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ABSTRACT

Broadly, computational approaches for ortholog as-
signment is a three steps process: (i) identify all
putative homologs between the genomes, (ii)
identify gene anchors and (iii) link anchors to
identify best gene matches given their order and
context. In this article, we engineer two methods
to improve two important aspects of this pipeline
[specifically steps (ii) and (iii)]. First, computing
sequence similarity data [step (i)] is a computation-
ally intensive task for large sequence sets, creating
a bottleneck in the ortholog assignment pipeline.
We have designed a fast and highly scalable
sort-join method (afree) based on k-mer counts
to rapidly compare all pairs of sequences in a
large protein sequence set to identify putative
homologs. Second, availability of complex
genomes containing large gene families with preva-
lence of complex evolutionary events, such as du-
plications, has made the task of assigning orthologs
and co-orthologs difficult. Here, we have developed
an iterative graph matching strategy where at each
iteration the best gene assignments are identified
resulting in a set of orthologs and co-orthologs.
We find that the afree algorithm is faster than
existing methods and maintains high accuracy in
identifying similar genes. The iterative graph
matching strategy also showed high accuracy in
identifying complex gene relationships. Standalone
afree available from http://vbc.med.monash.edu.au/
�kmahmood/afree. EGM2, complete ortholog as-
signment pipeline (including afree and the iterative
graph matching method) available from http://vbc
.med.monash.edu.au/�kmahmood/EGM2.

INTRODUCTION

Identifying orthologous relationships among genes
between genomes of various organisms is an essential
task in comparative genomics (1). This information is
useful to identify shared evolutionary history as well as
functional counterparts between shared segments in
genomes. Recent advances in sequencing technologies
have resulted in proliferation of genome data at unprece-
dented rates, widening the gap between annotated genes
and those without any ascribed functional information.
Computational methods for identifying gene orthologs
between a pair of genomes usually involves three steps:
(i) sequence similarity is calculated between all gene se-
quences in the genomes being compared; (ii) anchor or
similar genomic regions in the form of gene strings are
identified; (iii) finally, anchor regions are used to link
genes that are potentially functional counterparts. In this
article, we focus on two important steps [(i) and (iii)]
above: we engineer a fast and accurate method for
calculating initial sequence similarities and next we
develop a method that effectively identifies complex
gene–gene relations.
Calculating initial sequence similarity, by all-against-all

comparison, is an important foundation of the gene
matching process. Techniques for sequence comparison
can be broadly categorized into alignment-based and
alignment-free methods. Alignment algorithms generally
involve a dynamic programming step to produce an
optimal match between molecular sequences [for extensive
review see Ref. (2)]. Alignment-based algorithms are
powerful and have been developed to detect similarity
between molecular sequence (genes or proteins) at
various levels; global or complete sequence comparison
(3) and local or subsequence comparisons (4). Although
several efficient implementations have been developed, the
computational load for comparing a large number of
sequences still poses a challenge for alignment based
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approaches (5). Later, heuristics-based alignment
approaches [such as FASTA (6) and BLAST (7,8)] were
proposed to overcome the computational costs. In
general, these methods start by compiling a list of
substrings (also termed k–mers) of certain length. The
sequence database is then scanned to identify sequences
that contain these words. Finally, matched words are
extended to maximize the match length until the score
falls below the threshold. Heuristic alignment methods
are efficient when searching a large database of sequences.
However, in the context of methods for calculating
orthologs, it is only required to identify all sequence that
share a prescribed similarity [step (i) above] and not the
sequence alignment itself. Further, in the context of com-
parative genomics, tools used to perform this task are
usually very laborious both in terms of time and manual
intervention (for example, data formatting). For example,
a typical sequence set of human (�22 000) and mouse
(�23 000) genes would result in millions of hits using the
BLAST tool (taking �10 h on a desktop computer).
Therefore, it is desirable for gene matching pipelines in
comparative genomics to provide a fast and efficient alter-
native to external software. Alignment-free methods for
sequence comparison provide an efficient alternative.
Recently, such techniques have gained popularity for
large-scale comparison of biological data. Alignment-free
methodologies have been applied to traditional sequence
comparison and clustering of molecular sequences,
searching regulatory and transcription factor binding
sequence motifs in genome sequences, and large-scale
phylogeny studies such as that involving 884 prokaryote
organisms (9–14). Recently, alignment-free methodologies
have also shown promise in searching for local and global
structural similarities in the growing protein structure
databases (15). Alignment-free methods are based on the
underlying hypothesis that two similar sequences share a
prescribed proportion of k–mers (16). These methods
generally work by calculating the number of shared
k–mers between a sequence pair, followed by calculating
a statistical similarity measure based on these words.
Several alignment-free sequence comparison methods
have been been proposed. [See Ref. (5) for an extensive
review].
In this work, first, we explore alignment-free sequence

comparison in the context of automated gene matching.
We engineer a new alignment-free sequence comparison
method termed afree that can rapidly perform
all-against-all similarity search. Essentially, afree
works on the hypothesis that similar sequences share
k–mers, or in other words, the higher the number of
common k–mers between two sequences, the higher is
their similarity. The afree method works by calculating
and efficiently storing k–mers for every sequence in the
dataset. This is followed by a series of calculations and
heuristics that, in a single process, calculates the similarity
between every sequence pair in the dataset. This is differ-
ent from current methods that perform large scale com-
parisons based on a series of pairwise sequence
comparisons (9,10).
The next focus of this study is to develop a method

that can help understand complex gene relationships.

