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Automated pancreas segmentation 
and volumetry using deep neural 
network on computed tomography
Sang‑Heon Lim1,2,4, Young Jae Kim2,4, Yeon‑Ho Park3, Doojin Kim3, Kwang Gi Kim1,2* & 
Doo‑Ho Lee3*

Pancreas segmentation is necessary for observing lesions, analyzing anatomical structures, and 
predicting patient prognosis. Therefore, various studies have designed segmentation models based 
on convolutional neural networks for pancreas segmentation. However, the deep learning approach 
is limited by a lack of data, and studies conducted on a large computed tomography dataset are 
scarce. Therefore, this study aims to perform deep‑learning‑based semantic segmentation on 1006 
participants and evaluate the automatic segmentation performance of the pancreas via four individual 
three‑dimensional segmentation networks. In this study, we performed internal validation with 1,006 
patients and external validation using the cancer imaging archive pancreas dataset. We obtained 
mean precision, recall, and dice similarity coefficients of 0.869, 0.842, and 0.842, respectively, for 
internal validation via a relevant approach among the four deep learning networks. Using the external 
dataset, the deep learning network achieved mean precision, recall, and dice similarity coefficients of 
0.779, 0.749, and 0.735, respectively. We expect that generalized deep‑learning‑based systems can 
assist clinical decisions by providing accurate pancreatic segmentation and quantitative information 
of the pancreas for abdominal computed tomography.

The detection rate of benign or malignant lesions of the pancreas, and subsequent surgery are gradually increas-
ing, owing to the early diagnosis of pancreatic neoplasm, which is a result of the development of imaging modali-
ties, an increase in the health screening program, and the aging of the  population1–4. In particular, cystic tumors 
that are inadvertently identified in the pancreas require continuous follow-up2, 3. This is typically followed by 
computed tomography (CT) scans of the abdomen to observe the increase in lesion size. Subsequently, resection 
of benign or malignant tumors on the endocrine and exocrine function of the pancreas is implemented in the 
long-term, which greatly affects the patient’s quality of  life4–6.

It is necessary to investigate the change in the volume of the pancreas after resection; however, this is difficult 
to apply in clinical practice because it is cumbersome and laborious to obtain the volume of the pancreas from 
abdominal CT using current  technology5, 6. The quantitative pancreatic volume cannot be measured in all patients 
after resection of the pancreas because obtaining the volume of the pancreas is a long and time-consuming task. 
In addition, determining the volume of the pancreas by hand is error-prone for each examiner. Therefore, this 
situation necessitates a computer-aided diagnosis (CAD) system based on artificial intelligence.

Automatically obtaining the volume of the pancreas from abdominal CT scans based on artificial intelligence 
can assist in calculating the quantitative pancreatic volume and the patient’s endocrine and exocrine functions, 
which enables a more scientific and objective treatment for the patients. Therefore, the current study develops 
a technique for calculating the volume of the pancreas based on deep learning technology using abdominal CT 
scan images.

Recently, deep learning (DL)-based semantic segmentation networks were considered more beneficial for 
medical image segmentation tasks compared with traditional image segmentation methods, such as the intensity-
based threshold, morphology, and  geometry7–10. However, accurate pancreas segmentation is a challenging task 
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because the pancreas is structurally diverse, it occupies a small region in the abdomen, and it is closely attached 
to other organs, such as the duodenum and  gallbladder11, 12.

However, a convolutional neural network (CNN)-based method was proposed as a promising method for pan-
creas segmentation, owing to the powerful advantages of the DL method. Subsequently, several studies proposed 
state-of-the-art CNN-based pancreas segmentation approaches via either cascaded or coarse-to-fine segmenta-
tion networks. However, previous pancreas segmentation studies were performed on small study  populations11, 

13, 14 that comprised 82 participants from the National Institutes of Health (NIH) clinical center. Furthermore, DL 
methods are sensitive to the features of the data that are encoded in the network; therefore, clinical assessment 
of the pancreatic segmentation performance is necessary for varied and large datasets. However, to the best of 
our knowledge, DL studies on large CT datasets that contain various pancreatic volumes are scarce.

