
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 04 December 2013

doi: 10.3389/fendo.2013.00187

CAPS and Munc13: CATCHRs that SNARE vesicles

Declan J. James† andThomas F. J. Martin*†

Department of Biochemistry, University of Wisconsin, Madison, WI, USA

Edited by:
Stephane Gasman, Centre national de
la recherche scientifique, France

Reviewed by:
Thomas Söllner, University of
Heidelberg, Germany
Jingshi Shen, University of Colorado
Boulder, USA

*Correspondence:
Thomas F. J. Martin, Department of
Biochemistry, University of
Wisconsin, 433 Babcock Drive,
Madison, WI 53706, USA
e-mail: tfmartin@wisc.edu
†Declan J. James and Thomas F. J.
Martin have contributed equally to
this work.

CAPS (Calcium-dependent Activator Protein for Secretion, aka CADPS) and Munc13 (Mam-
malian Unc-13) proteins function to prime vesicles for Ca2+-triggered exocytosis in neu-
rons and neuroendocrine cells. CAPS and Munc13 proteins contain conserved C-terminal
domains that promote the assembly of SNARE complexes for vesicle priming. Similari-
ties of the C-terminal domains of CAPS/Munc13 proteins with Complex Associated with
Tethering Containing Helical Rods domains in multi-subunit tethering complexes (MTCs)
have been reported. MTCs coordinate multiple interactions for SNARE complex assembly
at constitutive membrane fusion steps. We review aspects of these diverse tethering and
priming factors to identify common operating principles.

Keywords: CAPS (aka CADPS), Munc13, priming factors, vesicle fusion, SNAREs, multi-subunit tethering complexes

TRAFFICKING IN THE SECRETORY AND ENDOSOMAL
PATHWAYS
The transport of proteins and membranes in the secretory path-
way is vectorial with vesicle formation in a donor compartment
coupled to vesicle transport and subsequent fusion in an acceptor
compartment. Vesicle delivery to an acceptor membrane involves
several layers of interaction that confer targeting specificity involv-
ing tethering, docking, and priming of vesicles. These lead to
SNARE pairing that mediates fusion of the vesicle with the accep-
tor membrane. In exocytic vesicle fusion with the plasma mem-
brane, as well as for intracellular membrane fusion events, a diverse
set of accessory (tethering and priming) factors are required to
prime vesicles for fusion. Accessory factors commonly interact
with vesicle and target membrane constituents that are charac-
teristic of a membrane compartment such as Rab proteins (1, 2)
and phosphoinositides (3, 4). Accessory factors also interact with
SNARE proteins to promote SNARE protein complex assembly
usually in association with proteins of the Sec1/Munc18 (SM)
family. Accessory factors for constitutive trafficking include the
tethering factor complexes Dsl1 for Golgi to ER transport, HOPS
for late endosome fusion, and exocyst for exocytic fusion. Acces-
sory factors for regulated vesicle exocytosis include the priming
factors CAPS and Munc13. These exhibit sequence and structural
similarity with tethering factor subunits (e.g., exocyst Sec6) (5, 6),
which suggests there may be common features for these diverse
accessory factors. We review aspects of tethering and priming fac-
tor function at several trafficking stations attempting to identify
common operating principles.

SNARE PROTEINS IN MEMBRANE FUSION
Biochemical reconstitution studies of membrane trafficking in the
Golgi led to the discovery of SNARE (soluble N -ethylmaleimide
sensitive factor attachment protein receptor) proteins as the gen-
eral machinery for membrane fusion (7). The initial identification

of neuronal syntaxin-1, SNAP-25, and VAMP2 (aka synapto-
brevin2) as SNARE proteins in brain membrane extracts prompted
advances for understanding Ca2+-triggered vesicle fusion events
for neurotransmitter and peptide secretion (8, 9). An essential
role for neuronal SNAREs in regulated vesicle exocytosis was indi-
cated by finding them to be the substrates for the Clostridial zinc
endopeptidase toxins (10–14). The further characterization of
proteins in the SNARE protein superfamily generally facilitated
research on membrane trafficking throughout the secretory and
endosomal pathways (15). Much current research in membrane
fusion is focused on understanding how accessory factors prime
vesicles for fusion by regulating SNARE complex assembly.

SNARE proteins, usually C-terminal tail-anchored membrane
proteins with membrane-proximal helical SNARE motifs, are
grouped into syntaxin, SNAP-25, and VAMP families based on
sequence relatedness, and referred to as “Q” or “R” SNAREs based
on highly conserved glutamine or arginine residues in the zero
layer of the SNARE motif (e.g., syntaxin-1 as Qa-, SNAP-25 as
Qbc-, VAMP2 as R-SNARE) (16). The reconstitution of SNARE
proteins into liposomes demonstrated that SNAREs are sufficient
for mediating membrane fusion (17). Although the details of how
SNARE proteins fuse membranes is emerging, structural, and bio-
chemical analyses indicate that SNARE proteins present on two
apposed membranes form a trans-SNARE complex to pin mem-
branes close together (18, 19). Membrane fusion ensues when
trans-SNARE complexes zipper-up through coiled-coil interac-
tions in helical SNARE motifs (16, 20). The formation of a tight
coiled-coil bundle, characteristically containing 3Q (Qa, Qb and
Qc, or Qa and Qbc) and 1R SNARE motifs, is coupled to mem-
brane fusion events throughout the secretory pathway (21). For
regulated vesicle exocytosis, SNARE complex assembly is thought
to proceed by a two-stage process with the initial formation of
heterodimeric QaQbc complexes of plasma membrane syntaxin-1
with SNAP-25 followed by the insertion of the vesicle R-SNARE
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VAMP2 to form heterotrimeric (RQaQbc) SNARE complexes (8).
Alternative assembly pathways have been suggested (22–25).