Several computational algorithms have been developed
to match genes between a pair of genomes in an effort
to identify orthologs including MAGIC (17), FISH (18),
DAGchainer (19), ADHoRe (20), OSfinder (21) and EGM
(22). As more and more complex genomes are being
sequenced, especially eukaryotics genomes, identifying re-
lationships between genes has become more complex.
Identifying one-to-one orthologous relationships had gen-
erally been seen to be sufficient for guiding information
about gene function and evolution for smaller related
species (23,24). However, the task of assigning gene
orthologs has become more complex with the availability
of large genomes where evolutionary events such as seg-
mental duplications as well as whole genome duplications
following speciation are not uncommon. Such evolution-
ary scenarios often lead to two or more genes orthologous
to one or more genes, known as co-orthologous genes
(24–29). Therefore, identifying co-orthologs is an import-
ant comparative genomics task and is commonly used to
discover and transfer experimental gene function informa-
tion between mammals and model experimental systems.
Example cases include Drosophila discs large (dlg) gene
(30,31), hox cluster genes (32) and Fugu genes (29) like
synapsin (SYN) (33). To achieve this, we develop an itera-
tive graph matching approach which at each iteration
identifies gene matches such that the sum total of similar-
ity scores for all gene matches is maximized.

Hence, this article reports two advancements to the gene
matching pipeline:

(1) A highly scalable alignment-free sequence compari-
son method for efficient detection of gene similarities.

(2) A new method to identify co-orthologous genes
between genomes has been designed that will
provide more insights to infer gene function and
evolution.

The methods have been incorporated within the
Encapsulated Gene-by-gene Matching (EGM) pipeline
(22), resulting in a new, more efficient software, EGM2.

MATERIALS AND METHODS

This section explains our alignment-free based method for
sequence comparison and our graph theoretic approach
for matching gene co-orthologs.

Alignment-free sequence comparison, afree

Broadly, alignment-free comparison is performed in two
steps. In the first step, the number of shared k–mers are
calculated. This is followed by a step where a statistical
measure is employed to quantify the shared k–mer count
to a similarity measure between each sequence pair. As
is the case with gene matching across whole gen-
omes involving a large volume of sequences, it is import-
ant to calculate the shared k–mer counts in an efficient
manner. Our efficient, highly scalable method is explained
below.

Definitions. Let G1 and G2 denote two genome sequences
represented as a collection of m and n protein sequences,
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respectively: G1={p1, p2, p3 , . . . , pm} and G2={q1, q2,
q3 , . . . , qn}. Any protein p={a1, a2 ,. . .} is a finite
sequence of amino acid letters from the standard 20
letter alphabet. A k–mer from sequence p is any (contigu-
ous) substring of size k that is permissible given the
sequence length.

Algorithm. To perform an all-against-all comparison, the
dataset of sequences in G1 and G2 are concatenated:
G3=G1[G2={p1, . . . pn , q1 , . . . , qn}. A sort-and-join
strategy is used to efficiently build a shared k–mer
count for each protein pair in the concatenated set
followed by measuring pairwise similarity. This is
achieved in three steps described below:

Step 1: assembling sequence words: a list L of tuples is
constructed for G3. Each tuple in the list consists of three
fields: (i) the k–mer string, (ii) the protein sequence
index it belongs to and (iii) the offset of the string
from the start position in the protein sequence.
Construction of the list is straightforward as it involves
sliding along, with a window of length k, the sequences in
G3 one by one. (To ensure efficiency in the join phase [see
step (ii)] of the algorithm, for each sequence in G3, only
unique k–mers in that sequence are recorded in L.) To
allow our algorithm to scale to very large number of se-
quences, we pack each tuple in L into a 64-bit machine
word, i.e. each tuple is encoded as a 64-bit integer. The
tuple fields (k–mer, index and offset) are packed as
follows: each amino acid letter in the k–mer is encoded in
dlog2 20e=5 bits. (We use a canonical ordering of amino
acids and encode them as integers in the range [0, 19].) The
remainder of the 64-bit word is packed with the protein
sequence index and the k–mer word offset.

Specifically in our implementation, we set aside the first
k� 5< 32 (most-significant) bits in the 64-bit word to
encode each k–mer. This allows a maximum k–mer
length of 6 (occupying 6� 5=30 bits). In the remaining
34 bits, 14 least-significant bits are used to encode the
offset and the rest the protein sequence index. We note
that this configuration allows us to compare, at its
maximum, 220& 1 million protein sequences of length
up to 214=16 384 amino acids each.

