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Abstract

It is widely acknowledged that the construction of large-scale dynamic models in systems

biology requires complex modelling problems to be broken up into more manageable

pieces. To this end, both modelling and software frameworks are required to enable modular

modelling. While there has been consistent progress in the development of software tools to

enhance model reusability, there has been a relative lack of consideration for how underly-

ing biophysical principles can be applied to this space. Bond graphs combine the aspects of

both modularity and physics-based modelling. In this paper, we argue that bond graphs are

compatible with recent developments in modularity and abstraction in systems biology, and

are thus a desirable framework for constructing large-scale models. We use two examples

to illustrate the utility of bond graphs in this context: a model of a mitogen-activated protein

kinase (MAPK) cascade to illustrate the reusability of modules and a model of glycolysis to

illustrate the ability to modify the model granularity.

Author summary

The biochemistry within a cell is complex, being composed of numerous biomolecules

and reactions. In order to develop fully detailed mathematical models of cells, smaller sub-

models need to be constructed and connected together. Software and standards can assist

in this endeavour, but challenges remain in ensuring that submodels are both consistent

with each other and consistent with the fundamental conservation laws of physics. In this

paper, we propose a new approach using bond graphs from engineering. In this approach,

connections between models are defined using physical conservation laws. We show that

this approach is compatible with current software approaches in the field, and can there-

fore be readily used to incorporate physical consistency into existing model integration

methodologies. We illustrate the utility of this approach in streamlining the development

of models for a signalling network (the MAPK cascade) and a metabolic network (the
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glycolysis pathway). The advantage of this approach is that models can be developed in a

scalable manner while also ensuring consistency with the laws of physics, enhancing the

range of data available to train models. This approach can be used to quickly construct

detailed and accurate models of cells, facilitating future advances in biotechnology and

personalised medicine.

Introduction

Over the past few decades, advances in both data generation and computational resources

have enabled the construction of large-scale kinetic models in systems biology, including

whole-cell models that represent every known biomolecule in the cell [1]. An accurate and

robust whole-cell model can provide several benefits to the community: data on specific organ-

isms can be cross-evaluated and reconciled [2]; simulations could be used to rule out fruitless

experiments and clinical trials; the models themselves could be used as a basis for designing

novel circuits in synthetic biology; and fundamental questions about biology may be addressed

in a holistic and systematic manner [3, 4].

The first comprehensive whole-cell model was developed forMycoplasma genitalium [1]

and there are ongoing efforts to develop whole-cell models of Escherichia coli [5] and human

cells [6]. However, it has been acknowledged that the highly manual practices used in the

development of the initial model ofM. genitalium are unlikely to scale up to more complex

organisms. The biomodelling community has identified several potential roadblocks to whole-

cell modelling, including the lack of sufficient biological knowledge and data, model incom-

patibility, inadequate model development tools, inadequate model formats and parameter

uncertainty [4, 6].

This paper addresses the issue of approaching model development in a modular manner.

Typical requirements for such model development strategies involve reusing and integrating

submodels together into more comprehensive models, and swapping between alternative

models of the same system for benchmarking and comparison [7–9]. There have been several

software-related developments in the systems biology community focussing on improving the

reusability of models, some of which are beginning to be used in whole-cell modelling [10].

However, ensuring the reusability of fully integrated cell models remains a challenge [11].

While adequate software frameworks are essential to the modular development of large-scale

kinetic models, an understanding of the physics of biological systems is also necessary to

address issues in model compatibility and provenance. In particular, the laws of thermody-

namics have been invoked in the context of metabolic modelling, allowing modellers to esti-

mate the energetic favourability of reactions [12], to constrain fluxes in constraint-based

models [13, 14] and to improve parameter estimation in large-scale kinetic models [15–17]

and whole-cell models [5]. This paper argues that the concepts of module interconnection

from physics and thermodynamics are consistent with current model development practices

in systems biology, and we suggest the use of bond graphs (from the discipline of engineering)

as a framework for unifying developments from both software development and biological

thermodynamics.

We begin by defining modularity in systems biology and arguing that an improved under-

standing of biophysics can contribute to this area. We then use biochemical examples to illus-

trate how bond graphs incorporate physical constraints into a modular framework for systems

biology. In the Results section, we illustrate the benefits of this approach by applying the prin-

ciples of modular development to bond graph models of a mitogen-activated protein kinase
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(MAPK) cascade and glycolysis. Finally, we summarise ongoing developments in unifying

modularity and thermodynamics in systems biology and conclude with some suggestions to

enable the development of fully detailed models of cells.

