
1Scientific RepoRts | 7:45380 | DOI: 10.1038/srep45380

www.nature.com/scientificreports

Quantifying edge significance on 
maintaining global connectivity
Yuhua Qian1,2, Yebin Li2, Min Zhang3, Guoshuai Ma2 & Furong Lu2

Global connectivity is a quite important issue for networks. The failures of some key edges may lead 
to breakdown of the whole system. How to find them will provide a better understanding on system 
robustness. Based on topological information, we propose an approach named LE (link entropy) to 
quantify the edge significance on maintaining global connectivity. Then we compare the LE with 
the other six acknowledged indices on the edge significance: the edge betweenness centrality, 
degree product, bridgeness, diffusion importance, topological overlap and k-path edge centrality. 
Experimental results show that the LE approach outperforms in quantifying edge significance on 
maintaining global connectivity.

Many systems in nature and society (such as cellular network, communication network, social network and trans-
portation network) can be described as networks1. There is no doubt that the study of complex networks has 
become a focus. Quite a few measuring methods have been proposed to measure the significance of a node2,3. 
However, the study of edges is relatively less, though measuring edge strength has gained attention early.

Researches on edges in complex networks dated from the definition of edge strength proposed by Granovetter4 
in 1973. The strength of an edge by Granovetter is a linear combination of the amount of time, the emotional 
intensity, the intimacy and the reciprocal services. Strong edges are usually formed by trusted friends and family, 
where users tend to be classified into the same cluster. However, weak edges are formed by new acquaintances and 
people with weak connections.

We intuitively notice that there is a big difference between edge strength and edge significance: strong edges 
are not always important and weak edges are not necessarily unimportant. Strong edges tend to emerge inside a 
cluster, while weak edges help to connect two clusters. Experimental and theoretical analysis5,6 showed that weak 
edges in the core of a network are attached with high value of significance on maintaining global connectivity. 
Moreover, in case of weighted networks, the weight of an edge can’t be regarded as edge significance directly. 
As a result, the lack of reasonable quantization of edge significance will not rise positive effect on generating 
robust and efficient networks under targeted edge attacks7. The “robust yet fragile” property in scale-free networks 
raised by Albert et al.8 reveals the phenomenon: scale-free networks display an unexpected degree of robustness, 
however, these networks are extremely vulnerable to intentional attacks. In realistic networks, a few localized 
failures or attacks may cause cascading failures and lead to breakdown of the whole system. There has been a lot 
of research related with analysing infrastructure risk and vulnerabilities base on edge failures9–12. Therefore, it’s 
more necessary and urgent to carry out the research of edge significance.

Generally speaking, four dimensions, that are edge centrality, weight, tie strength like bridgeness and overlap, 
diffusion of information, are mainly considered to quantify edge significance. Edge centrality is an indispensable 
tool in many aspects such as edge significance rank and community detection. In 2002, Girvan and Newman13 
applied edge betweenness centrality to the study of finding and evaluating community structures14 in networks. In 
2012, Meo et al.15 developed a k-path centrality, initially developed for nodes, which is based on random walks 
and is defined as the sum of the frequency with which a message traverses an edge E from a given source to all 
k-edges-distance possible destinations. These two centrality measures play a central role in reporting knowledge 
about data flow in a network. In many unweighted networks, edges are usually represented as binary states, i.e., 
either present or absent. However, the index of degree product12,16,17 offers a quantitative and general approach to 
understand the complex architecture of real weighted networks. The measuring methods of edge strength can 
be classified into three categories18: topology-based methods5,6,19, attributes-considered methods20–23, behavior 
sequences focused methods24–26. Weak Tie has been tested and proved effectiveness in maintaining global con-
nectivity. The bridgeness5,19 and topological overlap6 are two typical methods based on topology of networks. A 
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bridge, also known as cut-edge, plays an important role in ensuring the network connectivity and different forms 
are proposed19. The index of bridgeness developed by Cheng et al.5 is a classical form, which aims to detect edges 
between two cliques. The measurement of topological overlap by Onnela et al.6 performs quite well in mobile 
communication networks. Besides, diffusion of information on edges has undeniable effect on edge significance. 
Many related works have been carried out to explain the special diffusion effect from the view of edges27,28. Liu  
et al.29 provided the diffusion importance of edges in his research on influence maximization30 recently. However, 
the measurements mentioned above are not able to notice the fact that edges with significance on maintaining 
global connectivity have a critical property based on community structure.

