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Abstract 

Background:  Globally, tuberculosis disease (TB) is more common among males than females. Recent research 
proposes that differences in social mixing by sex could alter infection patterns in TB. We examine evidence for two 
mechanisms by which social-mixing could increase men’s contact rates with TB cases. First, men could be positioned 
in social networks such that they contact more people or social groups. Second, preferential mixing by sex could 
prime men to have more exposure to TB cases.

Methods:  We compared the networks of male and female TB cases and healthy matched controls living in Kampala, 
Uganda. Specifically, we estimated their positions in social networks (network distance to TB cases, degree, between-
ness, and closeness) and assortativity patterns (mixing with adult men, women, and children inside and outside the 
household).

Results:  The observed network consisted of 11,840 individuals. There were few differences in estimates of node posi-
tion by sex. We found distinct mixing patterns by sex and TB disease status including that TB cases have proportionally 
more adult male contacts and fewer contacts with children.

Conclusions:  This analysis used a network approach to study how social mixing patterns are associated with TB 
disease. Understanding these mechanisms may have implications for designing targeted intervention strategies in 
high-burden populations.
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Background
Although tuberculosis (TB) is both a treatable and pre-
ventable disease, it remains one of the leading causes of 
death worldwide. Each year an estimated 10 million peo-
ple fall ill and 1 million people die of TB [1]. In addition, 
approximately 25% of the world’s population has a latent 
infection with M. tuberculosis (Mtb) and is at risk of 

progressing to TB disease [2]. Notification of TB disease 
is more common in males than in females with an average 
of 1.8 cases notified among men for each woman glob-
ally in 2017 [1]. One explanation for the excess of cases 
among men is that they have greater access to health care 
than women. Although this may contribute to disparity 
among men and women in some places, TB prevalence 
surveys, which control for access to care, also find male-
bias in prevalent TB [3, 4]. Understanding how and why 
the burden of TB differs by sex may be contribute to find-
ing and treating undetected TB cases in the community.
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As explanations for male-bias in TB (i.e., excess TB 
cases among men), many propose that men have greater 
susceptibility to infection or more frequent opportuni-
ties for exposure [5, 6]. A number of factors have been 
put forward as mechanisms for heightened susceptibil-
ity in men. In most countries, men smoke more ciga-
rettes than women, and per capita smoking rates explain 
roughly one-third of the variation in country-level male-
bias in case reports [7], perhaps due to toxic lung injury 
and reduced immune cell function [8] leaving them more 
susceptible to infection. Alcohol use is also identified as 
a risk factor for TB disease as it may have immunosup-
pressive effects [9]. These behavioral factors and other 
hormonal and physiological factors likely play a role in 
determining sex-specific susceptibility to Mtb [5, 6], 
though we do not know the combined extent to which 
they explain male-bias across populations nor do we 
know the full spectrum of possible mechanisms.

Apart from susceptibility, men may also be exposed 
to undetected, infectious TB cases more often than 
women. This unknown exposure may be determined in 
part by the social role men fill and how social roles influ-
ence mixing with others in their community [10]. For 
instance, in Uganda adult men travel more often than 
women while more than one-quarter of adult women 
identify as housewives [11], potentially causing higher 
exposure rates among men due to the number of con-
tacts or centrality of men within social networks. Alter-
natively, male-bias could be perpetuated because men 
preferentially interact with men who are more likely to be 
infected than women [10]. Sex assortativity could further 
magnify spread among men if males were more likely to 
transmit infection to their close contacts than females, as 
some studies have found [12–14]. Compared with biolog-
ical differences in susceptibility, few studies have directly 
examined whether differences in network centrality and 
mixing patterns by sex, driven by gender roles and poten-
tially causing changes to exposure rates to infectious 
cases, can amplify tuberculosis burden among men.