Therefore, we aim to evaluate the performance of four DL-based three-dimensional (3D) pancreas segmen-
tation networks on 1006 healthy participants. In addition, we evaluate the reliability of the pancreatic-volume 
estimation task using DL-based approaches. In this study, we exploit four semantic segmentation networks based 
on a 3D u-net. One of the four networks is the basic 3D u-net, and the other three networks are configured with 
residual modules, dense modules, and residual dense modules. We assess DL networks using segmentation 
metrics (i.e., dice similarity coefficient, precision, and recall) as well as a regression plot and Bland–Altman plot 
for pancreatic volumetric evaluation.

Methods
Study populations. We acquired abdominal CT images from 1006 patients, who were examined at the 
Gil Medical Center. All patient records were confirmed and retrospectively reviewed based on a clinical diag-
nosis from 2016 to 2019. This study was conducted in accordance with the Declaration of Helsinki and writ-
ten informed consent was obtained from all the participants (IRB number: GDIRB2020-121). This study was 
approved by the Institutional Review Board of the Gil Medical Center. The inclusion criteria for this study were 
as follows: (1) patient did not undergo pancreatic resection, and (2) patient has no benign or malignant tumor in 
the pancreas. The feature of the CT dataset has a slice thickness of 3–5 mm and a pixel spacing of 0.58–0.97 mm. 
We used a CT scanner (SOMATOM Definition Edge, Siemens, Germany), and images were acquired using a 
tube-voltage of 80–150 kVp and tube-current of 52–641 mA.

Preprocessing and experimental setup. Manual delineation was conducted in the 2D axial plane using 
ImageJ (ver. 1.52a, NIH, USA) to generate a gold standard. As the acquired CT volumes have a different voxel-
spacing couple, we unified the voxel spacing of all the volume data; the slice thickness was regularized to 3 mm, 
and the pixel spacing to 1 mm ( z, y, x = 3, 1, 1 ). Moreover, because the manual delineation was conducted before 
conducting volume reconstruction, we simultaneously reconstructed the CT and mask volumes. Based on the 
reconstructed mask volume, a specific margin was assigned to crop the region of the pancreas.

Owing to the irregular shape of the pancreas (x-, y-, z-axis), we cropped the image considering the ratio of 
the depth, width, and height of the pancreas (z:y:x = 1:2:3). Additionally, the volume of the cropped pancreatic 
region varies according to the patient; therefore, bilinear interpolation was applied to create a volume with a 
particular single-channel size (64, 128, 256, 1) (Fig. 1a). The pancreas cropping process was conducted based 
on manual delineation.

The pancreas is attached to other organs, such as the duodenum and gallbladder; therefore, contrast enhance-
ment was applied to the input volume to increase the visibility of the pancreas. First, we adjusted the CT images 
using a window center (60) and window width (400) to clearly observe the region of the  abdomen15. The final 
dataset was generated by applying contrast-limited adaptive histogram equalization (CLAHE) to enhance the 
contrast of the pancreatic region (Fig. 1b)16–19.

The output images and resized images were restored using the same voxel spacing as the raw CT data during 
preprocessing, before input to the network, to evaluate the pancreatic segmentation performance of the network. 
Additionally, we conducted fourfold cross validation on binary images that restored the voxel spacing of raw 
CT data (Fig. 1c). External validation was performed using the Cancer Imaging Archive (TCIA) pancreas-CT 
 dataset14, 20, 21, which was provided by the NIH clinical center (n = 82). The TCIA dataset was split as the ratio of 
10:5:5 for fourfold cross validation. The segmentation performance assessment was performed via a pixel-wise 
comparison between the gold standard and prediction results of the DL network (if probability > 0.5, positive). 
As a result of the assessment, we obtained a confusion matrix (i.e., true positive, false positive, true negative, and 
false negative) from 3D binary volume images.

Network architecture. We exploited 3D u-net-based architectures with skip connections and batch nor-
malization, which consisted of four resolution  steps22–26. All convolution blocks comprised a convolutional ker-
nel size of ( 3× 3× 3 ), dilation  rate27 of ( 1× 1× 1 ), and rectified linear units (ReLUs). The hyper-parameter set-
ting was set to the hyper-parameter that achieved the best performance in all baseline networks. In addition, we 
employed simple 3D upsample layers instead of transposed convolution layers for the decoding steps. Figure 2 
shows the architecture of the residual dense u-net for pancreas  segmentation28, 29. We performed deep learning 
analysis using four semantic segmentation networks that had the same width, depth, and filter size, except for 
specific blocks (i.e., dense blocks, residual blocks, and residual dense blocks). For a network comparison, we 
experimented by replacing the blocks in the residual dense blocks in Fig. 2 with the other specific modules.