Next, the list L is sorted purely on the k–mer as the sort
key. We implement a highly efficient least significant digit
(LSD) radix sort (see ‘Results’ section). LSD radix sort for
fixed-sized keys grows linearly (34). We use a radix size of
8 bits, which allows us to sort L on the k–mer key
(encoded in the tuple) in a maximum of four linear
sweeps through L. (The number of sweeps through the
list in sorting is automatically adjusted based on the user
defined size of k. For example, when k=3, the sorting
requires simply two sweeps.) A crucial factor for the effi-
ciency achieved in our sorting phase is due to significant
cache locality derived by economically representing L as
an linear array of 64-bit words. (See Figure 1 for an
illustration.)

Step 2: counting shared k–mers: let M=(mij)1�i, j�m+n

be a matrix where mij represents the number of k–mers
that overlap between any two proteins pi and pj in G3. The
matrix M can be computed efficiently by performing a
relational join of the sorted list L with itself (i.e. L ffl L)).

The operation to compute the counts mij proceeds as
follows: initially, a pointer ptr1 is set to point to the first
tuple in the sorted list L . Next pointer ptr2= ptr1+1 is
defined and is used to traverse L while L[ptr1].k-mer =
L[ptr2].k-mer i.e. until the k–mer in the tuples pointed by
ptr1 and ptr2 match. Together ptr1 and ptr2 define the
range where equal k–mer words are found. Next, based
on the range [ptr1, ptr2] in the list L, for every pair of
tuples in that range containing the corresponding
protein indices (L[ptr1].index� pi and L[ptr2].index� pj),
the counter mij is incremented. We then set ptr1= ptr2
and ptr2= ptr1+1 and repeat the above process until
ptr1 reaches the end of the list L. Figure 2 gives the
pseudocode for the relational join operation described
above.
A significant advantage of this join strategy on a sorted

list is that the entire set of sequences in G1 and G2 are
compared in a single process. Further, the join operation
on sorted lists benefits from spatial locality of reference
and remains mostly linear as its complexity depends
quadratically on the size of the largest range of common
k–mers in L. Recall that for each sequence in G3 only
unique k–mers are used to populate the tuples in L. That
is, if a sequence contains a repetitive k–mer then only the
first occurrence is recorded in the list. This significantly
reduces the chances of ‘blowups’ in the join operation.
(This can be inferred from Figure 4b where the wall

Figure 1. Constructing the sorted list of tuples. The figure illustrates an
example construction of the sorted list of tuples L. Each tuple in L is
composed of three fields: the k–mer, the index of the protein in the
genome data and the offset from the start of the sequence. With
k=3, proteins p1, p2 and p3 form 8, 6 and 3 k–mers, respectively.
Binary form of the tuples AYY and QDY is depicted on the right. Also
note that only unique k–mers are recorded in L to improve efficiency
in the join phase of the algorithm [see step (ii)].
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clock times of the join step across several genome-wide
comparisons are plotted.)
Step 3: similarity measures: a similarity measure is

defined as a function that quantifies the k–mer counts
between any pair of protein sequences. As mentioned
earlier the underlying notion is that proteins with large
shared k–mer counts are likely to be similar. A number
of methods have been previously proposed to calculate the
similarity between two sequences on this idea (see
‘Introduction’ section).
Here we implement the Sørensen-Dice similarity index

(SD) (35,36) as a measure of similarity. The SD similarity
index is a simple statistic to evaluate the similarity between
sample sets. For two proteins pi and pj of lengths li and lj,
respectively, the total number of k–mers in the two se-
quences are Ki= li� k+1 and Kj= lj� k+1, respectively.
Therefore, Ki and Kj form two samples of k–mers. While
mij is the number of k–mers shared between the two
sample sets. Given Ki, Kj and mij, the SD similarity
index is calculated as:

SD ¼
200mij

Ki þ Kj

We note that SD takes the value in the range [0, 100],
where a score of 100 indicates identical sequences. The
SD similarity index has commonly been used in molecular
sequence comparison and retrieval programs such as Refs
(37,38). Finally, the matrix M is updated to store SD simi-
larity score based on the counts mij.

We additionally implement several strategies to improve
the accuracy of the similarity score. For instance, two se-
quences are only compared if the length of the shorter
sequences is above a prescribed proportion of the longer
sequence. This reduces the chances of potentially mislead-
ing matches based on small motif or domain level similar-
ity. From the perspective of efficiency, a large number of
comparisons are filtered and only comparisons of interest
(in terms of gene matching) are performed.

