be secreted from 
tumor cells, TAMs,64,65 and TAFs,66,67 promoting prolif-
eration, angiogenesis, immunosuppression, ECM remodel-
ing, invasion, and metastasis.111–115 In addition, TGF-β 
has been reported to regulate cancer stemness and induce 
the expression of stem-like cell markers like CD133.115– 

117 CSCs can then secrete more TGF-β, regulating all 
immunohallmarks in the tumor, including the expression 
of CD47.118 This shows how the TME is highly orche-
strated and that all the three markers are interrelated.

Treatment of TAM-activated cells with HKTs reduce 
the levels of TGF-β, CD47, and CD133 (Figure 10A and 
Figure S1A–C). This could be explained on the basis of 
the previously reported role of HK in exhibiting an immu-
nogenic effect in gastric cancer via inducing endoplasmic 
reticulum stress, blocking epithelial–mesenchymal transi-
tion, and suppressing calreticulin.119 A prophagocytic 

marker associated with poor prognosis of some cancer 
types, calreticulin has been positively correlated with the 
antiphagocytic CD47 for maintaining cellular homeostasis 
by balancing pro- and antiphagocytic signals.120 

Therefore, the suppressive effect observed for HK in our 
study on CD47 could have been regulated indirectly via 
calreticulin. Another possible explanation for the reduced 
levels of CD47 in HK-treated cells is the downregulation 
of TGF-β signaling: CD47 expression has been previously 
reported to be associated with TGF-β expression.121 

Moreover, HK possesses CSC-targeting potential, 
reduces the proliferation of CD133+ CSCs, and 
reverts the conferred resistance to chemotherapy in glio-
blastoma multiforme and oral squamous- cell 
carcinoma.122–124

Further improvement in the therapeutic outcome of 
TAM-activated melanoma cells was observed upon pre-
treatment with metformin. Metformin has been reported 

Figure 7 Intracellular uptake of fluorescein-loaded TFs in nonactivated and TAM- or TAF-activated B16F10 melanoma cells (A). Mechanism of endocytic uptake of TFs in 
nonactivated (B), TAM-activated (C), and TAF-activated (D) B16F10 melanoma cells. ns, not significant. *p<0.05; **p<0.01; **p<0.001; ****p<0.0001.
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to reduce TGF-β expression and attenuate TGFβ- 
mediated tumorigenesis.26 It also possesses a repressing 
role on tumor initiation, self-renewal, and chemoresis-
tance conferred by the breast cancer stem 
cells (BCSCs). Metformin was found to cause miR-708 
mediated repression of the gene CD47 facilitating pha-
gocytosis of BCSCs by macrophages.125 Metformin also 
mediates the downregulation of CD133 in hepatocellular 
carcinoma126 and pancreatic cancer,127,128 affecting 
higher chemosensitivity.

In an opposite manner, pretreatment of TAM-activated 
melanoma cells with collagenase produced an undesirable 
impact. This could be explained by the previously reported 
anti-inflammatory role of collagenase: it was found to 
upregulate anti-inflammatory cytokines, IL10, and TGF-β 
and downregulate the proinflammatory cytokines TNFα 
and IL1β.129

Figure 8 Cytotoxicity of HKTs in activated and nonactivated B16F10 melanoma 
cells. *p<0.05; *; p<0.01; ***; p<0.001.

Figure 9 Intracellular uptake of fluorescein-loaded TFs in nonactivated and TAM- or TAF-activated melanoma cells upon combination with TME remodeling agents 
(metformin and collagenase) (A). Cytotoxicity of HKTs in nonactivated (B), TAM-activated (C), and TAF-activated (D) B16F10 melanoma cells upon combination with TME 
remodeling agents (metformin and collagenase). *P<0.05; *; p<0.01.
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Treatment of TAF-activated cells with HKTs 
reduced levels of all the tested markers (Figure 10B and 
Figure S1A–C). However, the combination therapy produced 
detrimental effects on the level of the immunosuppressive and 
stem-like cell characteristics of melanoma. While the effect of 
collagenase pretreatment was not surprising, the detrimental 
effect of metformin was not expected. Investigation of the 
literature for a possible explanation revealed tha metformin 
has a positive role on the secretion of TGF-β in supernatants of 
4T1 triple-negative breast cancer cells.130

Conclusion
Atoxic HKTs were successfully fabricated using a simple, 
scalable, green, modified heating method. Box–Behnken sur-
face analysis proved to be an efficient tool to optimize the 
HKT formulations. HKTs possessed uniform nanosize, high 
negative charge, high EE%, and sufficient elasticity, and 
provided sustained release of HK over 48 hours. Moreover, 
HKTs reduce levels of TGF-β, CD47, and CD133, alleviating 
the immunosuppressive and stem-like cell characteristics of 
melanoma cells. Further improvement in therapeutic outcome 
was observed upon pretreatment with metformin, while pre-
treatment with collagenase produced an undesirable effect. 
With the view that the TME is highly orchestrated, it is 

necessary to investigate the role of the proposed topical 
HKT therapy on other key players of the TME.
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