Methods

Modularity in systems biology

Due to their complexity, large-scale models in systems biology need to be constructed by

dividing the problem into manageable submodels. Early notions of modularity in biomodel-

ling were borrowed from principles in engineering and software development [18, 19]. In

those disciplines, modules can be defined as parts of a system that (a) retain their own identity

and are often developed and operated independently, but interact with other parts of the sys-

tem and (b) hide the details of their implementation from the rest of the system, except

through pre-defined interfaces [9]. Using this notion of modularity, the parts of a module that

are available for connection and communication are said to be “exposed”.

However, the definition above—which is also known as “black-box” modularity—is not

conducive to the incremental accumulation of knowledge that occurs in biology. Advance-

ments in our understanding of biology may force modellers to interface with previously hid-

den components within existing models [7, 9]. It is becoming increasingly apparent that

modules in biological modelling need to be more flexible than engineering modules. As a

result, the notion of modularity in systems biology is far less clear than in the established disci-

plines of engineering and software development. In recent years, systems biology has favoured

the use of a “white-box” approach to modularity in which modules do not completely hide the

details of their implementation, but instead allow individual variables and components to be

exposed as required [20].

Broadly speaking, notions of modularity used in systems biology can be categorised into

computational modularity, the ability for models to communicate and interact with each other

in a physically consistent manner; and functional (or behavioural)modularity, the ability of

modules to be isolated from the effects of other modules. This paper will focus on computa-

tional modularity. The role of functional modularity is pivotal to systems and synthetic biol-

ogy, particularly in reducing loading effects between engineered genetic circuits [21].

However, functional modularity can only be analysed and designed through the lens of

computational modularity [22].

If handled correctly, modular model development can provide a number of benefits to

modellers (see Fig 1), including:

1. Enabling large-scale models to be built from smaller submodules that communicate

through clear and unambiguous interfaces.

2. Providing a framework for models to be developed, tested and validated in isolation before

incorporating them into larger models.

3. Separating the description of model equations from the software implementation of the

model (including simulation).

4. Allowing incremental changes to be made to existing models in light of new measurements

or knowledge, and allowing the provenance of models to be tracked.

5. Enabling the abstraction of important modules, providing the means to instantiate multiple

copies of repeated motifs and swapping out a submodel for another model with a different

level of granularity.
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Thus, modularity can facilitate collaborative efforts to build whole-cell models, allows mod-

els to be updated where necessary and enhances the usefulness of models beyond their initial

publication.

Current approaches to model reuse and integration in systems biology can be broadly cate-

gorised into three approaches, ordered by increasing flexibility:

1. Standard model description formats. To enable the reuse of biomodels by different

research groups, biomodellers have developed standards for describing models. Of these,

the Systems Biology Markup Language (SBML) [23] and CellML [19] are two prominent

examples. Once encoded within such standard model descriptions, analysis and simulation

can be run on separately developed software such as OpenCOR (CellML) and COPASI

(SBML) [24, 25]. The simulation protocols can themselves be specified using the Simulation

Experiment Description Markup Language (SED-ML) [26].

2. Biological modularity. Biological-level modularity introduces white-box modularity to sys-

tems biology by annotating model variables and parameters with standardised, machine-

readable ontological terms [9]. This enables a strategy where software can automatically

compose separately developed models together [9, 20]. SemGen and semanticSBML are

two software tools that implement biological-level modularity [20, 27]. SBML also supports

both white and black box modularity through its hierarchical package [28], which is imple-

mented in the graphical tool iBioSim [29].

Fig 1. The importance of modularity in models for systems biology. Modularity can facilitate the construction of whole-cell models by (1) providing

unambiguous and flexible interfaces for submodels to communicate; (2) allowing model development and unit testing to be done on individual

submodels; (3) separating the description of the model from its implementation; (4) allowing models to be iteratively updated with a record of how the

equations and parameters were derived; and (5) allowing repeated motifs to be abstracted into reusable structures.

https://doi.org/10.1371/journal.pcbi.1009513.g001
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3. Programmatic approaches. The “programmatic approach” to modelling was developed to

allow models to integrate together in a flexible manner, but also to address the relative

inflexibility of standard modelling languages. In the programmatic approach, models are

treated as declarative programming objects rather than mathematical equations [7]. Using

this approach, models can be embedded within programming languages such as Python.