One way to understand whether sex differences in net-
work position or mixing patterns affect a person’s likeli-
hood of developing TB disease is to compare the social 
networks of TB cases with networks of healthy controls 
in an area endemic for TB. To this end, we analyzed the 
structure of a large social network in Kampala, Uganda 
centered on male and female index participants who were 
either recently diagnosed with active TB cases or were 
community-matched controls who were asymptomatic 
[15]. We used the social network data to test whether net-
work position and mixing patterns within networks were 
associated with TB. For network position, we predicted 
that (1) greater network centrality would be associated 

with TB disease [16, 17] and (2) that men would be more 
central in their social networks. For mixing patterns, we 
predicted that (1) there would be preferential mixing by 
sex and (2) that TB cases would have more contact with 
men than controls.

Methods
Data collection
This study took place from 2013 to 2017 in the Rubaga 
Division of Kampala, Uganda. Rubaga is an urban area 
where approximately 300,000 people reside. The preva-
lence of TB in Uganda is one of the highest in the world 
[1] and, in Rubaga Division, nearly one half of the pop-
ulation may be latently infected [18]. This area’s urban 
landscape, high male:female case notification rate (2.4:1) 
[1], and high prevalence of infection make it a relevant 
place to study the factors affecting TB spread in endemic 
populations.

To characterize the social networks of people living 
in Rubaga, we delineated the egocentric networks of TB 
cases and frequency-matched, community controls with-
out symptoms for TB from that urban suburb. The meth-
ods used in this study have been previously described 
in [15]. Briefly, we enrolled adult (15 years or older) TB 
index cases (n = 123) from the National Tuberculosis 
and Leprosy Control Programme who presented with 
their first episode of microbiologically-confirmed (i.e., 
Xpert MTB/RIF or sputum microscopy) pulmonary TB. 
Index controls (n = 124) were frequency-matched to 
index cases according to age-group, sex, and parish and 
recruited through door-to-door surveys. Active TB was 
excluded in index controls if there were no signs or symp-
toms of the disease. Controls were counseled to report 
any symptoms of TB disease, but none did during the 
study. For index participants, we collected information 
on demographic characteristics including age and rela-
tionship status (single, divorced, widowed, monogamous, 
polygamous); relationship was re-categorized as single 
(single, divorced, widowed) or in a relationship (monoga-
mous, polygamous). We used two-way ANOVAs to com-
pare age and a Chi-square test to compare relationship 
status by index type (cases or control) and sex.

Following recruitment of index participants, trained 
interviewers ascertained their social networks in a two-
step process. In the first step, index participants listed 
members of their households and all individuals living 
outside their household with whom they had a personal 
relationship or regular close contact. Close contact was 
defined as being within talking distance for more than 
4 h on more than one occasion. In the second step, each 
of these first-level contacts were asked to list their con-
tacts using the exact same approach. Unless there was 
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a suspicion of active TB, field nurses did not trace the 
second-degree contacts. This sampling methodology 
was an extended form of egocentric sampling, which we 
will refer to as “second-level egocentric sampling” in the 
remaining sections. Second-level egocentric sampling 
differs from classic egocentric network sampling in the 
additional layer of contacts collected (Fig. 1).

Social network forms (Additional file  1) completed 
by trained interviewers, reviewed at point-of-contact 
and prior to data entry with optical scanning software 
(TeleForms). All data were read and verified by a data 
clerk; item analysis detected incomplete or out-of-range 
entries which were corrected with reference to source 
documents before proceeding Participants were assigned 
unique identifiers; we screened for duplicated individu-
als appearing in multiple networks with a software pro-
gram designed to find similar rows of data (dedupe.io). 
All duplicates that were identified were hand-checked by 
co-authors R. Kakaire and R. Galiwango.