Here we focus on the information of topology in networks, so six acknowledged indices of measuring edge 
significance are used as benchmarks: edge betweenness centrality, degree product, bridgeness, diffusion importance, 
topological overlap and k-path edge centrality. It’s inevitable that each has its own shortcomings. Based on topolog-
ical information, we propose an approach named link entropy (LE) to quantify the edge significance on maintain-
ing global connectivity. Experiments show that the framework outperforms in measuring the edge significance 
on maintaining global connectivity.

Empirical measurements
In this section, we will list six representative structural topology-based indices for undirected and unweighted 
networks on edge significance. For each index, its shortcomings and its applicable situations are also talked about.

Edge betweenness centrality. Edge betweenness centrality counts the shortest paths between a pair of 
nodes passing through the edge, as

∑
σ
σ

=
≠

EBetweenness ( ) ,
(1)s t

st

st
E

where σst is the number of shortest paths from node s to node t, and σst(E) is the number of shortest paths from s 
to t that pass through edge E. Notice that it counts the shortest paths between each pair of nodes, so computing 
complexity is remarkably high. Besides, the value of some edges even key edges may be relatively low (see Fig. 1). 
What’s more, it not practical to give total burden of information flow to the edge e3−9 without taking the path 
e3−5−9 into consideration.

Degree product. Degree product is defined as

= k kDegree , (2)x yE

where kx and ky are the degree of node x and y respectively. For an extended form as (kxky)θ, θ is a tunable parame-
ter. Here we just care about the order of the edges, so the value of θ is of no great importance and we just take θ as 
1 to compute the edge significance. The computation of index only needs the degree of each node, which is quite 
easy to get. It works well in assortative networks where nodes with high degree tend to connect each other. As to 
disassortative networks where nodes with high degree tend to connect nodes with low degree, its quantification 
of edge significance is not so reliable.

Bridgeness. The edges between two cliques are bridgenesses, where a clique of size k is a fully connected 
subgraph with k nodes. It is defined as
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where x and y are the two endpoints of an edge E, and the clique size of a node x or an edge E is defined as the 
size of maximum clique that contains this node or this edge. Note that the index only goes for dense networks 
where similar or relevant nodes are apt to connect and form local clusters such as social and document networks. 
Furthermore, it is time-consuming to find maximum clique of each node and each edge. In many cases, quite a 
few edges are measured to be the same value so we can’t distinguish the significance between them.

Figure 1. An example for calculating edge betweenness centrality. Although the inter-clique edges e3−9, e3−5 
and e5−9 play an important role in maintaining two cliques, the values of edge betweenness centrality of e3−5 and 
e5−9 are lower than that of the inner-clique edges such as e3−4, which are less important in maintaining global 
connectivity.
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Diffusion importance. The diffusion importance of an edge takes disease spread process into consideration. 
For an edge exy, when disease spreads along it, there are two possible directions. In one direction, the disease orig-
inates from node x and spreads along exy to node y, and then spreads to the other parts of the network through 
node y. So does the spread mechanism in the other direction. In that sense, the diffusion importance of edge exy 
is defined as

=
+→ →n n

Diffusion
2

, (4)
x y y x

E

where nx→y is the number of links of node y connecting outside the nearest neighborhood of node x. The value 
of index is inevitable to be misled by degree of node somehow: an edge with one high-degree node and one 
low-degree node may have higher value of edge significance than its real effect when the edge is in the periphery 
of the network.