This approach automates model construction by allowing models to be defined at different

hierarchical levels, for example by generating equations through the specification of macros

for repeating motifs. Two implementations of the programmatic approach are little b [7]

and PySB [30]. More recently, the BondGraphTools package has been developed to intro-

duce thermodynamics into such an approach [31].

Note that these approaches are not independent of each other, and many modelling frame-

works use several of these approaches [32, 33].

Despite recent computational advances in enabling the modular development of biomodels,

there remain key limitations in current approaches:

1. There is no guarantee that the integrated model will be consistent with basic physical prin-

ciples such as conservation of mass, charge and energy.

2. It remains difficult to resolve points of conflict between models, such as conflicts between

parameters and assumptions.

3. There is limited scope for dealing with multi-physics systems that arise in electrophysiology

and mechanochemistry.

Resolving these issues requires the conservation laws of physics to be embedded within

computational modules. Network Thermodynamics, using bond graphs, is a modelling frame-

work that fits with the requirement of developing physically consistent models, while retaining

compatibility with existing approaches.

Bond graphs

Bond graphs provide a modular framework for constructing physically and thermodynami-

cally consistent models in systems biology. The framework was first applied to biology by

Oster, Perelson and Katchalsky in the context of Network Thermodynamics, as a method for

incorporating the laws of thermodynamics into theoretical models of living systems [34, 35].

This work followed in the tradition in physics and engineering that if you “get the physics

right”, “the rest is mathematics” [36, 37]. Bond graph models are defined by combining consti-

tutive relations with physical conservation laws, giving rise to a declarative model structure.

This confers some advantages from a modelling perspective:

1. Models can be specified in terms of physical connections between components, giving rise

to a graphical representation of the model equations, which are consistent with the conser-

vation laws of physics.

2. Bond graphs inherently support modular modelling, as components can easily be swapped

in and out without affecting the high-level model structure.

3. Due to the fundamental nature of energy in all physical systems, a thermodynamic

approach can be used to link together models of systems from different physical domains

such as the electrical, mechanical, chemical and hydraulic domains. Therefore, bond graphs

models can be constructed for a wide range of multi-physical biological systems, including

electrophysiology and mechanobiology [38–40].
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There has been a long history of thermodynamic modelling for biochemical reaction net-

works [5, 13, 15]. In this section, we introduce bond graphs as an intuitive method for embed-

ding such approaches within a modular framework.

An explicit graphical representation of biochemical systems. We first use a simple

example to illustrate the how the structure of a bond graph encodes differential equations [35,

41, 42]. Consider the enzyme-catalysed reaction in Fig 2A, noting that all chemical reactions

are thermodynamically reversible. Assuming that the reactions follow the law of mass action,

the system can be described using the differential equations

dxE
dt
¼ � v1 þ v2 ð1aÞ

dxC
dt
¼ v1 � v2 ð1bÞ

dxS
dt
¼ � v1 ð1cÞ

dxP
dt
¼ v2 ð1dÞ

where the fluxes through the reactions v1 and v2 are given by

v1 ¼ k
þ

1
xExS � k

�

1
xC ð2aÞ

v2 ¼ k
þ

2
xC � k

�

2
xExP: ð2bÞ

In the above equations, the rate parameters kþ
1

, k�
1

, kþ
2

and k�
2

are defined in Fig 2A, and xE,

xC, xS, xP are the concentrations (or molar amounts) of E, C, S and P respectively.

Because it is often useful to consider rate laws independently from the stoichiometry of the

system, systems biologists may favour an expanded representation of the network as shown in

Fig 2B, where the reactions and species reside in their own components. This representation

follows the Systems Biology Graphical Notation (SBGN) standard [43].

The bond graph representation in Fig 2C is a further expansion of the diagram in Fig 2B.

This representation firstly adds two physical variables to the edges: a chemical potential μ [J/

mol] (blue variables) and molar flux v [mol/s] (green variables). Since μ and vmultiply to give

power P [J/s], each connection transfers energy between components. In addition, separate

nodes (● and ▼) are used to model mass and energy conservation laws inherent within these

systems, discussed further below.