At least 44 SNARE protein isoforms in vertebrate cells are dis-
tributed throughout membrane trafficking pathways (15). It was
proposed that unique cognate SNARE pairing contributes to speci-
ficity for vesicle targeting to acceptor membranes (26, 27). How-
ever, it has been noted that SNARE pairing can be promiscuous
and may not be the sole determinant of vesicle targeting specificity
(28, 29). Targeting specificity is likely combinatorial consisting of
multiple levels of interaction requiring accessory factors that are
recruited to membranes by interactions with Rabs, phosphoinosi-
tides, and SNAREs (26). Accessory factors acting with SM proteins
promote stages of SNARE complex assembly and enable specific
SNARE pairing for fusion. For example, recent studies revealed
differential effects of the SM proteins Munc18-1 and Munc18c
for enabling fusion on cognate but not on non-cognate SNARE
proteins (30, 31).

SM PROTEINS IN MEMBRANE FUSION
The SM (Sec1/Munc18) protein family consists of soluble proteins
that are required for membrane trafficking (32–34). SM proteins
are grouped into four highly conserved subfamilies across eukary-
otes. In spite of their sequence homology, SM proteins encode a
high degree of specificity for SNARE protein interactions. A com-
mon theme is SM protein-directed interaction with Q-SNAREs at
exocytic (Munc18/Sec1), ER-Golgi (Sly1), endosomal-lysosomal
(Vps33), and endosomal (Vps45) membrane trafficking stations
(32, 35–38). The mode of Q-SNARE-binding by different SM pro-
teins appears to differ but the SM proteins may generally function
in stabilizing SNARE protein complexes (39). Studies on the inter-
action of the neuronal SM protein Munc18-1 with the Qa-SNARE
syntaxin-1 have played a prominent role in understanding SM
protein function even though Munc18-1 has unique features that
distinguish it from other SM proteins (32). Munc18-1 chaperones
syntaxin-1 to the plasma membrane (32, 39). At the plasma mem-
brane, Munc18-1 stabilizes a closed form of syntaxin-1, which
is unable to form heterodimeric complexes with the Qbc-SNARE
SNAP-25 (40). The closed configuration of syntaxin-1 may prevent
unwanted interactions with SNARE proteins as the complex traf-
fics to the plasma membrane (41). Eliminating Munc18-1 reduces
syntaxin-1 delivery to the plasma membrane, abrogates dense-core
vesicle (DCV) docking, and abolishes triggered exocytosis (42).

Recent findings that Munc18-1 accelerates SNARE-catalyzed
liposome fusion help to reconcile the role of Munc18-1 as a
chaperone with its essential role in regulated exocytosis (30).
Munc18-1 stimulates trans-SNARE complex formation and mem-
brane fusion but does so by switching from an inhibitory to a
stimulatory mode. The switch from an inhibitory to a stimulatory
mode in liposome fusion for Munc18-1 requires pre-incubation
with both R- and Q- SNARE proteins (VAMP2 and syntaxin-
1/SNAP-25) (43), which suggests that Munc18-1 utilizes specific
interaction sites on the SNARE proteins. Recent studies have iden-
tified some of these sites on VAMP2 (C-terminal) and syntaxin-1
(N- and C-terminal) (30, 31). Interestingly, Munc18c appeared to
operate differently on its cognate SNAREs lacking an inhibitory
mode on syntaxin-4. In addition, recognition sites on shared cog-
nate VAMP2 differed with C-terminal sites for Munc18-1 and

N-terminal sites for Munc18c (30, 31). While both Munc18-1 and
Munc18c promote the assembly of cognate SNARE protein com-
plexes, they appear to do so by distinct sets of interactions that
play a role in establishing specific SNARE protein pairing.

Tethering and priming factors act with SM proteins to promote
SNARE complex assembly. Munc13-1 is proposed to enhance the
switching of Munc18-1 from an inhibitory to stimulatory mode for
regulated vesicle exocytosis (44) as discussed below. At other fusion
events, cognate SM proteins also function in concert with acces-
sory factors. In vacuolar fusion, the SM protein Vps33 operates as
a subunit of a HOPS (homotypic fusion and vacuole protein sort-
ing) complex, a multi-subunit tethering complex that promotes
trans-SNARE complex assembly (45). At other trafficking stations
where SM proteins are not formally part of complexes, it is likely
that tethering and priming factors cooperate with SM proteins in
the assembly of SNARE complexes as noted below.