Implementation details. This study conducted a deep learning analysis on a Tesla V100 (32 GB) graphics 
processing unit (GPU). The networks were trained using the Adam optimizer (learning rate 0.001) to minimize 
dice loss. We utilized the following frameworks using Python (ver. 3.6.12, Python Software Foundation, USA): 
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Keras (ver. 2.2.5), TensorFlow-GPU (ver. 1.15.4). The training settings of all networks are as follows: batch size, 
2; epoch, 500.

Figure 1.  (a) Raw volume data were cropped and reconstructed for training data generation. (b) All data were 
divided into datasets that consisted of almost identical numbers of participants for cross validation. (c) A region 
of the pancreas was enhanced via CLAHE. Valid, validation; TCIA, the Cancer Imaging Archive; WL, window 
level; WW, window width; CLAHE, contrast-limited adaptive histogram equalization.

Figure 2.  Architecture illustration of residual dense u-net. Conv, convolution; BN, batch normalization; ReLU, 
rectified linear unit.
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Results
Participant demographics. Table 1 shows the demographics of the participants who underwent abdomi-
nal CT for routine health check-ups via a health-care program. A total of 528 (52.6%) participants were men 
and 475 (47.4%) were women. The mean age was 55.3 years, and the mean body mass index was 24.3 kg/m2. 
Significant differences were observed in height (men: 169.3 ± 6.8 vs. women: 157.1 ± 6.2 cm, p < 0.001), weight 
(70.3 ± 11.6 vs. 59.6 ± 10.0 kg, p < 0.001), smoking (n = 224, 22.3% vs. n = 39, 8.2%, p < 0.001), and alcohol con-
sumption (n = 246, 46.6% vs. n = 84, 17.7%, p < 0.001) between men and women. The mean volume of the pan-
creas was 66.5  cm3, and a significant difference was observed between men and women (68.8 ± 19.5 vs. 55.8 ± 16.0, 
p < 0.001). No significant differences were observed in men and women based on age, body mass index, and the 
proportion of those with hypertension and diabetes mellitus.

Pancreas segmentation. Table  2 presents the evaluation results of the four 3D segmentation models. 
Networks using residual dense blocks achieved the highest precision, recall, and DSC, and they also exhibited 
the lowest standard deviation. Additionally, we performed paired t tests to verify the statistical significance 
between residual dense u-nets and other networks. The results showed that the residual dense u-net was promis-
ing and significantly different from the other three networks (all significance levels were p < 0.05). In contrast, 
the residual u-net achieved the lowest pancreas segmentation performance in terms of precision, recall, and 
DSC. The residual dense u-net obtained a mean precision, recall, and DSC of 0.779 ± 0.204, 0.749 ± 0.226, and 
0.735 ± 0.197, respectively, on the NIH external dataset. Furthermore, the residual dense u-net achieved the 
highest mean DSC for every pancreas volume range: (1) 0–30  cm3, mean DSC of 0.808; (2) 30–60  cm3, mean 
DSC of 0.851; (3) 60–90  cm3, mean DSC of 0.872; (4) > 90  cm3, mean DSC of 0.870 on our dataset (Table 3). The 
statistical assessment was performed on 2D axial plane.

We visually assessed the four semantic segmentation models in the 2D axial plane and 3D volumes based 
on a single patient’s CT (Fig. 3). 3D visualization was conducted via 3D volume rendering with a 3D Slicer (ver. 
4.11.20200930; http:// www. slicer. org).

Pancreas volume estimation. We evaluated the pancreas volume estimation performance of the residual 
dense u-net using the Bland–Altman plot and regression analysis (Fig. 4). Most of the estimation errors outside 
the coefficient of repeatability (± 1.96 SD) were underestimated (n = 32). In contrast, over-estimations did not 
occur often (n = 4). We performed correlation and intraclass correlation coefficient (ICC) analyses for pancreatic 
volumetry. For the internal validation, we obtained an  R2 score of 0.954 (p < 0.001) using the regression analysis, 
an R score of 0.977 (p < 0.001) using the correlation analysis, and an ICC score of 0.987. For the external valida-
tion, we obtained  R2, R, and ICC scores of 0.667 (p < 0.001), 0.817 (p < 0.001), and 0.894, respectively. We used 
MedCalc Statistical Software (ver. 14.8.1, https:// www. medca lc. org) for the statistical analysis.