Topological overlap. The topological overlap is a classical measurement based on topological structure. It 
was initially applied to quantitative study on tie strength in a mobile communication network. Since tie strength 
is tightly associated with common friends, the topological overlap is defined as
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where nij is the number of common network neighbours of i and j, and ki denotes the degree of node i. The index 
mainly focuses on the probability that the neighbours of two endpoints of an edge are the same. However, there 
are always the same local structure of an edge whether the edge is in the core of a network or not, which results in 
the loss of location information.

k-path edge centrality. Different from the way of propagation in the edge betweenness centrality, infor-
mation in social networks propagates not only along shortest paths in fact. The k-path centrality index, which 
is based on the propagation of messages inside a network along paths consisting of at most k edges, simulates 
message propagations through random walks. It is defined as
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where s are all the possible source nodes, σs
k(E) is the number of k-paths originating from s and traversing the 

edge E and, finally, σs
k is the number of k-paths originating from s. For feasible application, ERW-Kpath(Edge 

Random Walk k-Path Centrality) is adopted to efficiently compute edge centrality values. Since the calculation 
of ERW-Kpath relies on random walks, it would be fine to fix k as high as possible and better discriminate edges 
with high centrality from edges with low centrality can be able to obtained. Therefore, in presence of low values 
of k, edge centrality indexes tend to edge flatten in a small interval and it is harder to distinguish high centrality 
edges from low centrality ones.

Link Entropy (LE)
It is undeniable that using more information of social network such as personal information and historical activ-
ities can contribute to better quantitative indicator of maintaining global connectivity. In fact, edge attributes like 
communication time and node attributes are not easy to obtain. Therefore, it’s very important to focus on how to 
make full use of the topological information and especially how to choose and take advantage of key information.

Notice the fact that an edge between two communities is significant on maintaining connectivity for the com-
ponents. As to an edge inside the community, there are other paths reachable between two endpoints when it 
breaks down. So edges between communities are supposed to get more attention. What’s more, how to quantify 
the significance of an edge is a key point. First we conduct Strategy 1—NMF(Nonnegative Matrix Factorization) 
according to network topology. Based on the result of the NMF, we apply Strategy 2—QS(Quantification Strategy) 
to calculate the LE values of all edges to quantify their significance on maintaining global connectivity.

Strategy 1—NMF(Nonnegative Matrix Factorization). A network can be modelled as a graph 
G =  (V, E), where V is a set of n nodes and E is a set of m edges. In this paper, we assume G is an undirected and 
unweighted graph whose adjacency matrix can be represented as a nonnegative symmetric binary matrix A. The 
element aij =  1 if and only if there exists an edge between nodes i and j, and aii =  1 for any 1 ≤  i ≤  n.

We assume that the pairwise interactions described in A are influenced by an unobserved expectation network 
A, where âij is an observed variable which denotes the probability of existing a connection between nodes i and j. 
Here we define xik as the probability that node i belongs to community k. So an expected edge âij can be estimated 
as

∑= .
=

â x x
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ik jk
1

Using the matrix form, the above formula can be rewritten as

= .Â XX (8)T
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As a result, we can use NMF(Nonnegative Matrix Factorization) method31 to get X. We make use of square 
loss function to measure the difference between the observed matrix A and the expected matrix A, and define the 
following optimization problem

= − .
≥

X A Aargmin
(9)X 0

2

By using gradient descent method introduced by Wang et al.32. We can obtain the multiplicative update rule 
for xik as
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The factorization could be viewed as a representation of the data in a new space of lower dimensionality of k. 
X and XT are considered equivalent. So here we can employ any of them to describe the probability distribution 
of each node in clustering partition, that is, each row denotes the probability of belonging to different community. 
For a given value of the NMF dimensionality K, the algorithm starts with random matrix X and each element 
in X is not less than 0. Note that each row in X should be normalized to ensure that the sum of each row should 
be 1 in each iteration. NMF-based algorithms33–36 have gained considerable attention and have been applied to 
community detection due to its meaningful probability distribution.