TETHERING FACTORS INTEGRATE SNARE PROTEIN
FUNCTION FOR CONSTITUTIVE FUSION
Tethering is considered to be a long-range interaction of a vesicle
near a target membrane independent of cytoskeletal anchoring.
Tethering factors may also operate to bring vesicles into closer
proximity for trans-SNARE complex assembly (docking). Tether-
ing factors have been classified as either long coiled-coil proteins
or multi-subunit tethering complexes (MTCs). Several MTCs that
function at distinct membrane trafficking steps have been iden-
tified (46) where they function as important interfaces between
Rabs, phosphoinositides, and SNARE proteins (47). Tethering fac-
tors are very diverse but sequence comparisons indicate a subtle
relatedness among subunits of a subset of MTCs in predicted coiled
coils (48). Structural analysis of several MTC subunits from COG,
Dsl, exocyst, and GARP complexes indicate a homologous ter-
tiary structure composed of an extended rod-like domain made
up of helical bundles (49, 50). MTCs with this structural signature
were termed members of a Complex Associated with Tethering
Containing Helical Rods (CATCHR) family (50). The CATCHR
homology is not restricted to MTC subunits and is found in Myo2p
(Myosin V) and in CAPS and Munc13 proteins (see below) (5). In
the following, we discuss a well-studied MTC (HOPS) whose sub-
units lacks CATCHR homology followed by two other well-studied
MTCs (exocyst and Dsl1p) that contain subunits with CATCHR
homology.

The HOPS complex is an MTC of ∼663 kDa comprised of six
subunits Vps41,Vps11,Vps18,Vps16,Vps33, and Vps39 (Figure 1,
upper) (45). Conserved across eukaryotes, HOPS was initially
identified for its role in yeast vacuole fusion, which is a corre-
late of endo-lysosomal fusion in vertebrate cells (48). The HOPS
complex interacts with lipids, Rabs, and SNARE proteins (45).
As a complex, HOPS mediates vesicle tethering as well as mem-
brane fusion (51). Ultra-structural analysis of purified HOPS by
EM-reconstruction techniques revealed that the holo-complex is
a 30 nm long molecular monolith (52, 53). A combination of
biochemical and structural reconstruction indicated that its Rab-
interacting subunits Vps41 and Vps39 are positioned at either end
of the complex (53). This arrangement of Rab-binding domains
may mediate HOPS-dependent vesicle tethering. The SM protein
Vps33 and nearby Rab-binding Vps39 are juxtaposed toward the
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FIGURE 1 | Upper panel: schematic of priming factor (CAPS, Munc13)
and tethering complex (exocyst, Dsl1, HOPS) composition and
interactions. Multi-domain CAPS and Munc13 proteins interact with
neuronal SNAREs and PIP2 and co-function with the SM Munc18-1. The
exocyst complex with eight subunits interacts with cognate SNAREs, PIP2,
and the SM Sec1. The Dsl1 complex with three subunits interacts with
cognate SNAREs and co-functions with the SM protein Sly1. The HOPS
complex with six subunits interacts with cognate SNAREs, PI3P, and PIP2,
and contains the SM protein Vps33. Lower panel: schematic of CAPS

function in vesicle priming depicting (i) PH domain binding to PIP2 and (ii)
MHD1-mediated SNARE binding. Simultaneous binding of vesicle and
plasma membrane constituents by CAPS might tether vesicles (A) in
proximity to the SNARE proteins. These interactions could lead to (iii)
syntaxin-1/SNAP-25 heterodimer formation followed by VAMP2 insertion to
form trans-SNARE complexes in priming (B). (iv) Full SNARE complex
zippering in response to elevations of intracellular calcium mediated by
synaptotagmin and complexin triggers vesicle fusion (C) and contents
release into the extracellular space.

membrane where HOPS may couple vesicle tethering with SNARE
complex assembly. The monolith-like HOPS would stand like
Stonehenge coordinating vacuole–vacuole fusion sites arranged
around a vertex ring (45). Fusion between large organelles such
as vacuoles likely requires solid tethering foundations provided by

the HOPS complex for coordinating large surface area membrane
fusion events. HOPS also requires the phosphoinositides PI3P and
PI(4,5)P2 to coordinate its function (45). Overall, HOPS promotes
the formation of a 3Q:1R trans-SNARE complex consisting of
Vam3(Qa), Vti1(Qb), Vam7(Qc), and Nyv1(R) (54). Besides the
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requirement of the SM protein subunit Vps33 in SNARE complex
formation, Vps16 and Vps18 interact with the soluble Qc-SNARE
Vam7 and mediate a rate-limiting step for Qc-SNARE entry into a
fusion-competent SNARE complex (55). The SM protein subunit
Vps33 also interacts with the SNARE-binding Vps16 subunit (56),
which may together with Vps18 form a SNARE-binding interface
for the HOPS complex. The HOPS complex lacks the CATCHR
domain homology but is an example of an MTC that integrates
Rab, phosphoinositide, and SNARE interactions for tethering and
compartment-specific SNARE complex assembly.

