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Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic
brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral
and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep
disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly
variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to
investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as
potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic
neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors
of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n¼6–10/group) were
implanted with EEG recording electrodes and baseline recordings were obtained. After baseline re-
cordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were
obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n¼6–8/
group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons
in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons
in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased
during the dark period in moderately injured animals. There were no differences between groups in REM
sleep time, nor were there differences between groups in sleep during the light period. TBI effects on
hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers
of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we
conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark
period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic
effectors in the basal forebrain.
& 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Traumatic brain injury (TBI) is a major public health problem that
is considered a silent epidemic because of the long-term cognitive
deficits and behavioral and medical complications experienced by
survivors. In the United States alone, more than 5.3 million individuals
currently suffer from a TBI-related disability (Chew and Zafonte,
2009). The neuropsychiatric consequences of TBI may include sleep
disorders, mood disorders, personality changes, and cognitive im-
pairment (Bhalerao et al., 2013). Chronic sleep-wake disturbance is
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highly prevalent, affecting the majority of individuals who have sus-
tained a TBI (Kempf et al., 2010; Rao and Rollings, 2002). Many TBI
patients report regular daytime napping and increased sleep need
(Ponsford et al., 2013; Ponsford and Sinclair, 2014), and excessive
daytime sleepiness (EDS) occurs in approximately 25–42% of in-
dividuals who have suffered TBI (Ponsford and Sinclair, 2014; Som-
merauer et al., 2013). The alterations in sleep-wake behavior after TBI
may be prolonged, and evident for years after the trauma (Kempf
et al., 2010). Despite the debilitating effects of post-TBI sleep-wake
disturbances, their etiology is not well understood. Furthermore,
current behavioral and pharmacological therapies targeting post-TBI
sleep-wake disturbances have only limited efficacy (Chew and Za-
fonte, 2009; Ouellet et al., 2015; Ponsford and Sinclair, 2014; Rue-
Evans et al., 2013; Sheng et al., 2013).

Post-TBI sleep-wake disturbances may be due, in part, to altered
neurotransmitter systems that regulate sleep and wakefulness.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Neurotransmitter systems implicated in arousal include, among oth-
ers, hypocretin (a.k.a. orexin) neurons of the lateral hypothalamus
(Adamantidis et al., 2007; Brisbare-Roch et al., 2007), cholinergic
neurons of the basal forebrain (Arrigoni et al., 2010; Irmak and de
Lecea, 2014), and histaminergic neurons in the tuberomammillary
nucleus (TMN) (Brown et al., 2001; Brown et al., 2012; Parmentier
et al., 2002). Of importance to the etiology of post-TBI disturbances,
hypocretin promotes wakefulness and stabilizes the sleep-wake cycle
(Kilduff and Peyron, 2000; Krystal et al., 2013; Mochizuki et al., 2004;
Taheri et al., 2002; Zeitzer et al., 2006). Activation of hypocretin
neurons increases transitions from sleep to wakefulness (Adamantidis
et al., 2007) and antagonizing hypocretin induces somnolence (Bris-
bare-Roch et al., 2007; Hoever et al., 2012; Morairty et al., 2014).

In contrast, melanin-concentrating hormone (MCH) neurons
are sleep-promoting (Peyron et al., 2009): intracerebroventricular
injection of MCH (Verret et al., 2003) or optogenetic stimulation of
MCH neurons increases NREM sleep and REM sleep (Jego et al.,
2013; Konadhode et al., 2013), whereas MCH deficient mice sleep
less (Tsunematsu et al., 2014; Willie et al., 2008). MCH neurons are
intermingled with hypocretin neurons in the lateral hypothala-
mus, and as such, damage to the hypocretin and/or MCH neurons
of the lateral hypothalamus could alter sleep-wake behavior after
TBI. Indeed, hypocretin is reduced in the hypothalamus of mice
(Willie et al., 2012) and in cerebrospinal fluid of human patients
(Baumann et al., 2005) after TBI. Furthermore, the number of hy-
pocretin neurons are reduced in post-mortem brains of patients
who died from TBI (Baumann et al., 2009). In cases of fatal TBI in
humans, one study found a significant reduction in MCH neurons
(Valko et al., 2015), whereas another found that MCH neurons
were not affected (Baumann et al., 2009). To our knowledge,
numbers of hypocretin or MCH neurons have not been in-
vestigated in cases of nonfatal TBI in humans.

Although post-TBI alterations in sleep may be mediated, in part, by
direct actions of hypocretin, these changes in arousal state could also
be due to actions of modulatory systems downstream of hypocretin.
Hypocretinergic neurons project to many brain regions. For example,
the histaminergic neurons of the TMN and the cholinergic neurons of
the basal forebrain are both strong promoters of wakefulness (Haas
et al., 2008; Han et al., 2014), and these brain regions are densely
innervated by hypocretinergic projections [reviewed in Arrigoni et al.
(2010), Sundvik and Panula (2015)]. Importantly, these systems may
also be perturbed by TBI. Fatal TBI in humans causes a dramatic re-
duction in numbers of histaminergic neurons (Valko et al., 2015) and a
reduction in activity and immunoreactivity of choline acetyltransfer-
ase (ChAT), an enzyme essential for acetylcholine synthesis (Dewar
and Graham, 1996; Murdoch et al., 1998, 2002). To our knowledge,
histaminergic and cholinergic neuronal populations have not been
studied within the context of sleep-wake disturbance after experi-
mental TBI.

The primary goal of the present study was to determine the effects
of TBI on sleep-wake behavior and hypocretin/MCH cell numbers and
their downstream targets in mice. We used the controlled cortical
impact (CCI) model to induce mild or moderate TBI and determined
the time course of effects on these and other outcome measures. We
report that sleep is altered and hypocretin and basal forebrain choli-
nergic cell numbers are reduced in an injury severity-dependent
manner. Cell counts for MCH and histamine neurons were not altered
by TBI under the conditions of this study. Collectively, these data
suggest that the effects of TBI on sleep may be mediated by hypo-
cretinergic and cholinergic mechanisms.
2. Methods

2.1. Animals

Adult male C57BL/6J mice (�3–4 months old at time of use;
Jackson Laboratory, Bar Harbor, ME) were group housed until baseline
testing or surgery, after which they were single housed. Mice were
housed under a 12:12 light:dark cycle at 2971 °C with food and
water provided ad libitum. All procedures involving the use of animals
were approved by the University of Washington IACUC in accordance
with the US Department of Agriculture Animal Welfare Act and the
National Institutes of Health policy on Humane Care and Use of La-
boratory Animals.