Social network analysis
We assumed social networks were undirected for the 
purposes of this analysis. We described the large-scale 
features of the social network including its size (num-
ber of members), component distribution (number of 
sub-networks connected to each other through common 
contacts), and mean degree (average number of contacts 
per individuals). Additionally, we compared the degree 
distribution of index participants, first-level, and second-
level contacts and used a two-way ANOVA to compare 
the degree distribution of index participants and that of 
first-level contacts. We compared estimates of node posi-
tion among index participants by index type (case or con-
trol) and sex. Centrality statistics included node degree, 
betweenness [19], and closeness [20] (definitions in 
Table 1). To determine whether men were more clustered 
with TB cases than women, we calculated the network 
distance to a TB case. We used two-way ANOVAs to 
determine whether dependent variables were associated 

Fig. 1  Types of egocentric network sampling varies in the amount of information collected outward from the index individual. Index individuals, 
shown in yellow, list their contacts in ego-only sampling (a). In first-level egocentric sampling (b), index individuals additionally indicate whether 
their contacts are also contacts. In second-level egocentric sampling (c), contacts of index individuals list their own contacts. The social network in 
the Kampala study utilized a second-level egocentric design. We used sensitivity analyses to understand how these types of egocentric sampling 
designs alter estimates of network centrality statistics

Table 1  Social Network Estimates used to describe the Node Position of Index Individuals ( s ∈ {1, 2, ..n} ) within the Kampala Network

a Network distance, closeness, and betweenness were calculated within the giant component because path length is not defined for disconnected graphs

Statistic Definition Equation Notation

Node degree,
ks∈1,2,...n

Number of adjacent edges ∑N
j=1 As,j

Adjacency matrix, Aij = 1 , if we identified contact between i, j

Betweenness,
bs∈1,2,...n

Number of times node is on shortest 
path between pairs of other nodesa

∑

u =s  =v
σuv (s)
σuv

σuv is the total number of shortest paths from node u to 
v and σuv(s) is the number of those paths that pass through s

Closeness,
cs∈1,2,...n

Inverse of the average length of 
shortest path to all other nodesa

1
∑

i  =s dsi
dsi is the network distance between nodes s and i

Distance to TB case,
ys∈1,2,...n

Network distance to a TB casea
min

(

dst ,t  =s

)

t  is the set of TB cases
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with independent variables sex (male or female) and 
index type (TB case or control).

To assess patterns of mixing by sex and age in the net-
work, we compared the proportion of contacts occurring 
within-sex, between-sex, and with children (< 15  years 
old) in the network for index participants. We also quan-
tified sex-assortative mixing with the assortativity coeffi-
cient, r [21]. These coefficients are based on the matrix, 
Eij , describing the fraction of all edges that connect a 
node of type i to type j , such that the diagonal Eii repre-
sents within-group edges, the off-diagonal represents 
between-group edges, and 

∑

ij Eij = 1 . If ai =
∑

j Eij and 
the network is undirected, the assortativity coefficient is 
defined as r =

∑

i
Eii−

∑

i
a2i

1−
∑

i
a2i

. Assortativity coefficients 
range from − 1 to 1, with larger, positive values corre-
sponding to assortative networks and negative values 
being more disassortative (coefficients close to 0 indicate 
no assortativity for that variable) [21].

Sensitivity analyses
We examined robustness of network centrality statistics 
to egocentric sampling. First, we simulated small-world 
[22] and scale-free [23] networks across a range of net-
works sizes 50 times. Then we subjected each network 
to three forms of egocentric sampling [24], including the 
one used in this study (Fig. 1, Additional file 2). To under-
stand how sampled network statistics related to underly-
ing network statistics of index participants, we calculated 
correlation coefficients. To understand how social net-
works in Kampala related to small-world and scale-free 
networks, we calculated the clustering coefficient (i.e., 
the probability that neighbors of a node are also con-
nected [25]) and fit to a power-law degree distribution 
[26] because small-world networks are characterized by 
high clustering coefficients and scale-free networks by 
a power-law degree distributions [27]. We performed 
a second sensitivity analysis focusing on estimates of 
assortativity (Additional file  2). We again calculated the 
correlation between sampled assortativity and true assor-
tativity of the underlying network to assess robustness to 
egocentric sampling.

All network analyses and simulations were completed 
in R (4.0.0) using the package igraph [28]. R scripts for 
sensitivity analyses are available on https://​github.​com/​
Drake​Lab/​miller-​tb-​centr​ality.