Determining Co-orthologs

The gene matching pipeline described here builds on the
EGM method (22). EGM models the comparison between
two genomes as a bipartite graph with weighted edges
(each node is a protein sequence in the genome). Each
edge between proteins is weighted on their sequence simi-
larity and reinforced when a continuous stretch of proteins
in the two genomes share a prescribed level of similarity
(gene segments or strings are more likely to be conserved).
Taken together, EGM uses a segment length-dependant
edge weighting scheme (derived from sequence similarity
and gene context) to calculate gene matching by trans-
forming the task to a linear assignment problem. EGM
then employs the Hungarian method for weighted bipart-
ite graph matching to identify best gene matches i.e. genes
are matched that maximize the synteny given the weights.
However, this method has a limitation, where gene
matches follow the simple one-to-one relationship. In the
case of large and complex genomes with segmental dupli-
cations among other complex evolutionary rearrange-
ments, one-to-one relationships are not sufficient to fully
map gene relationships between genomes. Here we
describe a simple iterative matching strategy that identifies
all gene matches or co-orthologs between genomes.

Define G01 and G02 as the encapsulated forms of the
genome G1 and G2 . In short, encapsulation is a transform-
ation of a genome from a set of gene sequences to a set of
integers where each integer identifies its respective gene
family. These gene families are computed using
single-linkage clustering, where the measure of similarity
between nodes (genes) is given in the matrix M. Further,
define a weighted bipartite graph G ¼ ðV � G01 [ G

0
2;EÞ,

where V is the vertex set of the two disjoint encapsulated
genomes (G01 and G02), and E is the set of all edges between
every node in the encapsulated genomes. To reduce the
number of spurious and possibly non-orthologous
matches mainly rising from non-homologous genomic
segments, the matrix M is not used directly to extract
edge weights for E . Instead, we define an ad hoc weight
matrix W=(wij)1�i, j�m+n, where w(i, j) corresponds to an
edge in E. The matrix W is computed using a
seed-and-extend strategy that reinforces homologous
gene segments (strings of genes) i.e. longer stretches
of homologous genes (nodes) will have a larger weight.
A more detailed description of the approach is presented
in Ref. (22).

Given G and W, we compute gene matches using the
Hungarian method (39) for maximum weight bipartite
graph matching approach [see Ref. (40) for implementa-
tion details]. This produces the maximum weight

Figure 2. Join phase. Pseudocode for the list join [Step (ii)] to count
the number of shared k–mers.
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‘one-to-one’ assignment in the bipartite graph i.e. one gene
is matched with one other gene. In order to identify
co-orthologs, however, an iterative Hungarian algorithm
strategy provided a good solution (41). Briefly, the itera-
tive approach works in the following manner.

(1) Apply the Hungarian method to W with respect to
the current matching C to produce a set of matching.
In other words, the first iteration of the Hungarian
algorithms would results in a current gene match set
C�E.

(2) For each matched edge in C=(pa, qb) , . . ., (pi, qj)
where p 2 G01 and q 2 G02, the edge weights
(wa, b , . . .,wi, j) in W are set to 1. This ensures that
the current gene matching is not the ‘best’ available
match for the next iteration.

(3) The modified weight matrix W is then used as input
for the next graph matching iteration [steps (i) and
(ii)] until a specified number of iterations are per-
formed or no more matches are found.

This results in the identification of multiple gene matches
that collectively form a comprehensive set of one-to-many
or many-to-many gene relationships, thus identifying
putative co-orthologs.

RESULTS AND DISCUSSION

Two main algorithmic enhancements to the EGM gene
matching pipeline have been described here; (i) an auto-
mated alignment-free sequence comparison method and
(ii) a method to identify of co-orthologs. The aim of
these enhancements is to fully automate the task of
matching gene orthologs between genomes. To evaluate
the effectiveness and performance of our methods, we
have performed several experiments. Comparisons were
performed at two levels. On a relatively smaller scale, we
compared the gene set of Human chromosome X versus
Mouse chromosome X, Human chromosome 20 versus
Mouse chromosome 2, Mycobacterium Tuberculosis
versus Mycobacterium Leprae. On a larger scale, we
compared the entire gene set in the Human, Mouse and
Rat genomes. Protein sequences for the Human, Mouse
and Rat genomes were obtained from the Integr8 database
(42) and the Mycobacterium datasets were obtained from
the NCBI Genbank database.

The performance of afree was evaluated against
BLAST as well as the recently published UBLAST (10)
tools.

Evaluating afree

The BLAST tool is a standard method used for calculating
sequence similarity between protein sequences and is
commonly employed in gene matching to calculate an
initial sequence similarity matrix (22). Therefore, we
used data generated with BLAST for evaluating afree
against the state of the art UBLAST (10). The UBLAST
tool performs rapid sequence search and works on the
hypothesis that most sequence comparisons are not essen-
tial and only a few top hits (sequences with high number
of common k–mers) can be compared to improve

performance. This feature is described by the maximum
targets feature in the tool. The performance is evaluated in
term of precision and recall values. Sequence matches
identified by BLAST are considered true. Precision is
defined as the fraction of matches identified that are true.

precision ¼
true positive matches

total reported matches

While, recall is defined as the fraction of all true matches
that are identified.