2.2. Recording apparatus

Sleep-wake behavior of mice was determined based on the
electroencephalogram (EEG) and cage activity patterns. EEG sig-
nals were amplified, filtered, and recorded for offline processing
using custom software written in LabView for Windows (ICELUS,
M. Opp, University of Washington; National Instruments, Austin,
TX) as previously described (Baracchi and Opp, 2008; Ingiosi et al.,
2015). EEG and cage activity records were visually scored in 10-s
epochs. Raw EEG signals were subjected to fast Fourier transfor-
mation, yielding power spectra between 0.5 and 30 Hz in 0.5-Hz
frequency bins. Arousal states were determined as previously de-
scribed and classified as non-rapid eye movement (NREM) sleep,
rapid eye movement (REM) sleep, or wakefulness (WAKE) based
upon published criteria [e.g., Baracchi and Opp, 2008; Ingiosi et al.,
2015; Sutton and Opp, 2014].

2.3. Experimental design

A schematic of the protocols used in Experiments 1–3 is pre-
sented in Fig. 1.

2.3.1. Experiment 1: effects of TBI on mouse sleep-wake behavior
For Experiment 1, EEG electrodes were surgically implanted into

the skull under isoflurane anesthesia. The leads from the screw elec-
trodes were soldered to the pins of a plastic connector (Digi-Key,
ED85100-ND) to allow coupling to the recording system. Dental acrylic
(Integrity Caulk, Dentsply) covered the electrodes and formed a
headpiece to which the flexible recording tether could be connected.
The section of the skull over the left parietal cortex was not covered
with dental acrylic at this time. The incision was closed with sutures,
and a subcutaneous injection of an analgesic (0.5 mg/kg buprenor-
phine) was given at the end of the surgery. Mice were allowed 7 days
to recover before they were attached to a flexible tether for habitua-
tion to the recording system. After 3 days of habituation to the tether
and recording environment, 48-h undisturbed baseline recordings
were obtained.

After the 48-h baseline recordings, mice were randomized to sham
surgeries (n¼7; control mice), or to controlled cortical impact (CCI;
n¼16) to induce TBI as previously described (Febinger et al., 2015). In
both groups, a 5-mm diameter craniotomy using a trephine was made
over the left parietal cortex, approximately �2 mm relative to bregma
and 2.5 mm lateral to the midline. A unilateral impact between
lambda and bregma is routinely used in protocols using CCI to induce
TBI (Boulet et al., 2013; Boychuk et al., 2016; Febinger et al., 2015;
Miller et al., 2014). The skull fragment was removed without dis-
rupting the underlying dura, and TBI was induced in the experimental
group. Mice in the experimental group were subjected to CCI using
the Leica Impact One system (Richmond, IL) equipped with an elec-
trically-driven 3-mm diameter metal piston controlled by a lin-
ear velocity displacement transducer. CCI parameters were: 5.0 m/s



Fig. 1. Schematic representation of the protocols used in Experiments 1, 2 and 3. (A) In Experiment 1, 48 h baseline electroencephalogram (EEG) recordings were obtained
from undisturbed mice. Mice were then randomized into one of three surgical conditions: control (sham) surgeries; mild traumatic brain injury (TBI; 0.5 mm controlled
cortical impact depth); moderate TBI (1.0 mm controlled cortical impact depth). Recordings of the EEG were obtained from the same animals one and two weeks post-
surgery. (B) Animals in Experiments 2 and 3 were used to determine the impact of TBI on neuromotor function (CN: composite neuroscore; Experiment 2) and to provide
brain tissue for immunohistochemical assessment of TBI effects on selected neurotransmitters (Experiment 3). After baseline neuromotor testing, animals were randomized
into either a sham surgical group (control), mild TBI group or moderate TBI group as in Experiment 1. Composite neuroscores were obtained one and two weeks post-
surgery. After each neuromotor testing session, a subset of mice was sacrificed and brains removed for immunohistochemistry (IHC).
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impact velocity; 100 ms dwell time; and impact depth of 0.5 mm
(mild TBI; n¼10) or 1.0 mm (moderate TBI; n¼6). Sham (control)
animals received identical anesthesia and craniotomy without the CCI
injury. A sterilized disc created from a polystyrene weighing boat was
placed over the craniotomy and covered with dental acrylic. We (Fe-
binger et al., 2015) and others (Miller et al., 2014) have used this or a
similar technique to protect the brain after craniotomy. The incision
was closed with sutures and mice were returned to their home cages.
All mice received a subcutaneous injection of analgesic (0.5 mg/kg
buprenorphine) at the end of the surgery. Animals were closely
monitored after surgery and none displayed overt signs of infection.

Additional 48 h recordings were obtained from all mice on days
6–7, and 14–15 post-surgery. As such, a within-subjects protocol
was used in which pre- and post-surgery recordings were ob-
tained from each animal. Sleep-wake state was determined and
the EEG subjected to fast Fourier transformation to produce power
spectra between 0.5 and 30 Hz in 0.5 Hz bins as described pre-
viously (Baracchi and Opp, 2008). Power in the delta (0.5–4.5 Hz)
frequency band was normalized to the total state-specific power
(NREM sleep) summed across all frequency bins from 0.5 to 30 Hz
for the light and dark periods and this value was expressed as a
percent of total power [see Ingiosi et al. (2015)].

2.3.2. Experiment 2: effects of TBI on neuromotor function
A separate cohort of mice was used to to determine effects of TBI

on neuromotor function or neuronal populations. Neuromotor testing
performed during the light period disrupts the normal sleep-wake
patterns of mice. Because we wanted to determine the effect of TBI on
sleep-wake behavior and neuromotor performance at the same time
points (i.e. 7 and 15 days post-injury), it was necessary to use different
groups of animals. We, and others (Rowe et al., 2014b; Sabir et al.,
2015) have used this approach of separate cohorts manipulated in
parallel.