Ethics considerations
The study was approved by the University of Georgia 
Institutional Review Board, the Higher Degrees Research 
and Ethics Committee at Makerere University School 
of Public Health, and approved by the Uganda National 

Council for Science and Technology. Written informed 
consent was obtained for all adult participants (18 years 
and older); for participants aged 12–17, written con-
sent was obtained by the participant’s parent or guard-
ian and written assent from the participant; for minors 
(< 12 years), written consent was obtained by the partici-
pant’s parent or guardian.

Results
Overall network structure
Index participants (n = 123 cases, n = 124 controls) 
listed 2418 contacts (first-level contacts) of which 1930 
agreed to enroll in the study and subsequently identified 
9175 second-level members. Index participants identified 
on average two more contacts than first-level participants 
(10.4 vs. 8.2) (Mann–Whitney U-test, p < 0.0001). Thus, 
2177 members (index participants and enrolled first-level 
participants) reported 14,307 edges.

The resulting network of 11,840 members of whom 
6507 were males, 5333 females, 9720 adults (at least 
15  years old), and 2002 children less than 15  years old 
(age was not identified for 118 members). Overall degree, 
including second-level contacts, was 2.4 (± 0.03, SE). 
Despite low connectivity of second-level contacts, all 
247 index networks were distributed in one of 47 net-
work components after joining networks with common 
contacts (Additional file 2: Fig. S1). One component con-
nected 9,974 (84%) members and 187 (75%) index partic-
ipants (102 controls and 85 cases).

Demographic characteristics of index participants
As described in [15], of the 247 index participants, 169 
were men and 78 were women. Controls were almost 
twice as likely to be in a relationship than TB cases ( χ2

=13.9, df = 1, P = 0.0002) (Table  2). Male index partici-
pants were six years older than female index participants 
on average (F1, 246 = 26.8, P = 4.68 × 10−7) (Table 3).

Node position of index participants
In our analyses of node position, there was little vari-
ation among index participants stratified by type 
(Table 2) and sex (Fig. 2, Table 3, Additional file 2: Fig. 
S2). The mean degree (number of contacts) of index 
cases and controls were 10.7 and 10.2, respectively, but 
this difference was not statistically significant (Table 2). 
Other estimates of node position (betweenness, close-
ness, and network distance to TB cases) were measured 
for the 187 index participants in the giant component. 
Index men tended to have shorter distances to TB cases 
than women, but not significantly so ( F1,183 = 2.78, 
P = 0.096). Only network betweenness differed between 
cases and controls, and controls had higher between-
ness than cases ( F1,183 = 12.73, P = 0.0005). Closeness 

https://github.com/DrakeLab/miller-tb-centrality
https://github.com/DrakeLab/miller-tb-centrality


Page 5 of 9Miller et al. BMC Infect Dis         (2021) 21:1023 	

of index participants was not higher among men or 
among TB cases. Since a significantly higher propor-
tion of controls were in monogamous or polygamous 
relationships, we stratified network position statistics 

by relationship status (Additional file  2: Table  S1). 
There was no difference in network position (degree, 
betweenness, closeness, or distance) between index 
participants that were single and those in a relationship.

Table 2  Demographics and Social Network Estimates for Index Individuals stratified by Index type. Values indicate the number of 
individuals (proportion) or mean ( ± standard errors) for each variable

a Adults ≥ 15 years old, children < 15
b HH: Household

∗∗Significant difference (p < 0.05) between means by index type (case, control)

Case
n = 123

Control
n = 124

Sig

Age 30.6 (± 0.90) 32.0 (± 0.85)

Monogamous or polygamous relationship 40 (0.33) 70 (0.56) **

Node position

 Degree 10.7 (± 0.36) 10.2 (± 0.36)

 Closeness 0.076 (± 0.001) 0.077 (± 0.001)

 Betweenness 0.009 (± 0.002) 0.02 (± 0.002) **

 Distance to case 3.2 (± 0.2) 3.5 (± 0.2)