The exocyst complex, originally discovered in yeast, is a con-
served multi-subunit complex ∼750 kDa composed of eight sub-
units Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84
(Figure 1, upper) (57). Exocyst functions in polarized consti-
tutive exocytosis in budding yeast, plants, and vertebrate cells,
and is thought to tether vesicles to exocytic sites at the plasma
membrane. Ablation of exocyst components in yeast results in
the mis-localization of the complex and an accumulation of vesi-
cles within the cell interior. At the plasma membrane, the exocyst
is an octomeric holo-complex but the exact pathway for assem-
bly of the complex is under active study. Studies in yeast suggest
that vesicle tethering is achieved by complex assembly initiated
between vesicle-bound Sec4 (Rab)-Sec15 and plasma membrane-
targeted Exo70 and Sec3 subunits (58). The fully assembled exocyst
complex localizes to growth cones in neurons where it plays an
important role in membrane addition (59). The plasma mem-
brane recruitment of exocyst is mediated through interactions of
exocyst subunits Exo70 and Sec3 with GTPases (Rho and cdc42
family) and the phosphoinositide lipid PI(4,5)P2 (60, 61).

Structural studies indicate that Sec6, Sec15, Exo70, and Exo84
subunits contain homologous CATCHR domains. These CATCHR
domains mediate inter-subunit interactions to provide an elon-
gated structure for tethering as well as interactions with other
proteins (GTPases) (62). Besides a role in tethering, exocyst sub-
units interact with SNARE and SM proteins to control SNARE
complex assembly (57). The exocyst subunit Sec6, as a dimer, inter-
acts with the Qbc-SNARE Sec9 and inhibits the formation of Qabc
acceptor SNARE complexes (63). In addition, Sec6 interacts with
the SM protein Sec1 when it is part of the exocyst complex medi-
ated by N-terminal sites in Sec6, which functionally overlap with
Sec9 binding sites (64). Truncation of these N-terminal sites in
Sec6 (the CATCHR domain is C-terminal) inhibits dimerization
as well as Sec9 and Sec1 binding. In contrast, mutations in the
Sec6 CATCHR domain disrupt exocytosis and polarized localiza-
tion of exocyst but not exocyst complex formation or Sec6-Sec9
interactions (64). It is not known whether these Sec6 CATCHR
domain mutations impair exocyst-Sec1 interactions. Nevertheless,
it appears that Sec6 mediates interactions that anchor the exo-
cyst to sites of polarized exocytosis (65). One speculation is that
Sec6-Sec9 interactions may help stage the assembly of a Qabc-
SNARE complex concomitant with arrival of the vesicle contain-
ing other exocyst components to promote trans-SNARE complex
formation mediated by exocyst-Sec1 interactions. Notably the
formation of a Q-SNARE complex by exocyst is similar to the
HOPS recruitment of Vam7. In summary, the exocyst complex
tethers through vesicle Rab (Sec4) and plasma membrane phos-
phoinositide and GTPase interactions, and associates with the SM

protein Sec1 and SNAREs to promote or stabilize SNARE complex
assembly.

The Dsl1 complex is the smallest of the MTCs at ∼250 kDa and
is composed of three subunits Dsl1, Tip20, and Sec39 (Figure 1,
upper) (66, 67). As an essential protein complex in yeast, it is
required for the fusion of Golgi-derived vesicles with the ER. Two
of the three subunits have homologs in humans that are involved
in retrograde trafficking pathways between the Golgi and ER (48).
Structural studies of the yeast Dsl1 complex indicate that Sec39
and Tip20 subunits are bridged by Dsl1 through interactions of
the CATCHR domain of Dsl1 with that of Tip20 to assemble a
20 nm structure (68). The Dsl1 subunit interacts with the COP1
coat complex and may serve as a direct link securing incoming
Golgi-derived COP1 vesicles at the ER membrane (69). The Dsl1
complex interacts with ER resident SNAREs Ufe1(Qa), Sec20(Qb),
and Use1(Qc) to stabilize a Qabc-SNARE complex (66, 70) in
conjunction with the SM protein Sly1 (71). Interestingly, inter-
actions with the Qb-SNARE Sec20 appear to be mediated by the
CATCHR domain of the Tip20 subunit (68). The recruitment of
the Qc-SNARE Use1 into SNARE complexes depends on Sec39
and Dsl1 subunits interacting with Tip20 (66). Sly1 interactions
with Ufe1 and SNARE complexes are part of a larger complex that
includes Dsl1 representing a complex that coordinates Golgi to ER
retrograde traffic (38, 71). Overall, the Dsl1 complex links vesi-
cle tethering to SNARE complex assembly and fusion at sites in
the ER.

Tethering factors are essential coordinators linking vesicle
arrival with SNARE complex assembly. Individual MTC sub-
units mediate a number of protein and phospholipid interactions.
CATCHR domains in MTC subunits that possess them appear to
generally mediate interactions with other subunits or with other
proteins including SNAREs. One common theme illustrated by
tethering factors at several vesicle trafficking stations is the on-
demand assembly of Q-SNARE complexes with vesicle arrival.
Recent studies (29) suggested that Qc-SNAREs are a particularly
important determinant for selectivity in SNARE pairing for fusion.
Thus, it is notable that an interaction specific for the Qc-SNARE is
found for HOPS (55), and that exocyst and Dsl1 complexes bind
Sec9 Qbc- or Use1p Qc- SNAREs, respectively. Overall this sug-
gests an important role for tethering factors in promoting the entry
of Qc-SNAREs into SNARE complexes to enable appropriately
paired, compartment-specific fusion.