Table 1.  Demographics of participants. Values are expressed as n (%) or mean ± standard deviation, unless 
otherwise indicated.

Total Men Women p value

Number 1006 (100) 530 (52.6) 476 (47.4)

Age (years) 55.3 ± 15.6 55.6 ± 15.3 54.9 ± 15.9 0.508

Height (cm) 163.5 ± 8.9 169.3 ± 6.8 157.1 ± 6.2 < 0.001

Weight (kg) 65.3 ± 12.1 70.3 ± 11.6 59.6 ± 10.0 < 0.001

Body mass index (kg/m2) 24.3 ± 3.5 24.4 ± 3.3 24.1 ± 3.7 0.165

Hypertension 364 (36.3) 205 (38.8) 159 (33.5) 0.078

Diabetes mellitus 190 (18.9) 108 (20.5) 82 (17.3) 0.198

Smoking 224 (22.3) 185 (35.0) 39 (8.2) < 0.001

Alcohol 330 (32.9) 246 (46.6) 84 (17.7) < 0.001

Volume of pancreas  (cm3) 62.6 ± 19.0 68.8 ± 19.5 55.8 ± 16.0 < 0.001

Table 2.  Evaluation metrics for four pancreas segmentation models. Results are indicated as mean ± standard 
deviation, and the best performances are indicated in bold. The results are highlighted in italics if the residual 
dense u-net performs significantly better than the corresponding method. We used a significance level of 0.05 
and a paired t test for network comparison. DSC, dice similarity coefficient.

Precision Recall DSC Trainable parameter

Basic U-net 0.861 ± 0.468 0.816 ± 0.173 0.822 ± 0.143 11,003,073

Dense U-net 0.864 ± 0.114 0.828 ± 0.165 0.831 ± 0.134 35,261,601

Residual U-net 0.843 ± 0.127 0.810 ± 0.178 0.808 ± 0.146 2,350,857

Residual Dense U-net 0.869 ± 0.110 0.842 ± 0.156 0.842 ± 0.128 47,074,657

http://www.slicer.org
https://www.medcalc.org
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Discussion
This study presents an automated deep learning method for pancreatic segmentation and volumetry using the 
abdominal CT images of 1006 participants who underwent a health checkup. Recently, various studies have 
suggested a promising DL network for pancreas segmentation. However, to the best of our knowledge, there is 
no existing study on a DL approach applied and evaluated on a large abdominal CT dataset of more than 1000 
patients. DL-based medical image segmentation is highly dependent on the number of data points. However, 
previously presented DL-based pancreatic segmentation studies used the NIH pancreas-CT dataset (n = 82). 
Although the previously proposed DL networks achieved high performance for pancreas segmentation (mean 
DSC of 0.86611, 0.85413 and 0.85930), there is insufficient data to prove that those networks are reliable. There-
fore, in this study, we presented a DL-based pancreas segmentation on a large dataset (i.e., 1,006 abdominal 
CT images) and conducted external validation on the NIH pancreas-CT dataset using four state-of-the-art 3D 
segmentation networks. We demonstrated that residual dense u-net enables accurate pancreas segmentation 
and volumetry: (1) mean precision, recall, and DSC of 0.869, 0.842, and 0.842 for internal validation; (2) mean 
precision, recall, and DSC of 0.779, 0.749, and 0.735 for external validation. We confirmed that the number of 
trainable parameters is proportional to the segmentation performance of the DL approaches. The segmentation 
performance on the external NIH pancreas CT dataset was significantly inferior to that of the internal dataset. 
We assume that these results were attributable to the different slice thicknesses of the CT images; the external 
dataset was acquired using a 1.5–2.5 mm slice thickness.

In this study, a DSC comparison was performed according to four pancreatic volume (PV) ranges in four 
networks used for pancreas 3D-segmentation: (1) PV < 30  cm3, n = 54; (2) 30  cm3 ≤ PV < 60  cm3, n = 361; (3) 
60  cm3 ≤ PV < 90  cm3, n = 441; (4) PV > 90  cm3, n = 150. In the total volume range, the residual dense u-net 
achieved the highest mean DSCs (Fig. 3b; Table 3). The mean DSC had a positive correlation with the pancreas 
volume, and all networks achieved the highest mean DSC results in samples with a volume of 60–90  cm3. Gener-
ally, the network achieves a high DSC, which is proportional to the volume of the pancreas. However, we assumed 
that high segmentation performance was achieved for samples with a pancreatic volume of 60–90  cm3 owing to 
the high ratio of 60–90  cm3 samples in the dataset (43.84%). In contrast, all the networks achieved the lowest 
segmentation performance for abdominal CT for patients with a pancreatic volume of 0–30  cm3.