The impact of TBI on neuromotor function was determined by
calculating a composite neuroscore from neuromotor tests performed
during baseline evaluations prior to surgery, and at 7 and 15 days
post-surgery. The composite neuroscore was calculated for each
mouse, and was derived from measures of forelimb and hindlimb
flexion, lateral pulsion reaction, and inclined plane strength/co-
ordination (Fujimoto et al., 2004). Briefly, measures of flexion and
lateral pulsion reaction are derived from rodent's reflexes to reach and
grasp when lifted or to resist lateral pressure by coordinating move-
ments of all limbs. For the flexion and lateral pulsion reaction tasks,
assessments were performed on right and left sides and the ability of
the mouse was rated on a scale of 0 (severely impaired) to 4 (no
impairment). The inclined angle board consists of a flat acrylic plane
that is adjustable from 0° to 90°. The surface is covered with a mat
with grooves oriented in the vertical plane so there is traction for the
mouse. A mouse must freely stand on the plane for 5 s to successfully
complete the assessment at that angle. Baseline testing starts with the
plane at an angle of 40°. The angle of the board increases in 2.5° in-
crements until the mouse can no longer stand unassisted. After TBI or
sham surgery, assessment of each mouse starts 10° below the lowest
baseline angle value for that animal. Themaximum angle at which the
mouse remains on the angle board is recorded. The post-surgical
maximum angle is subtracted from the baseline maximum angle, and
a score of 4 recorded if there is no change, 3 for a 2.5° decrease from
baseline, 2 for a 5° decrease from the baseline, a 1 for a 7.5° decrease,
and 0 for a 10° or more difference from baseline. Larger differences in
angle indicate reduced strength and/or motor coordination.

Scores on all components (forelimb and hindlimb flexion; lat-
eral pulsion reaction; angle board) were summed to calculate the
composite neuroscore, with the maximum possible score being 28
points. Larger composite neuroscores indicate better performance/
less impaired neuromotor skills. The investigator assessing neu-
romotor function was unaware of the surgical manipulation
(sham, CCI) of the animal being tested.

Five days prior to surgery, baseline neuromotor testing was
performed. Sham surgeries (n¼18) and mild (n¼17) or moderate
(n¼17) CCI surgeries were performed on mice as described in
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Experiment 1, and animals were placed back into their home cages
for recovery. On post-surgical days 6 or 14, mice were again
evaluated for CN measures. After the completion of neuromotor
testing, animals were returned to their home cages and were sa-
crificed the next day (7- or 15 days post-TBI). At approximately 6 h
after light onset, animals were deeply anesthetized with isoflurane
and transcardially perfused with 20 mL chilled phosphate buffered
saline, followed by 15 mL chilled 4% paraformaldehyde. The brains
were removed and post-fixed in 4% paraformaldehyde for 24 h at
4 °C, and then transferred to a 30% sucrose solution until sec-
tioning and staining. Neuromotor behavior was analyzed in all
animals at baseline, at 7 days post-surgery [sham (n¼8), mild TBI
(n¼8), moderate TBI (n¼8)], and at 15 days post-surgery [sham
(n¼10), mild TBI (n¼9), moderate TBI (n¼9)].

2.3.3. Experiment 3: effects of TBI on numbers of hypocretin and
MCH neurons

A subset of mice used in Experiment 2 was randomly selected
for use in Experiment 3. Mice were perfused and brains removed
for immunohistochemical assessment of TBI effects on selected
neurotransmitter systems. Some mice were perfused 7 days post-
surgery [sham (n¼7), mild TBI (n¼8), moderate TBI (n¼8)] and
some 15 days post-surgery [sham (n¼6), mild TBI (n¼8), moder-
ate TBI (n¼8)].

Brains were sectioned on a Leica cryostat at 40 μm. Sections
were stored in cryoprotectant until immunohistochemical staining
for hypocretin or MCH. Free-floating sections in a 1:3 series were
processed for hypocretin-1 (rabbit anti-mouse orexin-A; H-003-
30; Phoenix Pharmaceuticals, Inc.; 1:10,000 dilution) and MCH
(rabbit anti-mouse MCH; H-070-47; Phoenix Pharmaceuticals,
Inc.; 1:20,000 dilution) as described in Willie et al. (2012).

2.3.4. Experiment 4: impact of TBI on tuberomammillary histami-
nergic neurons and basal forebrain cholinergic neurons

Two additional groups of mice were used to determine effects
of TBI on histaminergic neurons in the tuberomammillary nucleus
and cholinergic neurons in the basal forebrain. Based upon the
injury severity and time course of TBI effects on hypocretin neu-
rons as determined in Experiment 3, mice (n¼7/condition) were
subjected to either sham surgery or moderate TBI (1.0 mm con-
trolled cortical impact depth) as previously described. Animals
were perfused at 15 days post-surgery and brains removed and
sectioned as previously described. IHC for histidine decarboxylase
(HDC) and choline acetyltransferase (ChAT) was used to identify
histaminergic and cholinergic neurons, respectively. The protocol
for HDC was that used in the laboratory of Dr. Thomas Scammell
(Beth Israel Deaconess Medical Center/Harvard Medical School).
Briefly, free-floating sections in a 1:2 series were processed with
rabbit anti-HDC (1: 5000, American Research Products, 03-16045),
then incubated with donkey anti-rabbit conjugated to AlexaFluor
555 (Invitrogen; A31572; 1:500 dilution).

IHC for ChAT was performed in a similar fashion as the stains
for hypocretin and MCH and similar to previously published pro-
tocols (Schmidt and Grady, 1995): free-floating sections in a 1:3
series were processed for ChAT (Abcam; ab18736; 1:2000 dilu-
tion). Sections were incubated in biotinylated secondary antibody
(Abcam; ab97123; 1:500 dilution), then an avidin-biotin complex,
and developed with diaminobenzidine.

2.4. Estimating cell numbers

Cell numbers were estimated using quantitative methods for
unbiased stereology (West et al., 1991). Briefly, positively stained
cells were visualized on an Olympus BX-51 fluorescent stereo-
scope using Stereo Investigator 10 (MBF Biosciences, Williston,
VT). Colorimetric IHC-processed tissue (stains for hypocretin,
MCH, and ChAT) was visualized using brightfield microscopy,
whereas fluorescent IHC-processed tissue (stain for HDC) was vi-
sualized with fluorescent microscopy.