Mixing variables

 Proportion of all contacts with adult men 0.47(±0.02) 0.36(±0.03) **

 Proportion of all contacts with adult women 0.37(±0.02) 0.40(±0.02)

aProportion of all contacts with children 0.16(±0.02) 0.23(±0.02) **
bProportion of all contacts occurring within HH 0.23(±0.02) 0.37(±0.03) **

 Proportion of HH contacts occurring with children 0.28 (±0.02) 0.32 (±0.02)

Table 3  Demographics and Social Network Estimates for Index Individuals stratified by Index Type and Sex

Values indicate the number of individuals (proportion) or mean ( ± standard errors) for each variable
a Adults ≥ 15 years old, children < 15
b HH: Household

*Significant difference (p < 0.05) between means by index sex (male, female)

**Significant difference (p < 0.05) between means by index type (case, control)

Female Male Sig

Case
n = 39

Control
n = 39

Case
n = 84

Control
n = 85

Age 25.6(±0.89) 28.0(±1.11) 32.9(±1.16) 33.8 (±1.08) *

Monogamous or polygamous relationship 12 (0.31) 22 (0.56) 28 (0.33) 48 (0.57) **

Node position

 Degree 10.4(±0.70) 9.95(±0.4) 10.8(±0.4) 10.3(±0.5)

 Closeness 0.077 (±0.002) 0.076(±0.003) 0.075 (±0.002) 0.078(±0.002)

 Betweenness 0.005 ( ±0.001) 0.015(±0.003) 0.010(±0.002) 0.022(±0.003) **

 Distance to case 3.4(±0.3) 3.8(±0.3) 3.0(±0.2) 3.3(±0.2)

Mixing variables

 Proportion of all contacts with adult men 0.34(±0.04) 0.22(±0.02) 0.53(±0.03) 0.43(±0.03) *,**

 Proportion of all contacts with adult women 0.41(±0.04) 0.44(±0.03) 0.35(±0.02) 0.38(±0.02) *

 aProportion of all contacts with children 0.26(±0.03) 0.34(±0.03) 0.12(±0.02) 0.19(±0.02) *,**

 bProportion of all contacts occurring within HH 0.31(±0.04) 0.45 (±0.04) 0.19 (±0.02) 0.33(±0.03) *,**

 Proportion of HH contacts occurring with children 0.32 (±0.04) 0.39 (±0.03) 0.25 (±0.02) 0.29 (±0.02) *
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Social mixing patterns of index participants
The distribution of contacts reported by index partici-
pants indicated strong evidence of preferential mixing 
by sex and higher levels of contact between women and 
children (< 15  years old) than men and children (Fig.  3, 
Tables  2, 3). Across the observed network, same-sex 
edges were almost twice as common as between-sex 
edges (9079 vs. 5228), with a sex-assortativity coefficient 
of 0.26 ( ±0.01, SE). Of the contacts reported by index 
participants, the proportion that were adult men var-
ied significantly by index sex (F1, 246 = 37.1, P = 4.23 × 
10−9) and type (F1,246 = 12.3, P = 0.0006) with TB cases 

and men having a higher proportion of their reported 
contacts with other men. The proportion of contacts 
with adult women varied significantly by index sex (F1, 

246 = 4.213, P = 0.04) but not index type. Overall, index 
women reported approximately two times more contact 
with children than index men (0.30 and 0.15, respec-
tively) and this was a significant difference (F1, 246 = 36.5, 
P = 5.67 × 10−9). In addition, index controls reported a 
slightly higher proportion of contacts with children than 
TB cases (0.33 vs. 0.26; F1,246 = 11.4, P = 0.0008). Rela-
tionship status was not associated with any mixing vari-
ables (Additional file 2: Table 1).