PRIMING FACTORS INTEGRATE SNARE PROTEIN FUNCTION
FOR REGULATED FUSION
The release of neurotransmitters from synaptic vesicles (SVs) at
the neuronal synapse or peptides from DCVs of neuroendocrine
cells occurs by regulated exocytosis. Pools of SVs and DCVs are
stored near the plasma membrane in various states prior to fusion
(72). Traditionally, vesicles are viewed as progressing through
states of tethering, docking, and priming prior to Ca2+-triggered
fusion (73). Recent high-pressure freeze EM (74) and fluorescence
microscopy mobility studies of vesicles (75) indicate that dock-
ing and priming may be closely linked steps. Physiological and
genetic studies suggest that SNARE complex assembly occurs dur-
ing priming (76, 77). SV exocytosis is strongly inhibited in mice
lacking Munc13-1 (78, 79) and CAPS (80). DCV exocytosis is also
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FIGURE 2 | Schematic of CAPS/Munc13 family of priming factors. Colored boxes indicate relative location of C2, C1, PH, MHD1, and MHD2 domains. The
CATCHR homology region is indicated by black line.

strongly impaired in cells lacking Munc13-1 or CAPS (78, 81–83).
Thus, major accessory factors for SV and DCV priming are the
related CAPS and Munc13 proteins. Munc18-1 is also involved
in SV and DCV priming but its role in priming in cells is diffi-
cult to separate from its upstream role as a syntaxin-1 chaperone
that influences vesicle docking (42, 84). It is likely that CAPS and
Munc13 proteins co-function with Munc18-1 in vesicle priming.

CAPS and Munc13 proteins are related in sequence (Figure 2)
(6, 85). CAPS and Munc13-1 exhibit ∼40% sequence similar-
ity in a C-terminal region that contains the MHD1 homology
domain. All Munc13 proteins (including Munc13-4 and BAIAP3)
but not CAPS proteins also share a more C-terminal MHD2
domain. Overall the C-terminal region of CAPS and Munc13 pro-
teins exhibits weak sequence homology to the CATCHR domain
of exocyst, COG, GARP, and Dsl1 complex subunits (Figure 2)
(6). More convincingly, crystallographic studies of a Munc13-
1(1148–1531) protein indicated strong structural similarity to
the CATCHR region of the Sec6 subunit of the exocyst complex
(5). This homology across diverse proteins implies an evolution-
ary relatedness but could also indicate a conserved functional
role for the CATCHR domain. In MTCs, an inherent structural
role for CATCHR domains was seen to be adapted to mediate
protein–protein interactions that include SNARE-binding (50).
Studies of the CAPS and Munc13 proteins indicate a role for this
region in scaffolding SNARE proteins as well as for other pro-
tein interactions. In the following, we discuss membrane- and
SNARE-binding features of CAPS and Munc13 proteins that have
counterparts in MTCs.

PRIMING FACTORS FOR REGULATED VESICLE EXOCYTOSIS:
CAPS
CAPS (aka CADPS) was discovered for its activity in regulating
DCV exocytosis in neuroendocrine cells (86) and was found to
correspond to the Caenorhabditis elegans UNC31 protein (87).
Unc-31 deletion mutants exhibit a strong loss of DCV exocy-
tosis and neuropeptide secretion (88–90) with moderate reduc-
tions in SV exocytosis and synaptic transmission (88, 89, 91,
92), which matches the conditional uncoordinated phenotype.
By contrast, the phenotypes for C. elegans UNC13 mutants are
much more severe. Unc-13 hypomorphs are paralyzed, and exhibit
a strong loss of synaptic transmission with lesser impact on
DCV exocytosis and neuropeptide secretion (89, 93, 94). Thus,

C. elegans CAPS/UNC31 is essential for DCV exocytosis whereas
Munc13/UNC13 plays a dominant role in SV exocytosis. In ver-
tebrates, the requirements for vesicle priming are more complex
in requiring both CAPS and Munc13 proteins. Vertebrates pos-
sess two CAPS genes (CAPS/CADPS and CAPS2/CADPS2) that
control DCV exocytosis in chromaffin cells, pancreatic β cells, and
neurons (83, 95–100). Munc13 proteins are encoded by five genes
(Munc13-1, -2, -3, -4, BAIAP3). Munc13-1 is required for DCV
exocytosis in pancreatic β cells (101, 102), which indicates that
both CAPS and Munc13-1 are required for regulated insulin secre-
tion. CAPS localizes to DCVs but not SVs in brain tissue (103).
In spite of this, studies indicate that CAPS-1/2 KO mice exhibit as
complete loss of synaptic transmission as reported for Munc13-1
KO mice (78, 80). Thus, it appears that CAPS and Munc13 proteins
are both required for SV and DCV priming in vertebrate nervous
and endocrine systems.