recall ¼
true positive matches

total blast matches

The BLAST program was executed using default par-
ameters and the E-value threshold set at 0.001. Both
afree and UBLAST were executed using the k=5.
For a more comprehensive analysis, UBLAST searches
were performed using both the complete all-against-all
search (from now on denoted as UBLAST) as well as
the maximum hits set at 50 (from now on denoted as
UBLAST50) and similarly, the E-value threshold set at
0.001. The afree approach uses a threshold on SD
score to determine sequence similarity. First we performed
analysis to understand the relationship between SD scores
and percentage identity from sequence alignments. Next,
we analyzed the relationship between the SD score and
pairwise sequence identity as reported by BLAST.
Figure 3 shows the relationship between the SD score
and percentage sequence identity. It is evident that
sequence identity and the SD distance score are related
and their relation can be approximately formalized by
the following function, where � is an empirically
determined scaling parameter:

fðSDÞ ¼
expð��=SDÞ � 100 if SD4 0
0 if SD ¼ 0

�

Figure 3. SD similarity measure. This figure illustrates the relationship
between the SD score and the corresponding pairwise sequence identity
(attained from BLAST). The Human and Mouse chromosome X com-
parison was used to perform this analysis with k=5 and SD> 15. It is
clear that the SD statistic is correlated with the percentage sequence
identity. Therefore, it is a reliable measure to quantify similarity based
on shared k–mers.

PAGE 5 OF 11 Nucleic Acids Research, 2012, Vol. 40, No. 6 e44



For the purpose of gene matching, the aim is to identify
closely related sequences. It is clear that k–mer based
distance measures are suitable; however, for more
diverged sequences it is still not well understood if such
measures are reliable, at least to the level of low sequence
identities (43). Therefore, in all cases two protein se-
quences are considered similar if their similarity measure
(SD score, E-value, sequence identity) is within a
prescribed threshold and the length of the shorter of the
two protein sequences is at least 50% of the other (the
proportionality threshold reduces the chance of inferring
similarity based on short motifs). The SD score thresholds
are determined empirically for each experiment.
Table 1 shows the results from five different compari-

sons between varying sizes of datasets. In all cases, four
methods (BLAST, UBLAST, UBLAST50—with
maximum targets set at 50 and afree) were used to cal-
culate all-against-all sequence comparison. The results
show that afree and UBLAST are significantly faster
than BLAST. Expectedly, in comparison to UBLAST,
the UBLAST50 showed a significant speed-up as fewer
comparisons are performed. The UBLAST50 speed-up
did not significantly affect the number of observed
similar sequences (recall) in smaller datasets (chromosome
level) while maintaining a high precision value (see
Matches, precision and recall values in Table 1).
However, in the case of larger datasets (Human, Mouse
and Rat), we observed that UBLAST was able to identify
considerably larger number of similar sequences in com-
parison to UBLAST50, again shown by the higher recall
values, with a minor decrease in precision. Overall,

however, our afree implementation is the fastest of the
methods compared and both UBLAST and afree
maintain similarly high precision. Further, in all compari-
sons our afree tool was able to identify a larger number
of true matches as represented by high recall values. This
is important as the aim of such comparison is to identify
maximum number of putative homology relationships
providing a larger cover on the genomes being
compared. Our afree approach performs better than
both the complete and maximum target versions of
UBLAST, mainly because UBLAST performs the
sequence comparison on task-by-task basis i.e. given a
dataset of sequences, each sequence is iteratively used as
a query and searched against the database. While our
afree approach achieves higher performance by
calculating the comparison in a single bulk operation i.e.
in a single iteration, all sequences are compared with every
other sequence in the dataset.

afree performance. Next, we analyze the efficiency of
the afree algorithm by examining individual compo-
nents of the algorithm. In the first case, we assess the scal-
ability of the sort phase. We randomly generate k–mer list
of size ranging from 1000 to 100 million tuples. Figure 4a
shows the results of the experiments where it is evident
that the sort time grows linearly with the list size, a
highly desirable feature for the algorithm to be highly
efficient. The largest list containing 100 million randomly
generated k–mers (k=5) was sorted in < 12 s (note that
the list for the Human versus Mouse comparison contains
21 million tuples).

Table 1. Comparison between BLAST, UBLAST and afree

Comparisons Method SD score> Time (min) Matches TP Precision Recall Avg. id

Human Chr. X versus Mouse Chr. X BLAST – 1.8 6254 6254 1.000 1.000 88.1
UBLAST – 0.31 4984 4979 0.999 0.796 92.7
UBLAST50 – 0.12 4984 4978 0.999 0.796 92.7
afree 15 0.01 5364 5362 0.999 0.857 92.8

Human Chr. 20 versus Mouse Chr. 2 BLAST – 5.9 21 441 21 441 1.000 1.000 64.9
UBLAST – 0.54 14 358 14 347 0.999 0.669 68.3
UBLAST50 – 0.19 11 839 11 828 0.999 0.552 71.6
afree 9 0.05 14 848 14 851 0.999 0.693 66.5