Sensitivity analyses
Overall, estimates of node centrality statistics were dif-
ferentially impacted by network type, sampling type, and 
underlying network size (Fig.  4). When the underlying 
network being sampled was a scale-free type, all central-
ity estimates from egocentric samples were correlated 
with the true centrality in second-level samples (ρ > 0.4), 
indicating identifiability of node position statistics com-
pared in this analysis. In contrast, node position was less 
identifiable when sampling from small-world networks. 
The Rubaga social network we analyzed had a low clus-
tering coefficient and a degree distribution consistent 
with either a power-law (i.e., matching that of scale-free 
networks) or log-normal distribution (i.e., sum of multi-
ple normal-distributions), but we could not distinguish 
between these two distributions (Additional file  2: Figs. 
S3 and S4). In general, second-level egocentric sampling 
was superior to ego-only and first-level egocentric sam-
pling. Estimates of node position from egocentric sam-
ples were not highly sensitive to the range of network 
sizes chosen to represent a sub-population of the Rubaga 
Division. In a separate sensitivity analysis of network 
assortativity, estimated assortativity from egocentric net-
works was highly correlated ( ρ = 0.999) with true assor-
tativity of underlying networks (Additional file 2: Fig. S5).

Discussion
Social contact networks alter infection patterns of infec-
tious diseases [29–31] and, for TB specifically, social 
network analysis helps explain clusters of transmission 
in outbreaks among high-risk individuals [32, 33]. Our 
study extends the previous analyses in non-endemic 
areas to examine the structure of a large social network 
in Kampala, Uganda, where TB is endemic. Our primary 
interest was to understand how social network struc-
ture affected the pattern of TB in the community and, 
in particular, whether network structure could explain 
the male-bias observed in TB. Based on mathemati-
cal models [16], we predicted that recently diagnosed 
TB cases would be more central in social networks than 

Fig. 2  There were few differences in node position (degree, 
betweenness, closeness, and network distance to index cases) by 
index type and sex. Closeness, betweenness, and network distance 
to index cases were calculated for index individuals in the giant 
component (i.e., the largest connected network component). 
Boxplots show interquartile regions and outliers
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index controls. Further, we predicted that men would be 
more central in networks than women. Contrary to our 
predictions, we found few differences in node centrality 
between index cases and controls and between men and 
women. Based on known preferential mixing patterns 
[29, 34], we also expected to find preferential mixing pat-
terns by sex and age. Indeed, we observed assortativity by 
both sex and age. The novel finding was the stark differ-
ences in mixing patterns between index cases and con-
trols that could not be explained by age and sex. These 
findings suggest social network structure may perpetu-
ate male-bias in TB by disproportionately leading men to 
have more contact with TB cases than women.

In this study population, the contact patterns of index 
cases and controls differed in a number of notable ways. 
First, index cases reported proportionally more male 
contacts than controls, even when accounting for sex, 
age, and relationship status of the index participant. 
Thus, not only did we find strong assortative mixing by 
sex among adults, but we also showed that having pro-
portionally more male contacts is actually associated with 
being a TB case; that is, men may be positioned within 

their networks to be exposed more often to TB cases and 
thereby acquire new infection. This observation extends 
the idea that men are source cases to a disproportion-
ate amount of new infections [10]. Second, men also had 
proportionally fewer contacts with children than index 
women, consistent with other studies of age- and sex-
specific contact patterns [10, 34]. These variables were 
not related to age or relationship status of index partici-
pants. Last, index cases and men had a lower proportion 
of within-household contacts than controls or women. In 
other studies from Rubaga Division, investigators found 
that extra-household mixing was a risk factor for latent 
tuberculosis infection [18]; our observations also show 
how extra-household mixing may be associated with 
being a TB case. All together, these observations sug-
gest that the sex-specific social mixing, which is consist-
ently found among adults in many populations [34], may 
amplify exposure and consequent patterns of male-bias 
in TB prevalence and notification rates.