Hypocretin cell number estimates were obtained from 7 sec-
tions spanning approximately �1.20 mm to �2.10 mm from
bregma (Paxinos and Franklin, 2001). Estimates of MCH cell
numbers were obtained from 11 sections spanning approximately
�1.00 mm to �2.30 mm relative to bregma. The contour for the
perifornical-lateral hypothalamic region was outlined using a 4x
objective. Cells were then counted using the 60x objective and
optical fractionator, with a counting frame of 50�50 μm and a
grid size of 100�100 μm. ChAT-positive cells were counted in two
basal forebrain nuclei using the alternative nomenclature (areas
Ch1&2 and Ch3&4) as described by others (Boutros et al., 2015;
Mesulam et al., 1983). Areas Ch1&2 and Ch3&4 were outlined
using a 4x objective, and then cells were counted using the 60x
objective and optical fractionator, with a counting frame of
50�50 μm and a grid size of 100�100 μm. Acetylcholine cell
number estimates for Ch1&2 were obtained from 5 sections
spanning approximately 1.00 mm to 0.3 mm relative to bregma.
Acetylcholine cell number estimates for Ch3&4 were obtained
from 11 sections spanning approximately 1.00 mm to �0.70 mm
relative to bregma. For HDC-positive cells, the tuberomammillary
nucleus was outlined using a 4x objective, then cells were counted
as described above. HDC cell number estimates were obtained
from 7 sections spanning approximately �2.20 mm to �2.80 mm
relative to bregma. All cell counts were obtained from the hemi-
sphere ipsilateral to injury. TBI-induced changes in cellular and
tissue outcomes (cell death, inflammatory cytokine expression,
presence of immune cells, etc.) are typically most severe in the
hemisphere ipsilateral to injury (Hall et al., 2005; Timaru-Kast
et al., 2012), and previous studies using unilateral CCI have ex-
amined hypocretin neuron number and function in the hypotha-
lamus ipsilateral to injury (Willie et al., 2012).

2.5. Statistical analyses

Two types of statistical analyses were used in this study. We
first determined the impact of TBI on outcome measures across
time (baseline, 7 days, 15 days), and as such these analyses were
designed to reveal differences within each group relative to pre-
surgery baseline values. The second type of statistical analysis was
used to determine differences between outcome measures with
respect to the impact of injury severity (sham, mild TBI, moderate
TBI). All analyses were performed using SPSS for Windows (IBM
Corporation, Armonk, NY). Data are presented as mean 7 SEM,
unless otherwise indicated. An alpha value of po0.05 was ac-
cepted as indicating a significant difference between or among
groups, whereas an alpha value of 0.05opo0.1 was considered a
trend.

Percent time spent in WAKE, NREM sleep, and REM sleep was
evaluated within manipulation (injury severity) in 4 h blocks using
a repeated measures ANOVA across three time points (baseline,
7 days, 15 days). Sphericity (an assumption of a repeated measures
ANOVA) was tested with Mauchly's test of sphericity. If the as-
sumption of sphericity was violated, the Greenhouse-Geisser cor-
rection was used. If significant time effects were detected, post-
hoc tests using the Bonferroni correction were used to determine
differences between timepoints.

To determine the impact of injury severity on sleep-wake be-
havior, difference scores were calculated for each parameter by
subtracting baseline values from those obtained 7- or 15 days
post-surgery. These difference scores were evaluated in-
dependently for the 12 h light and dark periods within timepoint
(7 days, 15 days) using a one-way ANOVA with injury severity
(sham, mild, or moderate) as the between-subjects factor. If
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significant effects of injury severity were detected, post-hoc
comparisons were made using Tukey's HSD to determine differ-
ences between injury severity groups.

Normalized NREM delta power was evaluated separately for the
12 h light and dark periods within injury severity group (sham, mild
TBI, moderate TBI) using a repeated measures ANOVA across the three
time points (baseline, 7 days, 15 days). Assumptions of sphericity were
evaluated with Mauchly's test, and the Greenhouse-Geisser correction
used if necessary. If significant time effects were detected, post-hoc
tests using the Bonferroni correction were used to determine differ-
ences between timepoints.

Composite neuroscores (CN) were evaluated using a one-way
ANOVAwithin timepoint (7 days, 15 days) with injury severity (sham,
mild TBI, moderate TBI) as the independent variable. If significant
effects of injury severity were detected, post-hoc comparisons were
made using Tukey's HSD to determine differences between injury
severity groups.

Estimated numbers of hypocretin- or MCH-positive cells were
evaluated with a two way ANOVA with timepoint (7 days, 15 days)
and injury severity (sham, mild TBI, moderate TBI) as factors. If sig-
nificant effects of timepoint or injury severity were detected, post-hoc
comparisons by Tukey's HSD were used to determine differences
between groups. Statistical evaluations of estimated numbers of
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p¼0.003]. For both of these 4-h time blocks, the reduction in wake-
fulness at 15 days post-surgery differed significantly from the same
time blocks during baseline (hours 17–20, p¼0.034; hours 21–24, and
0.004). These mice had corresponding increases in NREM sleep during
the same periods [hours 17–20: F(2,46)¼4.142, p¼0.022; hours 21–
24: F(2,46)¼6.194, p¼0.004], which was due to significant differences
between baseline and fifteen days post-surgery (hours 17–20,
p¼0.019; hours 21–24, p¼0.005). REM sleep of mice subjected to
moderate TBI increased during one 4-h time block [hours 9–12: F
(2,46)¼6.361, p¼0.004], and post-hoc tests revealed these differences
were due to values obtained 7 days post-surgery.