Every component (node) within the system contains its own independent set of equations

and parameters. Each chemical species (open circles� in Fig 2C) is associated with a chemical

potential μ. In dilute systems at constant temperature and pressure, this quantity is related to

abundance x by

m ¼ RT lnðKxÞ ð3Þ

where x [mol] is the amount of the species, K [mol−1] is the thermodynamic parameter for that

species, R = 8.314 JK−1mol−1 is the ideal gas constant and T [K] is the absolute temperature.
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Fig 2. The energetics of an enzyme-catalysed reaction. (A) Chemical reaction scheme. (B) A graph representation of the reaction scheme typically

seen in systems biology. Species are represented as circles and reactions are represented as squares. The grey arrows indicate the flow of mass. (C) A

bond graph representation of the network. Note that in contrast to the graph representation in (B), additional elements have been added to the

representation to represent conservation of mass (closed circles ●) and conservation of energy (triangles ▼). The arrows here represent the molar flow

rate (green) and the associated chemical potential (blue), thus the flow of both mass and energy is accounted for. The arrowheads indicate the direction

of positive flux, but all reactions can proceed in the reverse (negative) direction as well.

https://doi.org/10.1371/journal.pcbi.1009513.g002

PLOS COMPUTATIONAL BIOLOGY Modular assembly of dynamic models in systems biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009513 October 13, 2021 7 / 27

https://doi.org/10.1371/journal.pcbi.1009513.g002
https://doi.org/10.1371/journal.pcbi.1009513


The parameter K is related to the standard free energy of the species; one can also write Eq 3 as

m ¼ m0 þ RT lnðc=c0Þ ¼ m0 þ RT ln
x
c0V

� �

ð4Þ

where c [M] is the concentration of species, V [L] is the volume of the compartment and

μ0 [J/mol] is the standard chemical potential taken at a concentration of c0 (for simplicity, c0 is

often taken to be 1M). By equating Eqs 3 and 4, K is related to μ0 through the equation

K ¼
1

c0V
expðm0=RTÞ: ð5Þ

Similarly, the rate of each reaction (squares□ in Fig 2C) is given by a constitutive relation-

ship between reaction rate v and the thermodynamic potentials. For example, the thermody-

namic Marcelin-de Donder equation represents reversible mass action kinetics [42]:

v ¼ k exp
Af

RT

� �

� exp
Ar

RT

� �� �

ð6Þ

where Af (Ar) is the forward (reverse) affinity, or the sum of chemical potentials within the

reactants (products). We note that while we have used K and κ as our parameters, these values

can also be expressed in terms of energetic quantities such as the free energy of formation (see

Appendix A in S1 Text).

Therefore, the species in Fig 2C encode the relationships

mE ¼ RT lnðKExEÞ ð7aÞ

mC ¼ RT lnðKCxCÞ ð7bÞ

mS ¼ RT lnðKSxSÞ ð7cÞ

mP ¼ RT lnðKPxPÞ ð7dÞ

and the reactions encode the relationships

v1 ¼ k1 exp
Af

1

RT

 !

� exp
Ar

1

RT

� �" #

ð8aÞ

v2 ¼ k2 exp
Af

2

RT

 !

� exp
Ar

2

RT

� �" #

: ð8bÞ

To obtain the correct fluxes for each reaction, the chemical potentials μ of the species need

to be correctly mapped onto the reaction affinities Af and Ar. Because reactions 1 and 2 are

connected directly to μC in Fig 2C, it is clear that

Ar
1
¼ Af

2 ¼ mC: ð9Þ

However, conservation of chemical potential (energy per mole) needs to be considered

when determining Af
1 and Ar

2
. These affinities are related to the species potentials through the
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relationships

Af
1 ¼ mS þ mE ð10aÞ

Ar
2
¼ mP þ mE: ð10bÞ

The above energy conservation equations are encoded within triangular (▼) components

(Fig 2C), which constrain the model such that the sum of potentials of the edges directed into

the triangles is equal to those directed outwards. Note also that fluxes v of the connected edges

are equal as each reaction consumes reactants and produces products at the same rate. These

common flow junctions are analogous to Kirchhoff’s voltage law in electrical circuits.

Finally, the fluxes through the reactions are related back to the rates of change in species

through the conservation of mass components represented by the closed circles (●) in Fig 2C.