As for differences in network position, we found little 
variation between men and women and between index 
cases and controls. The only difference we did find was 
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Fig. 4  Sensitivity analyses showing the correlation between true node centrality and estimated node centrality depends on the underlying 
network type being sampled and the type of egocentric sampling used. We simulated 15 replicates of each network type (scale-free and 
small-world) across a range of network sizes 

(

5× 104, 7.5× 104, 1× 105, 1.25× 105, 1.5× 105
)

 all with mean node degree of 10. We then 
simulated the process of three types of egocentric sampling (ego_0, ego_1, and ego_2) and calculated the correlation of estimated centrality with 
true centrality. The black line indicates no correlation between sampled node statistics and true node statistics and the red triangle shows the mean 
across all replicates. Since we assumed perfect recall, we calculated the correlation in sampled degree on all nodes in the sampled network (i.e., not 
just the ego). Betweenness of egos was estimated from simulated networks by capping the number of search algorithm of shortest paths to 25
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that index controls had slightly higher betweenness-
centrality than index cases. This higher centrality may 
be because index controls were more likely to be in a 
relationship and perhaps better connected to their com-
munity. This point is further supported by more index 
controls than index cases in the largest network compo-
nent. Still, these findings are surprising because models 
predict increased network centrality should increase 
infection likelihood [35]. Indeed, for latent infection, one 
study in Japan showed that among social contacts of TB 
cases those with higher betweenness-centrality had a 
higher likelihood of latent infection [17].

So why did we fail to see differences in network position 
by sex or index type in this study? Possibly, our sampling 
approach masked our ability to detect differences in net-
work centrality (discussed below). Alternatively, we might 
have seen higher centrality among recently infected net-
work members but we recruited sick (recently diagnosed) 
cases who may have been infected long ago due to the long 
and variable latent period of M. tuberculosis. Thus, the net-
work position of index participants at the time of infection 
could be much different than it was at the time of enroll-
ment in our study. Next, it is possible that we misclassified 
some index controls who had asymptomatic TB. Although 
possible, this type of misclassification was infrequent and 
not likely to bias the study results. Finally, in TB endemic 
settings, it is also possible that social networks of close 
contacts are not as strong a predictor of infection as more 
casual encounters [36]. Despite the negative findings about 
network position and participants recently diagnosed with 
TB, this analysis presents exciting new dimensions for the 
epidemiological and modeling communities about when 
more central network members are at greater risk for infec-
tion and how network-based approaches can best be used 
to find infected network members [35].

Our findings are based on partially-sampled social net-
works. To understand how sampling could change the 
response variables, we performed sensitivity analyses. 
Although our simulated networks were not subject to 
mechanisms of data incompleteness (e.g., imperfect recall) 
other than the sampling protocol itself (this has been ana-
lyzed elsewhere [37]) our sensitivity analyses aid in the 
interpretation of our findings. We found higher correla-
tion of centrality estimates from egocentric samples with 
underlying networks in scale-free networks than in small-
world networks. Since the Rubaga social network was only 
partially sampled, we cannot be certain whether the full, 
underlying network resembles a small-world or scale-free 
more closely but the observed degree distribution suggests 
a closer resemblance to scale-free graphs (Additional file 2: 
Fig. S4). Thus, we should have been able to distinguish 
highly central nodes from less central nodes in egocen-
tric samples, but our findings about node position should 

be interpreted cautiously in light of our sensitivity analy-
sis. Importantly, separate sensitivity analyses showed that 
assortativity statistics are robust to egocentric sampling. 
In summary, our sensitivity analyses allowed us to under-
stand the impacts of network sampling on the response 
variables and we advocate simulation approaches to better 
understand real-world network data.

Conclusions
The effects of gender-related social mixing patterns on 
the spread of M. tuberculosis are being increasingly rec-
ognized [34]. Although men were not more central in 
their social networks than women, there was a prefer-
ential and higher level of contact between recently diag-
nosed TB cases and other men within their networks, 
thereby providing novel insight into how social mixing 
patterns could drive male-bias in TB. Whether these 
observed levels of assortativity are pronounced enough 
to drive observed levels of male-bias is an open question 
for future research. For applied purposes, these find-
ings could inform future intervention strategies such as 
prioritization of screening of men who have many male 
contacts.
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