To determine the impact of increasing injury severity on sleep-
wake behavior, we directly compared differences between animals
subjected to mild TBI and those subjected to moderate TBI. We
first calculated hourly difference scores for each animal by sub-
tracting values obtained after surgery (sham, mild TBI, moderate
TBI) from corresponding baseline (pre-surgery) values. These
hourly difference scores were compared among conditions in-
dependently for the 12 h light periods and 12 h dark periods
(Fig. 3). No differences with respect to the impact of TBI on sleep
were revealed among any of the conditions during the light peri-
od. At 7 days post-surgery, there were significant differences
among groups during the dark period in time spent awake [F(2,
273)¼3.389, p¼0.035] and in NREM sleep [F(2, 273)¼3.275,
p¼0.039] (Fig. 3). Post hoc tests indicated that mice subjected to
moderate TBI spent less time in wakefulness than did mice sub-
jected to mild TBI (p¼0.041), and they tended to spend less time
awake than did mice that had sham surgeries (p¼0.079). Similarly,
mice subjected to moderate TBI spent more time in NREM sleep
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Fig. 3. Traumatic brain injury decreases wakefulness and increases non-rapid eye m
movement (NREM) sleep, and rapid eye movement (REM) was determined during the 12
or after mild (0.5 mm controlled cortical impact depth, n¼10), and moderate (1 mm
(7SEM) expressed as change in percent recording time relative to undisturbed baseline
*¼po0.05 vs. sham (control); #¼po0.05 vs. mild TBI. Statistical trends for difference
than mice subjected to mild TBI (p¼0.044). Significant differences
in sleep-wake behavior among groups persisted for at least 15
days, specifically in time spent awake [F(2, 273)¼3.831, p¼0.023]
and in NREM sleep [F(2, 273)¼4.739, p¼0.009] during the dark
period. Post hoc tests revealed that moderately injured animals
spent less time awake than did mildly injured animals (p¼0.029),
and there was a trend less time awake compared to sham animals
(p¼0.054). Mice subjected to moderate TBI spent more time in
NREM sleep compared to those subjected to mild TBI (p¼0.011) or
to sham surgeries (p¼0.036). No significant differences among
groups were observed in number of transitions between sleep-
wake states at either of the post-surgical time points (data not
shown).

NREM delta power (0.5–4.5 Hz) was normalized by expressing
each 0.5 Hz frequency bin as a percentage of total power. These
values were then evaluated during the 12 h light and dark periods
(Fig. 4). There were no differences in this measure of spectral
characteristics during the light period in EEGs obtained from mice
subjected to sham surgery or mild TBI. However, NREM delta
power during the light period significantly increased in animals
subjected to moderate TBI (1.0 mm cortical impact depth) [F(1.572,
99.058)¼14.15, po0.001]. Post-hoc tests revealed that NREM
delta power significantly increased 7 days (p¼0.002) and 15 days
(po0.001) post-surgery compared to baseline. During the dark
period, NREM delta power was significantly reduced in mice
subjected to sham surgeries [F(2,106)¼8.955, po0.001) due to
differences between baseline and 7 days (p¼0.003). Spectral
analysis of the EEG of mice subjected to mild TBI indicated in-
creased NREM delta power [F(1.723, 91.3)¼16.204, po0.001], due
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to changes that occurred 7 days post-surgery (p¼0.01, Fig. 4).
NREM delta power increased in mice subjected to moderate TBI [F
(2, 96)¼4.943, p¼0.009], an effect due to changes 15 days post-
surgery (p¼0.015).

3.2. Experiment 2: effects of TBI on neuromotor function

Neuromotor function did not differ, based on composite neu-
roscores, among groups 7 days post-injury (Fig. 5). However, by 15
days post-injury, one-way ANOVA revealed a small but significant
difference in composite neuroscore values among groups [F
(2,25)¼9.266, p¼0.001], with neuromotor function of animals
subjected to moderate TBI being worse than that of mice subjected
to sham surgeries (Tukey's post-hoc comparison; p¼0.001).

3.3. Experiment 3: effects of TBI on numbers of hypocretin and MCH
neurons

3.3.1. Hypocretin
Hypocretin immunoreactivity differed among groups of mice in an

injury-dependent manner (Fig. 6), as revealed by two-way ANOVA [F
(5,39)¼9.911, po0.001]. There was a main effect of injury severity on
number of hypocretin-positive cells [F(2,39)¼20.653, po0.001;
Fig. 6A and B], a trend towards a main effect of time since surgery [F
(1,39)¼3.05, p¼0.089], but no interaction effect [F(2,39)¼2.33,
p¼0.11]. Post hoc tests indicated that relative to sham tissue, tissue
obtained after mild and moderate TBI contained incrementally fewer
hypocretin-positive cells. Even though a two way ANOVA showed
only a trend toward a main effect for time, when analyses are re-
stricted to tissue obtained from mice subjected to moderate TBI, an
independent t-test revealed there were significantly fewer hypocretin-
positive cells present at 15 days than at 7 days [t(14)¼2.788,
p¼0.015]. Numbers of hypocretin-producing neurons were fewest in
hypothalami of mice subjected to moderate TBI and sacrificed 15 days
post-surgery.

3.3.2. MCH
Numbers of MCH-positive cells did not differ among groups irre-

spective of injury severity or time post manipulation as revealed by a
two-way ANOVA [F(5,39)¼0.312, p¼0.903]; (Fig. 6C and D).
3.4. Experiment 4: impact of TBI on tuberomammillary histamine
neurons and basal forebrain cholinergic neurons

There was no significant difference between numbers of histamine
neurons in the ventral TMN between the sham and 1mm depth
impact groups at 15 days post-injury [F(1,12)¼0.231, p¼0.639; Fig. 7A
and B]. However, there were significantly fewer ChAT-positive neu-
rons in both Ch1&2 [F(1,12)¼6.089, p¼0.03; Fig. 7C and D] and
Ch3&4 [F(1,12)¼7.12, p¼0.02; Fig. 7E and F] in tissue obtained from
mice subjected to moderate TBI.
4. Discussion

Sleep-wake disturbances are frequently reported in individuals



Fig. 6. Traumatic brain injury reduces numbers of hypocretin neurons, but not melanin-concentrating hormone neurons. Representative photomicrographs of hypocretin-
(Panel A) and melanin-concentrating hormone (MCH) positive cells (Panel C) in tissue obtained from control (sham) mice, and mice subjected to mild (0.5 mm controlled
cortical impact depth) or moderate (1.0 mm controlled cortical impact depth) traumatic brain injury. Numbers of hypocretin (Panel B) and MCH (Panel D) cells in the
perifornical-lateral region of the hypothalamus ipsilateral to the injury site were estimated using unbiased stereology and the optical fractionator method. Values in panels B
and D are means7SEM obtained from control mice (sham surgeries, 7 days, n¼7, 15 days, n¼6), or mice subjected to mild (0.5 mm controlled cortical impact depth, 7 days,
n¼8, 15 days, n¼8) or moderate (1.0 mm controlled cortical impact depth, 7 days, n¼8, 15 days, n¼8) traumatic brain injury. Statistical differences relative to sham (control)
animals are depicted by: *¼po0.05, **¼po0.01.
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suffering from TBI (Baumann et al., 2007; Ponsford et al., 2013;
Ponsford and Sinclair, 2014; Sommerauer et al., 2013). Post-TBI
sleep-wake disturbances may negatively impact functional and
cognitive recovery and are associated with increased anxiety, de-
pression, and pain (Cantor et al., 2008; Chan and Feinstein, 2015;
Chaput et al., 2009; Chiu et al., 2014; Rao et al., 2014). However,