Mycobacterium tuberculosis versus M. leprae BLAST – 8.7 9955 9955 1.000 1.000 90.6
UBLAST – 1.73 8070 8044 0.997 0.808 94.4
UBLAST50 – 0.4 8061 8039 0.997 0.808 94.5
afree 10 0.05 9330 9310 0.998 0.935 93.1

Human versus Mouse BLAST – 600 352 209 352 209 1.000 1.000 67.7
UBLAST – 39.45 176 666 171 967 0.973 0.488 76.5
UBLAST50 – 4.53 147 537 145 542 0.986 0.413 80.9
afree 10 4.17 202 364 198 449 0.981 0.563 79.3

Mouse versus Rat BLAST – 560 573 787 573 787 1.000 1.000 66.4
UBLAST – 42.04 285 901 278 269 0.973 0.485 74.9
UBLAST50 – 4.5 223 845 219 675 0.981 0.382 80.4
afree 10 4.32 337 092 332 559 0.987 0.579 76.4

This table shows performance comparison between BLAST, UBLAST (all matches), UBLAST50 (maximum target=50) and afree (see details in
text). Several all-against-all sequence comparison were performed ranging from chromosome scale data to large whole genome scale data. Expectedly,
BLAST proved to be the most time intensive. UBLAST and UBLAST50 provide a significant speed-up to BLAST, but our method afree is the
fastest. We also assessed the accuracy of UBLAST and afree by comparing homologous pairs against BLAST output that was considered to be
true positive homologs. The precision value shows that both UBLAST and afree maintain high precision. However, afree shows better ability in
identifying a larger fraction of true positive homologs as indicated by the recall values. Overall, afree provides a significant speed up to BLAST
while maintaining a very high precision and recall.
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Figure 4b shows the time taken by various phases in the
algorithm on real data. The figure shows that the majority
of the time is spent in the join phase whose complexity
grows quadratically with to the size of the largest run
(block) of k-mers that are common. However, even for
the large genome scale comparisons such as Human
versus Mouse, afree remains the fastest of the methods
compared.

Identifying co-orthologs using iterative EGM

Next we performed experiments to evaluate the perform-
ance of various initial sequence similarity data inputs
to our EGM ortholog identification pipeline (see
‘Determining co-orthologs’ section). Five comparisons,
as described in the previous paragraph, were performed
with initial sequence similarity data attained from BLAST
(denoted as EGMB ), UBLAST (denoted as EGMU) and
the afree (denoted as EGMAF) approach. Note that
UBLAST50 was not used as the aim of this experi-
ment is to identify the maximum number of orthologs
and further, UBLAST50 � UBLAST. We used the
EnsEMBL Compara (44) dataset of orthologs to assess
the approximate accuracy of identifying orthologs and
co-orthologs using the various similarity data sources
(no Compara data available for the Mycobacterium spp).
The number of identified orthologs overlapping with the
Compara data were considered true positives. We empir-
ically determined that in most cases four iterations were
sufficient to identity orthologs (see Figure 5, where each

iteration reveals unique pairs of putative orthologs repre-
sented by different colors).
Table 2 summarizes the results. The results show that

EGMB identified the largest number of orthologs among
the three sources. Further, the average sequence identity
of the EGMB orthologs is 79.73%, lower than both EGMU

(82.4%) and EGMAF (83.38%) based orthologs,

(b)(a)

Figure 4. afree performance. This figure illustrates the performances over time of the afree method. (a) Shows the efficiency and scalability of
our sorting implementation list containing 100 million tuples is sorted in < 12 s (and in the Human versus Mouse comparison, list contains 21 million
tuples). (b) Shows that the join step takes the largest proportion of time in the program execution.

Figure 5. Iterative EGM. This figure illustrates the gene matching
calculated by the iterative EGM pipeline. The Human and Mouse X
chromosomes orthologs and co-orthologs are presented as a dotplot
where each dot represents a gene match and colors represent the iter-
ation (Iteration1-red: 424 orthologs with average sequence identity of
85.1%, similarly, iteration2-green: 71,69,7%, iteration3-blue: 14, 63.2%
and iteration4-purple: 5, 74.2%).
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suggesting that more distantly related proteins are
matched. In comparison to EGMU, the EGMAF

approach leads to a higher number of ortholog matches.
The higher count means that a larger proportion of the
genome is matched which is important especially in
genome annotation. In terms of precision (fraction of
true identified orthologs), interestingly, we observed that
the EGMAF and EGMU approaches lead to higher preci-
sion compared with BLAST. These data suggest that
k–mer-based approaches are robust enough to accurately
determine orthologs at varying genome sizes. Among
EGMU and EGMAF, the precision values were

comparable, except the Human Chr. X versus Mouse
Chr. X and Mouse versus Rat comparisons, where
EGMAF and EGMU performed better, respectively.
However, the EGMAF approach maintained a higher
orthologs count among all comparisons. The comparison
with the Compara dataset revealed that the iterative
Hungarian method strategy (see ‘Determining
co-orthologs’ section) is able to accurately and robustly
match gene orthologs and co-orthologs.