We assessed the residual dense u-net-based pancreatic volume measurements using the Bland–Altman plot 
and regression plots (Fig. 4). The agreement between the network pancreatic volume measurement and the 
manual measurements was high, and there were mean differences between DL-based and manual-based pancre-
atic volume estimation. For the internal validation, the mean difference was 1.67  cm3, and the mean difference 
of the external dataset was 2.34  cm3. Most pancreatic volume estimation results were reliable; however, a few 
underestimations (n = 32) and over-estimations (n = 4) existed in a total of 1006 datapoints. Most of the under-
estimation occurred for a pancreatic volume greater than 90  cm3, which is presumed to be owing to the blurred 
boundary or low density of soft tissue.

Table 3.  Comparison of pancreas segmentation performance according to pancreatic volumes using four 
independent 3D networks. Results are indicated as mean ± standard deviation, and the best performances are 
indicated in bold. PV, pancreatic volume; DSC, dice similarity coefficient. *We used a paired t test to compare 
the residual dense u-net with the corresponding network and used a significance level of 0.05.

DSC *P-value

PV < 30  cm3 (n = 54)

Basic U-net 0.785 ± 0.100 < 0.001

Dense U-net 0.794 ± 0.089 0.013

Residual U-net 0.756 ± 0.111 < 0.001

Residual Dense U-net 0.808 ± 0.078 –

30  cm3 ≤ PV < 60  cm3 (n = 361)

Basic U-net 0.834 ± 0.073 < 0.001

Dense U-net 0.842 ± 0.066 < 0.001

Residual U-net 0.815 ± 0.082 < 0.001

Residual Dense U-net 0.851 ± 0.060 –

60  cm3 ≤ PV < 90  cm3 (n = 441)

Basic U-net 0.859 ± 0.047 < 0.001

Dense U-net 0.866 ± 0.039 < 0.001

Residual U-net 0.844 ± 0.053 < 0.001

Residual Dense U-net 0.872 ± 0.037 –

PV ≥ 90  cm3 (n = 150)

Basic U-net 0.852 ± 0.078 < 0.001

Dense U-net 0.857 ± 0.079 < 0.001

Residual U-net 0.836 ± 0.082 < 0.001

Residual Dense U-net 0.870 ± 0.074 –
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This study presented a semi-automated pancreas segmentation approach based on DL methods for 1006 
participants. However, there are several limitations to our study. We manually cropped the volume of interest 
(region of pancreas) to train the DL networks, owing to a lack of random access memory and GPU memory. 
Accordingly, further study is necessary to achieve fully automated pancreas segmentation using two-stage meth-
ods, such as cascaded or coarse-to-fine networks. Moreover, we assumed that other segmentation  methods31–34 
may be appropriate for accurate pancreas segmentation, owing to the blurry boundaries of the pancreas. The 

Figure 3.  (a) Representative examples of pancreas segmentation in the 2D axial plane and 3D volume of 
one patient. (b) DSC metric in each deep learning model according to the volume of the pancreas. GS, gold 
standard; DSC, dice similarity coefficient; ResDense, residual dense; PV, pancreatic volume.
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study of two-stage networks and a state-of-the-art segmentation strategy for more accurate pancreas segmenta-
tion will be part of our future work.

Repeatable and reproducible pancreas segmentation is necessary for pancreatic volumetry, and CNNs may 
have broad applicability to this problem. Furthermore, automated abdominal organ  segmentation35, 36 and analy-
sis applications can be used not only for CT but also for diverse modalities, such as magnetic resonance imaging 
and ultrasound. However, experiments using data that includes various races, ages, and pancreatic volumes are 
necessary to evaluate the applicability of these methods to clinical practice. Our study presented a DL-based 
semi-automated method on data from 1006 healthy Koreans; however, further DL-based studies on a dataset 
that includes various features are necessary to investigate reliable DL-based pancreas-segmentation strategies 
to aid clinicians.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available because permission to 
share patient data was not granted by the institutional review board, but they are available from the correspond-
ing author upon reasonable request.
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