Fig. 7. Traumatic brain injury reduces numbers of cholinergic neurons in the basal forebrain, but not histaminergic neurons in the tuberomammillary nucleus. Re-
presentative photomicrographs of histidine decarboxylase (HDC) (Panel A) and choline acetyltransferase (ChAT) (Panels C and E) positive cells in tissue obtained from control
(sham, n¼7) mice, and from mice subjected to moderate (1.0 mm controlled cortical impact depth, n¼7) traumatic brain injury. Tissue was obtained at 15 days post-surgery.
Numbers of HDC- (Panel B) and ChAT-positive cells (Panels D and F) ipsilateral to the injury site were estimated using unbiased stereology and the optional fractionator
method. Statistically significant differences relative to cell numbers determined from control (sham) mice are indicated as *¼po0.05. Data in panels B, D, and F are
presented as means7SEM.
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injuries resulting from trauma are highly variable, and as a con-
sequence so are their sequelae. Controlled laboratory studies
provide a means of standardizing injury severity, and although
variability exists between and among animals, results may more
readily provide insightful information with respect to potential
mechanisms by which TBI alters sleep. The current study aimed to
characterize the effects of injury severity and time course on as-
pects of sleep after mild or moderate TBI. By determining the
impact on candidate neurotransmitter systems, we sought to
elucidate potential mechanistic substrates that may be therapeutic
targets for intervention after TBI.

4.1. Effects of TBI on mouse sleep-wake behavior

Our data indicate that in this TBI model wakefulness is reduced
and NREM sleep is increased during the period comparable to
daytime in humans, i.e., the mouse dark period. We did not
observe changes in REM sleep of mice after TBI under the condi-
tions of this study. Collectively, these results are consistent with
those of human studies that report high rates of excessive daytime
sleepiness (EDS) and daytime napping post-TBI (Castriotta et al.,
2007; Imbach et al., 2015; Kempf et al., 2010; Ponsford et al., 2013;
Ponsford and Sinclair, 2014; Sommerauer et al., 2013). Just as our
study found no consistent effects, human polysomnographic stu-
dies often (although not always) fail to reveal changes in REM
sleep after TBI (Baumann et al., 2007; Imbach et al., 2015; Som-
merauer et al., 2013).

Results of pre-clinical studies using rodents also demonstrate
acute (Rowe et al., 2014b; Sabir et al., 2015; Willie et al., 2012) and
chronic (Lim et al., 2013; Skopin et al., 2015) changes in sleep.
Deficits in wakefulness or difficulty maintaining long periods of
wakefulness in rodents after experimental TBI are most robust
during the dark (active) period (Lim et al., 2013; Skopin et al.,
2015). We are aware of two studies that did not demonstrate
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chronic changes in rodent sleep-wake behavior after TBI. Noain
and colleagues (Buchele et al., 2015) restricted their determination
of sleep-wake behavior to the light period, the period during
which sleep was not consistently altered after TBI in our present
study. One study by Lifshitz and colleagues (Rowe et al., 2014a) did
not find any persistent sleep-wake changes during the light or
dark periods. Several factors may account for differences between
our study and that of Lifshitz, including the manner in which
sleep-wake behavior was inferred (EEG recordings in the present
study vs. piezoelectric detection of movements), the method to
induce TBI (CCI in our study vs. fluid percussion), and brain injury
location (lateral in our study vs. midline).

Some pre-clinical and clinical studies demonstrate fragmented
sleep after TBI (Hazra et al., 2014; Lim et al., 2013; Shekleton et al.,
2010) whereas others do not (Baumann et al., 2007; Imbach et al.,
2015; Sommerauer et al., 2013). Sleep of mice in our study using the
CCI model to induce mild to moderate TBI is not fragmented. Reasons
for differences in the literature with respect to this aspect of sleep are
not clear, but could be due to aforementioned differences in the model
used and severity and location of injury in animal studies. Clinical
studies report effects on patients who have been subjected to head
trauma from a variety of sources, and the extent of damage based
upon assessment of neurocognitive function is highly variable. This
diversity in injury and patient characteristics is important because
severity of injury, presence of co-morbid factors such as intracranial
hemorrhage, certain polymorphisms, and patient brain characteristics
appear to impact the development of sleep-wake disturbance after TBI
(Hong et al., 2015; Imbach et al., 2015; Yaeger et al., 2014).

In addition to changes in time spent in wakefulness and NREM
sleep, spectral characteristics of the EEG (particularly delta power)
are often altered after TBI. In humans, NREM delta power may
increase (Imbach et al., 2015) or decrease (Rao et al., 2011) after
TBI. At least one rodent study demonstrates increases in EEG delta
power during wakefulness after TBI (Sabir et al., 2015), which may
be a correlate of subjective daytime sleepiness or fatigue in hu-
mans (D’Rozario et al., 2013; Lal and Craig, 2002). Data in this
present study demonstrate that moderate TBI increases NREM
delta power during the light period at all post-injury time points
determined, and during the dark period 15 days post-injury. Be-
cause NREM delta power is accepted as an indication of the depth
or intensity of sleep (Borbely, 1982; Dijk et al., 1990), these data
suggest that mice subjected to moderate TBI sleep more deeply,
which may indicate that this pathology causes sleep pressure to
build more quickly during wakefulness. Definitive experiments to
test this hypothesis remain to be conducted.

4.2. Impact of TBI on arousal-promoting neurotransmitter systems

Changes in sleep-wake behavior after TBI are likely due, at least
in part, to changes in neuronal systems implicated in regulating
this complex behavior. Although multiple neurochemical systems
are involved in regulating arousal state (Brown et al., 2012; Jones,
2008), in this study we focus on the hypocretinergic system
and downstream projection targets, specifically the histaminergic
tuberomammillary nucleus and the cholinergic basal forebrain.
Hypocretin is essential for the maintenance of wakefulness. Hy-
pocretin neurons discharge at their maximum during active wa-
kefulness, especially during exploration (Estabrooke et al.,
2001; Lee et al., 2005b; Mileykovskiy et al., 2005); intrace-
rebroventricular injection of hypocretin increases wakefulness
(Piper et al., 2000); and optogenetic stimulation of hypocretin
neurons increases transitions from sleep to wake (Adamantidis
et al., 2007). Conversely, antagonizing the hypocretinergic system
promotes sleep (Brisbare-Roch et al., 2007; Hoever et al., 2012;
Morairty et al., 2014) and loss of hypocretinergic signaling results
in narcolepsy (Liblau et al., 2015). Hypocretin neurons are few in
number, tightly clustered in the lateral hypothalamus, and project
diffusely to multiple brain regions (Date et al., 1999; Peyron et al.,
1998). As such, damage to hypocretin neurons could have far-
ranging effects on sleep-wake behavior either directly or by af-
fecting downstream mediators.