Recent studies have revealed CAPS to be a regulator of SNARE
complex assembly. Attempts to detect direct CAPS interactions
with soluble SNARE proteins were of limited success indicat-
ing only very low affinity interactions; however, recent stud-
ies revealed direct CAPS interactions with membrane-associated
SNARE proteins (Figure 1, lower) (104–107). Liposomes contain-
ing syntaxin-1/SNAP-25 heterodimers or VAMP2 were found to
retain CAPS in liposome flotation studies (104). CAPS interacted
independently with either syntaxin-1 or SNAP-25 suggesting that
CAPS might promote QaQbc-SNARE heterodimer formation.
CAPS binding to syntaxin-1 was mediated by the membrane-
proximal C-terminal SNARE motif (H3) and membrane linker
domain sequences of syntaxin-1 (104). CAPS interactions with
N-terminal regions of the SNARE motif of VAMP2 were also
detected, which suggests that CAPS might recruit VAMP2 into
syntaxin-1/SNAP-25 heterodimers for RQaQbc-SNARE complex
assembly. As a SNARE-binding protein, CAPS stimulated the
formation of SNARE complexes on liposomes (106) and pro-
moted VAMP2 liposome docking on supported bilayer mem-
branes containing syntaxin-1/SNAP-25 heterodimers indicating
that stable trans-SNARE complex formation had occurred. These
studies utilized pre-formed syntaxin-1/SNAP-25 heterodimers,
and indicated that CAPS could promote VAMP2 insertion into
QaQbc-SNARE heterodimers to assemble heterotrimeric SNARE
complexes (Figure 1, lower). The activity of CAPS in pro-
moting SNARE complex formation was also evident in studies
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of SNARE-dependent liposome fusion where CAPS markedly
increased the rate and extent of fusion between donorVAMP2 lipo-
somes and syntaxin-1/SNAP-25 acceptor liposomes (105, 106).
These results also suggested that CAPS acts to promote the
insertion of the R-SNARE VAMP2 into Qabc-SNARE syntaxin-
1/SNAP-25 acceptors (Figure 1, lower) but it is not yet known if
CAPS utilizes direct interactions with syntaxin-1/SNAP-25, with
VAMP2, or with both to enable SNARE complex assembly. Addi-
tional studies are needed to determine the detailed mechanism of
how CAPS enhances SNARE complex assembly.

A key issue is which CAPS domains mediate SNARE protein
binding and SNARE complex assembly. The C-terminal region
of CAPS/Munc13 proteins contains numerous α-helices, which
makes standard recombinant protein analysis or yeast two-hybrid
interaction studies very challenging (5, 108). We produced a set
of recombinant proteins across the CAPS sequence based on sec-
ondary structure predictions and proteolysis studies, and tested
these proteins for moderate-to-high affinity (0.2 µM) SNARE-
binding (107). Only one protein fragment corresponding to rat
CAPS(859-1073) was retained in flotation studies by syntaxin-
1/SNAP-25 liposomes (107). CAPS(859-1073), which brackets the
MHD1 homology region (Figure 2), exhibited submicromolar
binding affinity for SNARE proteins and effectively competed with
full-length CAPS(1-1289) for binding indicating that this region
contains the major SNARE-binding domain of CAPS. Further
studies with protein fragments suggested that the major SNARE-
binding segment may consist of a helix in the center of MHD1 that
contains a VAMP2 homology region. This corresponds to the N-
terminal helix of the CATCHR homology region (Figure 2) (5, 6,
107). These studies did not exclude the possibility that other helices
within the CATCHR homology domain provide additional lower
affinity SNARE-binding. Thus, this region consisting of stacked
α-helices could function as a scaffold to organize helical SNARE
motifs. A recent report suggested that syntaxin-1 binding by CAPS
was mediated by more C-terminal sequences within CATCHR;
however, these studies employed constructs in yeast two-hybrid
studies that may have encoded unfolded proteins (109). Studies
on CAPS are consistent with a SNARE scaffolding role for the
CATCHR homology region. However, other CAPS-protein inter-
actions have also been reported for this region (110), which could
indicate a more general role for the CATCHR domain as a protein
interaction domain.

For MTCs, numerous membrane interactions can be achieved
by multiple subunits. As a large multi-domain protein, CAPS may
instead utilize multiple domains to mediate protein and lipid
interactions. CAPS exhibits low affinity but functionally signifi-
cant interactions with plasma membrane PIP2 via its central PH
(pleckstrin homology) domain (82, 111). PIP2 enhanced CAPS
stimulation of SNARE-dependent liposome fusion with wild-type
but not with mutant PH domain CAPS proteins (105). Inclusion
of PIP2 in the syntaxin-1/SNAP-25-containing acceptor liposomes
was much more effective than inclusion in the VAMP2-containing
donor membranes, which suggests that PIP2 is an important co-
factor for CAPS in acting on plasma membrane SNARE proteins
(Figure 1, lower). PIP2 may promote conformational or oligomer-
ization changes in CAPS to enhance its SNARE interactions (111).
In addition, because CAPS interacts with syntaxin-1 near its

C-terminal linker that binds PIP2, this might allow CAPS to reg-
ulate the conformation of syntaxin-1 (104, 105). These results
suggest a framework for understanding the actions of priming
factors. CAPS utilizes two contacts with the membrane – one
with membrane phospholipids via its PH domain and the other
with SNAREs via its MHD1 domain – to promote the assembly of
SNARE protein complexes.