These components constrain the fluxes such that the sum of fluxes into the component is

equal to the sum of fluxes out of the component. These encode the mass balance equations in

Eq 1. The common potential junction is analogous to Kirchhoff’s current law in electrical

circuits.

Once Eqs 1, 7–10 are combined, one can derive the differential equations

dxE
dt
¼ � k1KEKSxExS þ k1KCxC þ k2KCxC � k2KEKPxExP ð11aÞ

dxC
dt
¼ k1KEKSxExS � k1KCxC � k2KCxC þ k2KEKPxExP ð11bÞ

dxS
dt
¼ � k1KEKSxExS þ k1KCxC ð11cÞ

dxP
dt
¼ k2KCxC � k2KEKPxExP: ð11dÞ

This thermodynamic formulation has the same form as the kinetic formulation (Eqs 1 and

2) with the parameters redefined as

kþ
1
¼ k1KEKS ð12aÞ

k�
1
¼ k1KC ð12bÞ

kþ
2
¼ k2KC ð12cÞ

k�
2
¼ k2KEKP: ð12dÞ

While the thermodynamic formulation contains more parameters (6) than the kinetic for-

mulation (4), they overcome a limitation of kinetic parameters. Whereas kinetic parameters

are not free to be independently specified and require detailed balance constraints to be

thermodynamically consistent, thermodynamic parameters can be chosen independently. Sys-

tems biologists have previously used thermodynamic parameters to avoid thermodynamically

inconsistent model behaviour [15, 44]. More recently, the approach has been suggested for

whole-cell modelling as a method for resolving points of conflict between data [5].
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Thus, a strength of bond graph models in this context is that the differential equations of a

biological network can be directly derived from the network structure, which paves the way

for the modular construction of such models.

A remark on notation: Traditionally, the bond graph representation uses a textual notation

for components rather than the graphical notation used in this paper. Specifically, species (�)

are represented as C components, reactions (□) as Re components, common potentials (●) as

0-junctions and common flows (▼) as 1-junctions. Furthermore, bonds are depicted using

half-arrows rather than full arrows. However, in light of recent efforts to “modernise” the

bond graph representation [45], we have depicted components in shapes rather than letters to

make the representation closer to conventions seen in systems biology.

A modular representation for enzymes. In systems biology, there are often several plau-

sible equations for modelling enzyme-catalysed reactions. A modular approach is desirable in

allowing one enzyme model to be swapped out for another [46]. We illustrate this by consider-

ing a modular version of the enzyme-catalysed reaction of Fig 2. The system can be repre-

sented using the diagram in Fig 3A, where S and P are connected via a yet-to-be-defined

module shown by the light blue box. This arbitrary module can then be substituted for any

component describing a plausible reaction mechanism.

Enzyme-catalysed reactions can be described by rate laws (Fig 3B). The simplest of these is

the law of mass action in Eq 6 (Fig 3B; white box). This can be substituted for more complex

kinetics, for example, the reversible Michaelis-Menten equation (orange box)

v ¼ �ke0

emS=RT � emP=RT

1þ
emS=RT

Rb0
þ
emP=RT

Rb1

ð13Þ

with the parameters �k (rate constant [s−1]), Rb0 (binding constant of the substrate [dimension-

less]), Rb1 (binding constant of the product [dimensionless]) and e0 (total amount of enzyme

[mol]) [42]. Thus, a bond graph approach allows alternative rate laws to be easily swapped for

one another while retaining thermodynamic consistency. It is worth noting that the Michaelis-

Menten rate law can be derived as a simplification of a more complex mass action model [47, 48].

In some cases, the full dynamics of the enzymatic reaction need to be considered. The

advantage of a modular representation is that groups of reactions can be encapsulated into a

model component. The diagram in Fig 3A can be converted into a simple two-state mecha-

nism by defining the light blue box as the network in the left panel of Fig 3C; this is the same

system as seen in Fig 2. Alternatively, to consider the conversion of substrate-bound enzyme

to product-bound enzyme, the module defined in the right panel of Fig 3C could be used.

As seen in the above examples, parts of a module can be exposed by leaving open one end

of a connection, which imposes a boundary condition on the model, allowing it to be con-

nected to an external component. This is analogous to leaving ports open in electrical circuits.