Hypocretin signaling is altered during acute and chronic phases
of TBI. In vivo microdialysis studies in mice demonstrate reduced
extracellular hypocretin three days after injury (Willie et al., 2012),
and hypocretin is reduced in cerebrospinal fluid one to four days
after injury in humans (Baumann et al., 2005). In cases of fatal TBI
in humans, hypocretin cell numbers are reduced (Baumann et al.,
2009), and human survivors of TBI with excessive daytime slee-
piness have low levels of hypocretin in cerebrospinal fluid for at
least six months after injury (Baumann et al., 2007).

Two studies in mice found that TBI impairs hypocretin cell
function, but does not alter the number of hypocretin-producing
neurons (Lim et al., 2013; Willie et al., 2012). There are several
potential reasons for the apparent discrepancy in these previous
studies and our current one. Willie and colleagues determined
hypocretin cell numbers at only one time point, which was 3 days
after injury (Willie et al., 2012). Our data are consistent with those
of Willie et al., in that hypocretin cell numbers after TBI do not
differ from control until 7–15 days post-injury. Collectively, these
data suggest that the impact of mild to moderate TBI on hypo-
cretin cell numbers takes longer than 3 days to develop. Similarly,
Lim and colleagues did not observe decreased hypocretin cell
numbers after TBI (Lim et al., 2013), but they used a midline fluid
percussion model and random sampling of cells rather than un-
biased stereology. Lim and colleagues also used 5-7 week old mice,
which are considered adolescents in some models of TBI (Lopez-
Rodriguez et al., 2015); inflammatory and cellular responses in
brain to injury are highly affected by age (Kumar et al., 2013;
McPherson et al., 2011; Timaru-Kast et al., 2012).

Nevertheless, our results demonstrating reduced numbers of hy-
pocretin-producing neurons are in agreement with the majority of
pre-clinical and clinical observations of persistent hypocretin dys-
function after TBI. While the present study found a loss of hypocretin
neurons, others have also observed impairments in hypocretin neuron
activity (Lim et al., 2013; Willie et al., 2012); thus neuronal loss and
functional impairment both may play a role in post-TBI sleep-wake
disturbance. The altered sleep-wake behavior observed in this study is
consistent with reduction and/or dysfunction of hypocretin-producing
neurons. Hypocretin neurons discharge at their highest rates during
an animal's active period (Taheri et al., 2002), and hypocretin peaks
during the latter part of the night in nocturnal rodents (Fujiki et al.,
2001) and the latter part of the day in diurnal monkeys (Zeitzer et al.,
2003) and humans (Salomon et al., 2003). It has been hypothesized
that hypocretin is a reactive homeostatic signal needed to maintain
wakefulness when sleep pressure increases (Zeitzer et al., 2003),
which in humans is highest during the latter part of the day. Thus, in
our present study increased sleep during the latter part of the mouse
active period is consistent with decreased hypocretin signaling.

Melanin-concentrating hormone (MCH) neurons are intermingled
with hypocretin neurons in the lateral hypothalamus (Hassani et al.,
2009; Jones and Hassani, 2013; Torterolo et al., 2011). MCH neurons are
implicated in the regulation of REM sleep and under some conditions
NREM sleep. For example, MCH knockout mice spend significantly
more time awake than their wild type counterparts (Willie et al., 2008).
MCH neurons fire at a slow rate during NREM sleep and maximally
during REM sleep (Hassani et al., 2009). Persistent optogenetic stimu-
lation of MCH neurons increases NREM and REM sleep (Konadhode
et al., 2013), but selective stimulation during NREM sleep increases
transitions from NREM to REM (Jego et al., 2013; Tsunematsu et al.,
2014). Although MCH promotes REM, ablation of MCH neurons does
not appear to affect REM sleep, indicating that this peptide may not be
necessary for REM to occur (Tsunematsu et al., 2014)
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Because MCH neurons are intermingled with hypocretin neu-
rons and generally act in a reciprocal manner with respect to
arousal state, we also determined effects of TBI on this neuronal
population. MCH neurons are variably reported to be affected by
TBI. Some human postmortem studies report that MCH neuron
numbers are reduced (Valko et al., 2015) or not significantly af-
fected (Baumann et al., 2009) in cases of fatal TBI. Little pre-clinical
research has focused on a role for MCH neurons in response to TBI;
the only animal study of which we are aware that quantified
changes in this cell type did not reveal changes in cell numbers
after TBI (Willie et al., 2012). In the present study, we also found
that TBI does not affect MCH cell number.

Hypocretin likely promotes wakefulness through several mecha-
nisms. Although hypocretin-producing neurons are found only in the
hypothalamus, they have diffuse projections with terminals in nuclei/
brain regions characterized by diverse transmitter systems. For ex-
ample, hypocretin neurons project to dopaminergic cells in the ventral
tegmental area, noradrenergic cells in the locus coeruleus, and ser-
otonergic cells in the dorsal raphe nucleus, in addition to direct ex-
citatory projections to the cortex; each of these populations are im-
portant for the promotion of wakefulness [reviewed in (Krystal et al.,
2013; Peyron et al., 1998)]. In the present study, we restricted our
focus to the effects of TBI on two neuronal populations downstream of
hypocretin: the cholinergic neurons of the basal forebrain and the
histaminergic neurons of the tuberomammillary nucleus.