We further analyze the orthologs identified in the
Human versus Mouse comparison (21 461 and 23 202
genes, respectively). The new iterative EGM pipeline
identified a total of 26 916 orthologs based on the
BLAST similarity data (Table 2), with 14 485 of these
gene matches overlapping with the Compara orthologs.
Similarly, EGMU and EGMAF lead to 11 658 and 13 505
true positive orthologs. Next we analyze these true
orthologs to assess EGM’s ability to identify co-orthologs.
The Compara datasets represents the cardinality of
orthologs relationships as being ‘one2one’, ‘one2many’
or even ‘many2many’, with the later two representing
co-ortholog relationships. Table 3 lists the number of
co-orthologs correctly identified by EGM at each iter-
ation. Expectedly, EGMB identified the most
co-orthologous relationships, ahead of EGMAF and
EGMU, respectively.

We also evaluate the overall performance of the itera-
tive EGM by comparing the orthologs identified by
gene matching approaches DAGchainer (19) and
ADHoRe (20). Table 4 shows the results for the Human
versus Mouse and Mouse versus Rat comparisons
performed using EGMAF, DAGchainer and ADHoRe.

Table 2. Iterative EGM for identifying complex orthologous relationships

Comparisons Method Matches per iteration Total TP Precision Recall Avg. id

1 2 3 4

Human Chr. X versus Mouse Chr. X EGMB 448 90 28 22 588 418 0.711 0.60 78.9
EGMU 358 64 23 15 460 335 0.728 0.48 81.1
EGMAF 395 43 5 3 446 373 0.836 0.54 85.9

Human Chr. 20 versus Mouse Chr. 2 EGMB 365 14 3 1 383 344 0.898 0.75 83.2
EGMU 295 8 1 1 305 276 0.905 0.61 85.4
EGMAF 347 11 0 0 358 324 0.905 0.71 84.7

Mycobacterium tuberculosis versus M. leprae EGMB 1390 92 31 15 1528 – – – 79.7
EGMU 1273 65 20 11 1369 – – – 80.8
EGMAF 1358 71 18 9 1456 – – – 80.5

Human versus Mouse EGMB 15 155 6107 3436 2218 26 916 14 485 0.538 0.74 76
EGMU 12 303 3877 2222 1651 20 053 11 658 0.581 0.60 79.5
EGMAF 14 018 5003 2645 1543 23 209 13 505 0.582 0.69 79.4

Mouse versus Rat EGMB 17 230 7618 4877 3610 33 335 17 187 0.516 0.82 80.8
EGMU 15 443 5262 3490 2801 26 996 15 199 0.563 0.73 83.9
EGMAF 16 298 6605 4158 2933 29 994 16 406 0.542 0.78 83.5

This table shows the performance of the iterative EGM pipeline using different input homology data sources (BLAST ! EGMB, UBLAST !
EGMU, afree ! EGMAF). Various gene matching comparisons were performed with four graph matching iterations. Identified orthologs that
overlapped with Compara dataset of orthologs were considered true positives (TP). In all comparisons, EGMB identified the most true orthologs,
however, showed the lowest precision especially for large whole genome-scale comparisons. EGMAF was the next best in terms of the number of true
orthologs while maintaining high precision. Both EGMAF and EGMU maintained similar high precision, except in the Human Chr. X versus Mouse
Chr. X and Mouse versus Rat comparisons where EGMAF and EGMU resulted in higher precision, respectively. Together with the recall values, the
data suggest that the iterative EGM pipeline is a reliable and effective method for identifying complex ortholog and co-ortholog relationships.
Further, the data shows that afree and UBLAST provide reliable alternatives to BLAST based input data to gene matching pipelines. (No compara
orthologs are available for the Mycobacterium genomes above).

Table 3. Ensembl Compara co-orthologs (Human versus Mouse)

Iteration Co-orthologs

EGMB EGMU EGMAF

1 836 697 744
2 612 501 552
3 261 234 220
4 175 159 137
Total 1884 1591 1653

The table shows the performance of different input similarity data
(BLAST ! EGMB, UBLAST ! EGMU, afree ! EGMAF) in
determining Human and Mouse co-orthologs. Each gene mapping iter-
ation presents the number oftrue positive co-orthologs (one-to-many
or many-to-many relationships identified by Ensembl Compara).
Expectedly, EGMB identifies the highest number of co-orthologs
while EGMAF is next best followed by EGMU. These data suggest
that BLAST based data maybe able to identify distant homology rela-
tionships more than the UBLAST and afree approaches, where the
role of shared k–mers in identifying distant homology is not well
understood.
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Both DAGchainer and ADHoRe were run with several
parameters to achieve the highest count of gene matches.
The DAGchainer comparisons were carried out using par-
ameters: �s �I �Z 6 �A 3 �g 50000. Similarly,
ADHoRe experiments were carried out using parameters
r2–cutoff=0.9 max_dist=20. Both DAGchainer
and ADHoRe compute all significant matching genomic
segments between genomes. We extract all gene matches
within these segments resulting in a list of gene matches. In
all cases, the iterative EGM performed better than DAGc
hainer and ADHoRe in terms of the number of computed
orthologs. However, ADHoRe maintained higher preci-
sion with fewer orthologs. Next we analyzed the ability
of three methods to identify co-orthologs (by comparing
against the Compara data, see above). In both the
Human versus Mouse and Mouse versus Rat compari-
sons, EGM identified the highest number of true
positive co-orthologs.