Strategy 2—QS(Quantification Strategy). Since each row of X indicates the probability distribution 
of the corresponding node, we could find the most uncertain nodes based on the values of X. Furthermore, the 
edges linked with uncertain nodes are usually those between communities, which are significant on maintaining 
connectivity. To design a quantitative measure to rank the significance of edges, we make use of information 
entropy and Jensen-Shannon divergence of the node probability distribution. The former aims to find out over-
lapping nodes, while the latter focuses on measuring the divergence between two probability distributions. The 
method of Jensen-Shannon divergence is adopted to find the edges between two low-information-entropy nodes, 
which obviously belong to two different communities. Information entropy and Jensen-Shannon divergence used 
in this paper are as follows:
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We proposed an approach named LE(link entropy) to quantify the edge significance on maintaining global 
connectivity. The LE approach takes two situations into consideration. On the one hand, if an edge is linked with 
an overlapping node, the edge is very likely to be between components, which is of great significance on maintain-
ing connectivity. Based on the information entropy of a node, we just average the values of information entropy 
of two endpoints to deal with the first situation. On the other hand, when the boundaries of communities is quite 
clear, that is to say, the information entropy of nodes is low, then the way of handling the first situation doesn’t 
work. For example, we get X by using Strategy 1, where the number of community K is set to be 2. Assume the 
probability distribution of node a and b is [0, 1] and [1, 0] respectively in extreme circumstance, which means 
node a belongs to the second community and b belongs to the first community. Besides, the information entropies 
of node a and b are 0. In this case, the way in the first situation become useless when an edge is between them 
while the edge also locates between two communities. So we need to take the probability distribution between 
pairwise nodes into consideration. In the paper, Jensen-Shannon divergence is adopted to compensate for the 
deficiencies of the first situation.

Combined with the above equations (11–14), we can get it more clearly. The equation (11), which is the formula 
of calculating information entropy, is used to quantify the degree that a node belongs to different communities. 
The sum can be obtained as the result of information entropy by running over all communities that a node may 
belong to. Overlapping nodes would be assigned high values of information entropy. The rest equations (12–14)  
aim to deal with the second situation mentioned above. In fact, the Jensen-Shannon divergence in (12) is a variant 
of Kullback-Leibler divergence like the form in (14). Here we adopt the Jensen-Shannon divergence, subject to 
symmetry of distance. Hence, the relative entropy of two distributions can keep consistency because their base-
lines M, i.e. equation (13), are the same in (14).
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To facilitate understanding, we sort ideas mentioned above as the following three views. Firstly, the edges 
linked with overlapping nodes are of great significance on maintaining global connectivity. Secondly, the edges 
between the boundaries of communities are of great significance on maintaining global connectivity. Thirdly, the 
larger the value of LE is, the greater the edge significance is.

Ultimately, we just average the value that we get in the above-mentioned two aspects as the value of edge sig-
nificance on maintaining global connectivity for convenience:

=
+ + 

LE
H H JSDX X X X( ( ) ( ))/2 ( )

2
,ij

i j i j

where H(Xi) is the information entropy of node i, Xi is the probability distribution of node i.
In experiment we set the parameter K to be 2 in Strategy 1. To ensure that the information entropy H and the 

Jensen-Shannon divergence 
JSD X X( )i j  are within interval [0, 1], the base of logarithm is set to be 2 accordingly. 

Besides, in order to avoid the situation when D X M( )i  is unable to calculate in case when mk is zero, we set the 
zeros in X to be 10−7, hence 10−7 should be taken off from the probability value of the other component in the 
corresponding row.

An example of measuring edge significance by the LE. In Fig. 2, the LE value of each edge is 
shown in descending order: LE46 =  0.4994, LE45 =  0.4778, LE56 =  0.4259, LE14 =  0.3744, LE57 =  LE58 =  0.2139, 
LE12 =  LE13 =  0.0147, LE78 =  5.8143 * 10−8, LE89 =  LE79 =  3.2653 * 10−8, LE23 =  1.0898 * 10−12. The larger its LE 
value is, the greater the significance of the edge is.

Applying the LE to real collaboration network. Collaboration network is a typical form that most 
researchers focus on. Different from early collaborative relationship, scholars in different research subjects tend 
to collaborate with each other, which forms more edges in collaboration network than those of other networks 
with the same number of nodes. The boundary between real research groups has become increasingly blurred. A 
node with a high degree is usually a leader in research group or an expert in a particular field. The collaboration 
between high-degree nodes in different research fields tends to generate creative ideas and influential academic 
papers. In a sense, the collaboration has great significance on maintaining global connectivity.