Cholinergic neurons fire maximally during wakefulness and REM
sleep (Lee et al., 2005a) and promote cortical activation during these
states (Jones, 2008). Enhancement of cholinergic signaling with acet-
ylcholinesterase inhibitors increases wakefulness at the expense of
NREM sleep and REM sleep (Jung et al., 2012). Cholinergic neurons in
the basal forebrain project to the cortex and hippocampus where they
promote low-voltage, high frequency EEG activity, which is char-
acteristic of wakefulness and REM sleep (Brown et al., 2012; Shin and
Dixon, 2015). As briefly mentioned, cholinergic neurons of the basal
forebrain receive direct excitatory projections from hypocretin neu-
rons in the hypothalamus (Fadel and Burk, 2010) and hypocretinergic
signaling to the basal forebrain is an important modulator of sleep-
wake behavior (Vazquez-DeRose et al., 2016). Cholinergic and hypo-
cretinergic neurons project directly to the cortex, where they may
work together to promote wakefulness and a state of attention, al-
though in some cases cortical hypocretin can compensate for defi-
ciencies in cholinergic signaling (Zajo et al., 2015). Although some
research has focused on basal forebrain cholinergic neurons as med-
iators of hypocretin signaling to the cortex, cholinergic neurons do
have sparse projections to the hypothalamus (Henny and Jones, 2006),
and a subset of hypocretinergic neurons increase their firing rate in
response to acetylcholine administration (Zhou et al., 2015). Thus,
reciprocal interactions between these two neurotransmitter popula-
tions may play a role in consolidating wakefulness, although the
functional significance of this reciprocity is not fully understood.

Interactions between hypocretinergic and cholinergic systems
may play an important role in post-TBI sleep-wake disturbance.
Just as the hypocretinergic system undergoes changes after TBI,
the cholinergic system is also altered. During the acute phase after
TBI there is a significant upregulation of activity in the cholinergic
system, which may contribute to acute excitotoxic processes (Saija
et al., 1988; Shin and Dixon, 2015). However, during chronic post-
TBI periods, the cholinergic system is hypoactive (Shin and Dixon,
2015) and ChAT enzyme activity (Dewar and Graham, 1996; Mur-
doch et al., 1998) and immunoreactivity (Murdoch et al., 2002) are
reduced in humans. Our results are consistent with these and
other (Schmidt and Grady, 1995) observations insofar as we report
reduced numbers of ChAT positive neurons in two areas of the
basal forebrain. Thus, deficiencies in cholinergic signaling may also
contribute to post-TBI sleep-wake disturbances.
Finally, we examined the effects of TBI on tuberomammillary
histaminergic neurons. Histamine neurons fire maximally during
wakefulness, and antagonizing histamine receptors increases sleep
(Brown et al., 2001). Mice lacking brain histamine are unable to
stay awake in response to behavioral challenge or environmental
stimuli (Parmentier et al., 2002). Although hypocretin neurons
project to the histaminergic cells of the tuberomammillary nu-
cleus, the relationship between these two neuronal populations
during pathology is not completely understood. For example, al-
though histaminergic neurons receive substantial excitatory input
from hypocretin neurons (Sundvik and Panula, 2015), a decrease in
hypocretin is not always paralleled by a decrease in histamine:
narcoleptics have little to no hypocretin, but greater numbers of
histaminergic neurons (John et al., 2013; Valko et al., 2013). We are
aware of only one study that has examined numbers of histami-
nergic neurons after TBI; histaminergic neurons in the tuber-
omammillary nucleus are reduced in post-mortem tissue after
fatal TBI in humans (Valko et al., 2015). Our mouse model induces
moderate injury with no mortality. Whether histaminergic neuron
numbers would be reduced in pre-clinical models that result in
more severe injury is not known. Histaminergic processes may still
be important for decreases in wakefulness after TBI, but they may
be mediated by changes in receptor density rather than by changes
in neuron number (Shimada et al., 2012).

4.3. Inflammation as a mechanism underlying neuronal loss

The mechanisms by which TBI causes the semi-selective loss of
hypocretinergic and cholinergic neurons are not known. TBI induces a
state of robust neuroinflammation, which includes activation of mi-
croglia (Febinger et al., 2015; Harish et al., 2015; Hernandez-Ontiveros
et al., 2013), astrogliosis (Harish et al., 2015; Hazra et al., 2014), and
upregulation of inflammatory cytokines (Senol et al., 2014; Ziebell and
Morganti-Kossmann, 2010). Inflammation is a key factor contributing
to secondary injury after TBI (Corps et al., 2015; Ziebell and Morganti-
Kossmann, 2010) and may cause hypocretinergic and cholinergic
dysfunction.

Hypocretinergic and cholinergic neurons are sensitive to in-
flammation. For example, sterile inflammation induced by bolus in-
jections of lipopolysaccharide, which also activates microglia and in-
duces an inflammatory response (Camara et al., 2015; Thomson et al.,
2014), reduces hypocretin in cerebrospinal fluid (Grossberg et al.,
2011; Qin et al., 2005; Vasconcelos et al., 2014). Of relevance to this
present study, chronic inflammation induced by repetitive doses of
lipopolysaccharide reduces numbers of hypocretin-producing cells,
but not MCH cells, indicating that hypocretin neurons are more sen-
sitive to chronic inflammation than are MCH neurons (Palomba et al.,
2014). As such, effects of inflammation induced by administration of
lipopolysaccharide in the absence of injury on hypocretin and MCH
producing cells of the hypothalamus are similar in some respects to
those of TBI. Cholinergic neurons in the basal forebrain also are re-
duced during inflammation induced by chronic administration of li-
popolysaccharide (Willard et al., 2000) or the inflammatory cytokine
tumor necrosis factor α (Zassler et al., 2003). Therefore, although
additional experiments must be conducted to determine if this is in-
deed the case, one potential mechanism mediating the semi-selective
loss of hypocretin and acetylcholine neurons, and subsequent effects
on sleep-wake behavior after TBI, is the neuroinflammatory response
to this insult.

4.4. Conclusions

The present findings demonstrate that moderate CCI can be used
in mice to effectively model some aspects of human sleep-wake dis-
turbance after TBI. Furthermore, results reveal reduced numbers of
hypocretinergic neurons in the hypothalamus and cholinergic basal
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forebrain neurons after TBI, suggesting a role for deficiency in these
transmitter systems as contributing factors to post-TBI changes in
sleep-wake behavior. If low levels of hypocretin or acetylcholine in-
deed cause somnolence and excessive daytime sleepiness, clinical
research could perhaps lead to new hypocretin- or acetylcholine-
based pharmacotherapies to the benefit of the millions affected by
chronic TBI.
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