CONCLUSION

We have developed and tested algorithms that significant-
ly help fully automate the non-trivial tasks of gene
matching and identification of homologous genomic
segments. Previously, methods for gene matching such
as DAGchainer (19), ADHoRe (20) and EGM (22) rely
on external applications such as BLAST to provide input
(initial all-against-all similarity) data. However, the use of
external software such as BLAST is resource intensive and
the computational time requirements creates a bottleneck
in the ortholog identification pipeline, especially for
large-scale datasets. In addition, external applications
pose technical difficulties from various, often complicated,
software parameters to manual post-processing to extract
the required data (22). To this end, our alignment-free
approach afree provides a robust and rapid tool for
fast sequence comparisons. The results show that afree

is fast and accurate for smaller chromosome to larger
genome scale data. We compared afree to the tradition-
ally used BLAST application to assess the accuracy and
saw that afree maintains high precision while providing
a significant speed-up. Further comparisons between
afree and UBLAST (a state of the art sequence search
tool) shows that although the two maintain similar high
precision, afree correctly calculates a higher fraction of
true positive matches (recall) with better performance
(Table 1). afree achieves high performance using a
novel fast bulk comparison-based method that calculates
similarity between every sequence pair in the data set.
Current techniques, including UBLAST, perform
sequence comparison in an iterative manner i.e. each
sequence is iteratively used as a query to search against
the reference dataset. Further, the goal of performing an
all-against-all sequence search is to build a matrix of
similarities where the actual pairwise sequence alignments
are not required. Previously, the EGM pipeline (22)
employed the Hungarian method for graph matching to
calculate gene matching on a one-to-one basis (i.e. one
gene is matched to only one other gene from the corres-
ponding genomes). Earlier, such relationships were con-
sidered sufficient for identifying common gene ancestors
(45). However, as mentioned earlier, sequence data from
more complex genomes is fast becoming available making
it increasingly desirable that more complex gene matches
be used than simple one-to-one relationships (26–28).
Larger complex genomes have higher tendency to
contain large protein families and further, evolutionary
events such as speciation and duplications especially in
eukaryotes add to the complexity in correctly matching
orthologous genes. In essence, now the task is not
only to match ‘best’ gene matches (orthologs), instead
the task is to identity all ‘best’ matches (co-orthologs)
given the gene context and order information. To this
end, our iterative EGM strategy based on the Hungarian
algorithm has shown great potential. Results from our
experiments show that the iterative EGM is effective and
accurate in identifying true orthologs and co-orthologs
(Tables 2 and 3). Comparison with DAGchainer and
ADHoRe have also shown that our iterative algorithm
is more effective in identifying co-orthologous relation-
ships as defined by the compara ortholog data sets
(Table 4).
Summarizing, we have devised new methodologies in

order to fully automate the task of rapid gene matching
between genomes. The algorithms are shown to be effi-
cient and accurate. The methods have been implemented
into the new EGM2 pipeline that provides significant per-
formance gains to the previous version. In addition, our
alignment free sequence comparison tool is incorporated
into the EGM pipeline, making it, to the best of our know-
ledge, the first fully independent and automated tool for
large-scale gene matching for ortholog identification. As a
result, we believe that the methods and tools described
here will significantly improve the efficiency in the way
biologists study how genes evolve and eventually their
function.

Table 4. Comparison between DAGchainer, ADHoRe and iterative

EGM

Human versus Mouse Mouse versus Rat

TP CO Recall TP CO Recall

DAGchainer 9338 1017 0.23 11 169 1781 0.26
ADHoRe 11 727 1249 0.28 11 716 1498 0.22
EGMAF 13 505 1653 0.38 16 406 3574 0.53

The table presents the number of co-orthologs (CO) derived from the
set of true positive (TP) matches identified by DAGchainer, ADHoRe
and EGMAF in the Human versus Mouse and Mouse versus Rat com-
parisons. TP orthologs are those matches that overlap with the
Ensembl Compara dataset and the number of co-orthologs are those
that present one-to-many or many-to-many relationships. It is evident
from the recall values that EGMAF is able to identify the highest pro-
portion of true positive co-orthologs. In terms of total gene matches,
ADHoRe (initial input from BLAST) results show high precision (avg.
0.68) with DAGchainer (initial input from BLAST) and EGMAF

(initial input from afree) showing similar precision (avg. 0.57). The
data suggest that afree together with the iterative EGM strategy is an
highly efficient and accurate method for identifying co-orthologous
gene relationships.
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