Here we crawled collaboration network data with the limit that the number of nodes is not more than ten 
thousand from the Microsoft Academic (https://academic.microsoft.com). Due to the large number of collab-
orative relations for renowned scholars, one possible case in crawled network is that all scholars may surround 
the start node. In addition, it’s unnecessary to crawl all relations for each scholar because the low frequency of 
co-publication may be meaningless. So we crawl top five percent relations for each person by using breadth-first 
search algorithm. Finally, nodes with degree value of one are removed for the sake of better display effect and less 
computing load. As a result, the collaboration network is composed of 7147 nodes and 83552 edges.

We first calculate the LE values of edges in the real collaboration network by applying the LE method without 
taking the weight of co-publication into consideration. Then we rank all the edges according to their LE values 
in descending order. Figure 3(a) shows the distribution of measured LE values for all the edges. Red edges which 
are assigned smaller values always appear inside the communities, while green edges with larger LE values are 
inclined to show up in the areas between different communities. In Fig. 3(a), the color of edges varies from red to 
green along with the increase of values measured by the LE method.

Based on Fig. 3(a), we obtain Fig. 3(b–f) by removing different percentage of edges from the network in 
ascending order, which show the phase transitions of network when the number of preserved edges decreases 
gradually. The nodes with the same color are in the same community, which is detected by a heuristic method 
based on modularity optimization. Besides, the node size is proportional to its degree value.

As shown in Fig. 3(b–f), the edges with relatively large value are the links between high-degree nodes that 
belong to different communities or fields. What’s more, the number of collaborations between different research 
fields is quite large in Fig. 3(f). At the same time, we can see from the side, it is a way to enhance influence for 
scholars.

Experiments and Discussion
To test the edge significance on maintaining global connectivity, we compared the robustness of each network 
under seven measurements by successively removing edges in descending order. In the process of removing 
edges, original networks begin to collapse into pieces, during which some giant components will emerge. In the 

Figure 2. Illustration of calculating the LE. 

https://academic.microsoft.com
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Figure 3. Collaboration networks with different proportions of edges. Subgraphs from (a) to (f) are the 
same collaboration networks but with different proportions of edges, where the nodes with the same color 
are in the same community detected by a heuristic method based on modularity optimization and the node 
size is proportional to its degree value. In subgraph (a), the color of edges varies from red to green along with 
values measured by the LE in ascending order. Based on (a), we obtain subgraphs (b–f) by removing different 
percentage of edges in ascending order.
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progress of the edge percolation37, two indices are used to capture the critical points. The first one is the fraction of 
nodes contained in the largest connected component, denoted by RGC. As the fraction of removed edges f grows, 
A sudden decline of RGC will be observed if the network disintegrates. The other one is the so-called normalized 
susceptibility, defined as

∑=
<

S n s
N

,
s s

s
2

max

where N is the size of the whole network, ns is the number of components with size s and the sum runs over all 
components but the largest one. Usually, an obvious peak can be observed that corresponds to the precise point at 
which the network disintegrates. More specifically, the f corresponding to the peak is the threshold of edge perco-
lation, i.e., the critical point above which there is no significant giant component. On the whole, if the networks 
collapse faster, and what’s more, if the peak of S comes earlier and the value of peak is higher, the measurements 
of edge significance on maintaining global connectivity are more efficient. Here we just calculate indices based on 
the original network without considering synergistic effects caused by the removing of an edge in the process of 
each step.

Data. We conduct experiments on twelve networks for the sake of generality.

(a) The karate network is the network of friendships between the 34 members of a karate club at a US university.
(b)  The dolphins network is an undirected social network of frequent associations between 62 dolphins in a com-

munity living off Doubtful Sound, New Zealand.
(c)  The adjnoun network is the network of common adjective and noun adjacencies for the novel “David Cop-

perfield” by Charles Dickens.
(d)  The celegansneural network is a weighted, directed network representing the neural network of C. Elegans, 

here we treat it as an unweighted, undirected network.
(e)  The lesmis network is the weighted network of coappearances of characters in Victor Hugo’s novel “Les Mis-