CAPS localizes to DCVs (103, 112) and also interacts with
plasma membrane PIP2, which could provide a trans-membrane
interaction for vesicle tethering. However, such a tethering mech-
anism would likely be transient because of the low affinity PIP2

interactions. The basis for CAPS anchoring to DCVs via C-
terminal interactions (112) remains to be clarified. Possible inter-
actions with the DCV constituents phogrin (113), VMAT (114),
ARF4/5 (115, 116), and RRP17 (110) have been suggested.

Tethering factors are thought to engage in long-range capture
of vesicles (tethering) at the target membrane involving distances
(>20 nm) at which SNARE complexes cannot assemble. MTC
tethering complexes likely bring vesicles into closer proximity to
enable SNARE complex formation and docking. CAPS functions
in vesicle priming to promote the assembly of SNARE com-
plexes that bridge vesicles to the plasma membrane, which may
be expected to mediate vesicle docking. Indeed, in vitro studies of
VAMP2 liposome docking onto syntaxin-1/SNAP-25-containing
membranes revealed that CAPS could promote a stable dock-
ing complex (106). EM studies in C. elegans also indicated that
CAPS/Unc31 was required for DCV docking to the plasma mem-
brane (88). Although DCV docking defects were not reported for
chromaffin cells from CAPS KO mice, this may be attributable
to the small percentage of total vesicles that are primed in these
cells (83).

PRIMING FACTORS FOR REGULATED VESICLE EXOCYTOSIS:
Munc13
Munc13 proteins are thought to function in vesicle priming
by interacting with SNARE proteins (44). Munc13-4, a short
Munc13 isoform with N- and C-terminal C2 domains (C2A
and C2B, respectively) bracketing the MHD1-MHD2 region
(Figure 2), functions in the priming as well as the maturation
of lysosome-related secretory granules for fusion in secretory cells
of hematopoietic origin (117). Munc13-4 appears to function as
a tether for granule-plasma membrane interactions mediated by
vesicle-associated Rab27 (118, 119). Recent biochemical studies
revealed that Munc13-4 exhibits Ca2+-regulated SNARE interac-
tions modulated by its C2A domain and Ca2+-dependent mem-
brane interactions mediated by its C2B domain (120). Munc13-4
promoted the fusion of VAMP2 donor liposomes with syntaxin-
1/SNAP-25 acceptor liposomes that was dependent on Ca2+ and
Ca2+-binding residues in each C2 domain (120). These results
indicated that Ca2+-activated Munc13-4 can function similarly to
CAPS by promoting the recruitment of the R-SNARE VAMP2 into
Qabc-SNARE syntaxin-1/SNAP-25 acceptors for RQaQbc-SNARE
complex assembly. The central MHD1-MHD2 region of Munc13-
4 with CATCHR homology may mediate SNARE-binding but
this has yet to be demonstrated. For Munc13-4 as for CAPS, it
appeared that anchoring the protein to the membrane (via the
Ca2+-dependent C2B domain) coupled to SNARE-binding was
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required to promote SNARE complex assembly and liposome
fusion (120).

C-terminal regions of Munc13-1 were reported to interact
with N-terminal domains of syntaxin-1 in yeast two-hybrid
interaction studies (121, 122). Solution binding studies with
recombinant Munc13-1 protein fragments localized N-terminal
syntaxin-1 binding to Munc13-1(1181–1736), which corresponds
to sequences beginning in MHD1 (Figure 2). This interac-
tion was proposed to counteract Munc18-1-mediated stabiliza-
tion of a “closed” form of syntaxin-1 to “open” it to enable
syntaxin-1/SNAP-25 heterodimer formation. However, subse-
quent studies reported that Munc13-1(859–1531) (termed MUN
domain) failed to interact with SNARE proteins in solution
but did interact with liposome-integrated SNARE protein com-
plexes (108, 123, 124). Munc13-1(859–1531) bound to syntaxin-
1/SNAP-25 or syntaxin-1/SNAP-25/VAMP2 liposomes but not
to syntaxin-1 liposomes, which suggested that Munc13-1 stabi-
lizes SNARE complexes (123). Consistent with this, other stud-
ies provided evidence that Munc13-1(859–1531) stabilized par-
allel conformations of syntaxin-1/SNAP-25 heterodimers (124).
Recent NMR studies with Munc13-1(859–1531) and soluble
SNARE proteins indicated that Munc13-1(859–1531) interacts
very weakly with the C-terminal SNARE domain of syntaxin-
1 and with Munc18-1-bound syntaxin-1 (125). By contrast,
a structurally defined Munc13-1(1148–1531) protein fragment
exhibited further attenuated SNARE protein interactions pos-
sibly because this fragment lacked more N-terminal sequences
(5).