erables”, here we take it as an unweighted network.
(f)  The polbooks network is compiled by Valdis Krebs, where nodes represent books about US politics sold by 

the online bookseller Amazon.com and edges represent frequent co-purchasing of books by the same buyers.
(g)  The football network is the network of American football games between Division IA colleges during regular 

season Fall 2000.
(h)  The jazz network is the collaboration network of jazz musicians, where two musicians are connected if they 

have played in the same band.
(i)   The polblogs network is a political blog network formed by weblogs on US politics and hyperlinks between 

them.
(j)  The USAir network is a transport network of air lines.
(k)  The Yeast network is formed by protein interactions.
(l)   The power network is an undirected unweighted representation of the topology of the Western States Power 

Grid of the United States.

Statistical properties. The basic statistics of these networks is shown in Table 1. N and E denote the number 
of nodes and edges in the original network, while 〈 k〉  and kmax are average degree and maximum degree respec-
tively. The degree heterogeneity is defined as Hk = 〈 k2〉 /〈 k〉 2 that evaluates the heterogeneity of degree sequence 
of a network. In addition, the degree assortativity r is negative, which implies that nodes with large degrees are 
inclined to connect to nodes with small degrees. On the contrary, the assortativity is positive or close to zero, 

Networks N E 〈k〉 kmax Hk r C

karate 34 78 4.5882 17 1.6933 − 0.4756 0.5706

dolphins 62 159 5.1290 12 1.3268 − 0.0436 0.2590

adjnoun 112 425 7.5893 49 1.8149 − 0.1293 0.1728

celegansneural 297 2148 14.4646 134 1.8008 − 0.1632 0.2924

lesmis 77 254 6.5974 36 1.8273 − 0.1652 0.5731

polbooks 105 441 8.4000 25 1.4207 − 0.1279 0.4875

football 115 613 10.6609 12 1.0069 0.1624 0.4032

Jazz 198 2742 27.6970 100 1.3951 0.0202 0.6175

polblogs 1490 16715 22.4362 351 3.6218 − 0.2212 0.2627

USAir 332 2126 12.8072 139 3.4639 − 0.2079 0.6252

Yeast 2375 11693 9.8467 118 3.4756 0.4539 0.3057

power 4941 6594 2.6691 19 1.4504 0.0035 0.0801

Table 1.  Basic statistics of the twelve networks. Structural properties include number of nodes (N), number 
of edges (E), average degree (〈 k〉 ), maximum degree (kmax), degree heterogeneity (Hk), degree assortativity (r), 
clustering coefficient (C).
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which implies nodes with large degrees are inclined to connect to each other or connect randomly. The clustering 
coefficient C reflects the degree of node aggregation based on closed triples.

Comparison between different measurements. The comparison results of twelve networks under dif-
ferent measurements are shown in Fig. 4, among which the index of bridgeness doesn’t appear in some networks 
because of not being able to get results in tolerable time.

In experiments, here we set K =  2 in Strategy 1. Correspondingly, to ensure that the value ranges of informa-
tion entropy and Jensen-Shannon divergence are between 0 and 1, namely, H, JSD ∈  [0, 1], we set base of loga-
rithm to be 2. As for the maximum length of random walks in the k-path edge centrality, we choose a value of 20, 
which is suggested in the original.

As shown in Fig. 4, the upper part of each sub-figure shows the changing process of the largest component RGC 
with the rise of removed edges f, and the lower part is the curves of normalized susceptibility S reflecting the pro-
cess of edge percolation. As we can see, the LE performs almost best in the process of edge percolation except in 
4(j) and 4(l) and the peak of the LE is the highest of all. The computing complexity of betweenness is much higher 
than the LE and the peak of it isn’t as high as that of the LE, though it performs best in 4(j) and 4(l). Above all, one 
can conclude that the LE is remarkably better than the other six indices in characterizing the edge significance on 
maintaining the global connectivity.

In detail, the size of the largest connected component remains the same even half of edges are removed, 
which means nodes can be reachable by other paths. Notice that the worst performer goes to the measurement of 
degree product in most cases because it’s impossible that edges with significance on maintaining two components 
are all linked with high-degree nodes. In some cases, there is even no obvious peak in curve of degree product. 
Compared with the degree product, the indices of diffusion importance and overlap perform much better, which 
owe much to taking the neighborhood information of the two endpoints into consideration: the former focuses 
on the number of different neighborhoods, while the latter focuses on the proportion of co-neighborhoods. 
Furthermore, quantification by global measurement such as the edge betweenness centrality is proved to be more 
effective although its complexity is much higher. As to the bridgeness, most of the computing time is spent on 
finding maximum cliques due to rigour definition of the clique. It works well even better than the edge between-
ness. The last index, k-path edge centrality, performs unsatisfactorily or as bad as degree product. Maybe the 
proper length of random walks depends much on a given network. As mentioned above, the LE integrates supe-
riority of NMF and entropy, in which the former strategy orientates edges between components while the latter 
strategy helps to quantify the edge significance by probability distribution of its two endpoints from two aspects. 
That’s why LE improves a lot in the process of edge percolation.

Impact of K on the LE. How much impact it will have on the LE if K changes in NMF? Here K ranges from 2 
to 8 by step of 2 so that a comprehensive observation can be obtained and the results are shown in Fig. 5. In order 
to make the LE of different K comparable, H, JSD should be normalized within [0, 1] for different values of K, and 
the base of logarithm should be set as K. We can see no matter how many real communities a network has, the LE 
performs relatively better when K is set to be 2. The cost of removing edges between two communities at that time 
is less than that of other situations.

In general, there is always more than one community in any realistic networks according to the density of 
edges. So, the value of K =  2 is quite easy to meet. The purpose of our approach is to quantify all edges of the 
network on the basis of their aptitude of maintaining global connectivity. To verify its effectiveness, we simulate 
targeted edge attacks by successively removing edges in descending order to get the threshold of edge percolation, 
at which point the giant component will emerge. In a sense, this problem can be referred to as finding the minimal 
edge set to disconnect networks as severely as it can be. Hence, the value of K =  2 is most likely to achieve the 
purpose: Firstly, the outcome as two large disconnected components instead of some small fragments is the maxi-
mum destruction that can be caused. Secondly, the boundary between communities could be relatively small, i.e., 
the cost of removing edges is much low. Therefore, the choice of K =  2 is valid and feasible.

Impact of initial value X on the LE. As we all know, the optimal solution in Strategy 1, which is based on 
NMF, depends much on its initial value X. The reason is that the gradient descent method in NMF can just find 
local best. So we would like to know the impact on the LE if X changes. Here we replicate the experiments in 
twelve networks for 100 times to get the thresholds of edge percolation, and we display the distribution of them 
in the interval [0, 1] in Fig. 6.

As we can see in Fig. 6, 100 thresholds of edge percolation of the LE for each network is shown in Fig. 6(a–l). 
In each sub-figure, the horizontal axis is the thresholds of edge percolation that may occur. Each probability in 
the horizontal axis is a representative with the fluctuation of 0.05. For example, the bar corresponding to the value 
0.2 on the horizontal axis represents the number of edge percolation thresholds which are in interval [0.15, 0.25]. 
The vertical axis represents the occurrence percentage of different thresholds.

Compared with Fig. 6, the edge percolation threshold of the LE in each network in Fig. 4 is just one random 
occasion. To make comparison between Figs 4 and 6 straight forward, we add each sub-figure in Fig. 4 as a 
bin to its corresponding sub-figure of Fig. 6. Moreover, for better observation, the locations of edge percolation 
thresholds and peaks of the top three measurements with relative small thresholds in added bins are marked. The 
solid rectangles below horizontal axis in each bin have the same color with corresponding measurement, and the 
black straight line with double arrows connects the peak of curve and the colored rectangle. Correspondingly, 
the solid circles on the left of vertical axis in each bin have the same color with corresponding measurement, and 
the dashed line connects the peak of curve and the colored circle. So the top three measurements and their key 
locations can be well shown.
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We can easily find that the edge percolation threshold of the LE in each bin almost falls in the interval with 
the highest occurrence percentage respectively. Overall, the threshold of edge percolation of the LE is much 
lower than those of the other methods. In detail, the worst case, i.e., the largest threshold that occurs in Fig. 6, 