In recent studies, a Munc13-1(529–1531) protein that con-
tained C1 and C2B domains (Figure 2) was shown to operate
on liposomal syntaxin-1-Munc18-1 to enable Ca2+-bound synap-
totagmin C2AB to promote SNARE-dependent liposome fusion
(126). It was proposed that the Munc13-1 fragment catalyzed a
transition of Munc18-1-bound syntaxin-1 into syntaxin-1/SNAP-
25 heterodimers to serve as acceptor complexes for VAMP2. This
model for Munc13-1 action retains the feature of syntaxin-1
“opening” but proposes that the Munc13-1 C-terminal domain
interacts with C-terminal rather than N-terminal regions of
syntaxin-1 (126). In addition, these studies with a Munc13-1
fragment plus Munc18-1 suggested a possible exchange of the
Qbc-SNARE SNAP-25 into Q-SNARE complexes as an important
regulated step (126).

These studies suggest a mode of action for Munc13-1 in pro-
moting the transition of closed syntaxin-1 monomers to syntaxin-
1/SNAP-25 heterodimers. Similar effects for Munc13-4 and CAPS
have not yet been demonstrated. Actual differences in the mech-
anisms of Munc13-1 and CAPS action on SNAREs could help
to account for the non-redundancy of these factors for vesicle
priming. However, future study will be needed to assess whether
these apparent differences result from the use of different assays
for CAPS and Munc13-1 proteins. Genetic studies in C. elegans
have found that expression of an“open”syntaxin mutant by-passes
DCV docking defects in CAPS/Unc-31 mutants (88) and SV dock-
ing defects in Unc-13 mutants (127) possibly indicating that both
proteins enable a transition of syntaxin-1/Munc18-1 complexes to
syntaxin-1/SNAP-25 complexes. Overall, the studies on Munc13-
1 are compatible with a SNARE scaffolding role for the CATCHR

homology region but the detailed mechanics of SNARE-binding
remain to be worked out.

Munc13-1/2 proteins are also reported to exhibit Ca2+-
dependent, high affinity PIP2 interactions via a central C2B
domain (128). This interaction was significant for SV exocyto-
sis in response to high frequency stimulation rather than for
responses to single action potentials. The importance of C2B-
mediated phosphoinositide interactions for DCV exocytosis in
neuroendocrine cells has not been determined but could play a
role in recruiting cytosolic Munc13-1/2 to sites of DCV exocyto-
sis. The adjacent DAG-binding C1 domain of Munc13-1 mediates
the membrane recruitment of Munc13-1 in response to DAG,
however, a functional C1 domain in Munc13-1 is not required
for Ca2+-stimulated vesicle exocytosis but rather for potentiated
responses (129).

In contrast to the cytoplasmic localization of Munc13-1/2 in
neuroendocrine cells, Munc13-1 localizes to the active zone in
synapses where it associates with at least four other active zone
proteins (RIM, bassoon, aczonin/piccolo, and CAST) via its N-
terminal domain (130). This molecular complex likely serves a
tethering role mediated by proteins anchored to both the presy-
naptic membrane and to SVs (130). Interactions with SVs may
be mediated by a complex of RIM and Munc13-1 with Rab3 on
the vesicle (131). Studies suggest that RIM activates Munc13-1 by
converting it from an inactive dimer to active monomer (42). Stan-
dard chemical fixation methods had failed to reveal decreased SV
docking in neurons from Munc13-1 KO mice, but high-pressure
freezing techniques with EM tomography indicated that SVs were
tethered but not docked in the absence of Munc13-1 (74). Simi-
larly, high-pressure freezing followed by low-temperature fixation
in C. elegans revealed a requirement for UNC13 in SV docking
(88). Although the studies might suggest that priming and dock-
ing are functional and morphological aspects of the same process,
more studies are needed in vertebrate neurons and endocrine cells
where CAPS and Munc13 are co-required for vesicle priming.

SUMMARY
At multiple trafficking stations in secretory and endosomal path-
ways, diverse tethering and priming factors integrate multiple
protein and lipid interactions to achieve compartment-specific
SNARE complex assembly for fusion. The MTCs promote SNARE
complex assembly by direct interactions of MTC subunits with Q-
SNAREs and collaborative interactions with SM proteins. A subset
of MTC subunits utilize structurally similar CATCHR domains
to mediate inter-subunit interactions as well as SNARE protein
interactions. At sites of regulated vesicle exocytosis in neurons
and endocrine cells, homologous CAPS and Munc13 proteins play
a similar role in mediating SNARE complex assembly for vesicle
priming, however they may do so by distinct mechanisms. SNARE-
binding in the CAPS and Munc13 proteins appears to reside within
the CATCHR domain, which may also mediate additional protein
interactions. CAPS and Munc13-1 collaborate with the SM pro-
tein Munc18-1 but the details of integration remain to be worked
out. Studies are needed to determine whether accessory factors
and SM proteins operate in concert or sequentially to assemble
SNARE complexes, and to determine how these interactions occur
within the confined space of juxtaposed membranes.
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