Figure 4. Edge percolation results of different measurements on twelve real networks. From plots (a) to (l) 
are the karate, dolphins, adjnoun, celegansneural, lesmis, polbooks, football, Jazz, polblogs, USAir, Yeast, power 
network, respectively. Seven curves are corresponding to the seven structural indices in plots (a–g), while the 
index of bridgeness isn’t shown in the other networks because of its complexity.
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is also much better than the thresholds of edge percolation of the other methods such as in (a), (b), (d), (h) and 
(k). In Fig. 6(c) and (g), the worst case of the LE is as good as the other measurements at least. Notice that the 
largest thresholds in Fig. 6(i) and (e) perform worst especially in 6(i). However, the percentage of the worst cases 

Figure 5. Edge percolation results of different values of K in the LE on twelve real networks. Four curves are 
corresponding to the various K ranging from 2 to 8 by step of 2.
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Figure 6. Distribution of thresholds of edge percolation with 100 random initial values of X in the LE on 
twelve real networks. Each value of bar is the percentage of occurrences corresponding to different thresholds 
of edge percolation of the LE. Since the edge percolation thresholds of the LE in Fig. 4 are just one random 
occasion compared with Fig. 6, each sub-figure in Fig. 4 is added as a bin to its corresponding sub-figure of 
Fig. 6. Moreover, for better observation, the locations of edge percolation thresholds and peaks of the top three 
measurements with relative small thresholds in added bins are marked.
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in Fig. 6(i) and (e) is no more than three percent, whose effect can be ignored. As to Fig. 6(j) and (l), the lowest 
threshold of the LE is still larger than the threshold of edge betweenness, which implies that the index of edge 
betweenness is suitable to networks with no obvious communities. However, the peak of the LE is much higher 
than that of edge betweenness with small increasement of f in bins of (j) and (l). In a word, the LE approach is 
more versatile and performs better in networks with obvious communities where the establishment of an edge 
depends on the similarity of nodes. Besides, random initial value of X is feasible for the LE to quantify the edge 
significance on maintaining global connectivity.

Conclusion
Analyzing and profiling the structures of real networks is an important step in understanding and controlling 
dynamic behaviors on networks. Inspired by the established systems of measuring the significance of nodes and 
the strength of edges, we believe the edge significance on maintaining the global connectivity is an important 
research area. In this article, we proposed an approach called LE(link entropy). Compared with six acknowledged 
topological indices, firstly, the speed of disintegration in the edge percolation process by the LE is much faster, 
that is to say, the size of largest connected component is much smaller after removing the same number of edges, 
secondly, the threshold of edge percolation is much lower and the peak corresponding to its threshold is the 
highest, indicating that the LE performs best in characterizing the edge significance. Meanwhile, we discuss the 
impact of K and initial value X in the LE. Empirical analysis reveals it’s better to set K as 2, which means the cost 
of removing edges between two communities is less than other situations. In summary, the index of LE is more 
effective to help us in some real-life applications such as controlling the spreading of diseases or rumor and with-
standing the targeted edge attacks especially in networks with obvious communities. Moreover, the application of 
LE can also be generalized to other network configurations such as bipartite networks directly.

In addition, we have a try on weighted or directed networks by using the LE directly and the findings are as 
follows: Firstly, the LE performs not bad, but not as well as that in undirected and unweighted networks. Secondly, 
the LE still works better than the edge betweenness centrality in networks with obvious communities, but much 
worse in networks with no obvious communities. After all, the constructing mechanism in Strategy 1 is originally 
designed for undirected and unweighted networks.

It is worth noticing that the LE is based on the NMF in Strategy 1, which makes it very hard to be applied in 
the large-scale networks. In order to settle the problem, we may have to profile the hierarchical structures of net-
works by community detection algorithms at first, and then assign the LE to the detected communities by taking 
each community as a node, and distribute its value to the internal nodes in each community finally. In essence, 
the quantification of edge significance has a huge space to improve itself. Moreover, research on more large-scale 
networks will also be a part of our future work.
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