This kind of modularity provides tools for managing model complexity: generic modules are

easily replicated and reused for different reactions that use the same mechanism, and the inter-

nal details of complex enzymatic mechanisms can be hidden. We now illustrate these ideas

through the modular development of a MAPK signalling cascade model, and then by consider-

ing the glycolytic metabolic pathway modelled using different reaction rate laws.

Results

Modular development of a model of the MAPK cascade

The MAPK cascades are a family of biochemical signalling pathways that regulate important

biological processes including growth, proliferation, migration and differentiation [49]. These
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systems are composed of a series of phosphorylation events in which the phosphorylated sub-

strate at one level of the cascade catalyses reactions at the next level, leading to signal amplifica-

tion. From a modelling perspective, MAPK cascades contain a number of repeated motifs and

therefore serve as interesting case studies for modular model development.

There are multiple MAPK cascades that naturally occur in eukaryotic cells. In this paper,

we deal with the Mos/MAPK pathway found in Xenopus oocytes, a key regulator of maturation

in these cells [50, 51]. MAPK cascades in human cells include the ERK-MAPK, c-Jun N-termi-

nal kinase (JNK) and p38 MAPK pathways, which are of clinical relevance as they are impli-

cated in both inflammation and cancer [52, 53]. While the kinetic properties may differ

between pathways, a strength of taking a modular approach is that one can use similar network

structures to account for many MAPK cascades.

Fig 3. Representation of enzymes as interchangeable modules. (A) A modular representation of an enzyme. The module representing the enzyme,

shown as a blue module, can be swapped depending on model requirements. (B) and (C) describe possible contents of the blue module. (B) Rate law

representations of the enzyme, including mass action (white box) and the Michaelis-Menten equation (orange box). (C) Detailed multi-state

representations of the enzyme, including the full two-state representation of the Michaelis-Menten enzyme (left) and a three-state representation with

an explicit step for the conversion of substrate to product.

https://doi.org/10.1371/journal.pcbi.1009513.g003
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Core model. Here we construct a model of the Mos/MAPK cascade in a modular fashion

using bond graphs. The core MAPK cascade model we considered was based on a study by

Huang and Ferrell [50]. We chose this model in particular as it accounts for the elementary

mass-action between enzyme states, which is essential when dealing with systems with coupled

enzymatic reactions [54].

The presence of repeated network motifs consisting of kinases and phosphatases motivates

an approach where generic modules corresponding to the kinases and phosphatases are first

constructed, and then assembled into a model of the MAPK cascade. This gives rise to a model

with a hierarchical structure. The modules for the kinase and phosphatase are defined in Fig

4A and 4B. These use mechanisms similar to the Michaelis-Menten model in the left panel of

Fig 3C, but the free enzyme E, ATP, ADP and Pi need to be shared between modules and are

therefore represented as external connections. X and XP are generic labels referring to the

unphosphorylated and phosphorylated substrate respectively.

In the Methods section, it was clear how components were connected to the ports of each

module. However, the increased number of ports in this example demands a more precise

method of specifying external connections. For each module, each port is labelled in parenthe-

ses, i.e. (label). These port labels are then used to define the connections to external compo-

nents when the module is reused in a larger system—as indicated by the labels in red

parentheses in Fig 4C and 4D. Using this notation, the kinase and phosphatase modules are

combined into a generic model of a phosphorylation cycle (Fig 4C). Note that X and XP have

been linked through a conservation of mass relationship, but the ports are otherwise exposed

because all quantities are shared between modules in the full MAPK cascade model. In cases

where there are multiple kinases and phosphatases operating in parallel, modules for these

additional enzymes are easily added and connected to the mass conservation junction.

An advantage of defining generic modules is that multiple copies of these modules can be

constructed and connected together. Since the MAPK cascade consists of multiple phosphory-

lation cycles, copies of the phosphorylation cycle module can be coupled together into a model

of a full MAPK cascade (Fig 4D). Here, specific biomolecules are now assigned to the previ-

ously generic X and XP ports of the phosphorylation cycles. The multiple levels of the cascade

are coupled by connecting the phosphorylated substrate in one level to the kinase port of the

next cascade. We note that while this representation is abstracted, it is still a fully functional

bond graph satisfying thermodynamic consistency. One could in principle flatten the bond

graph by iteratively replacing modules with their definitions in Fig 4A–4C. Indeed, this

approach can be used to algorithmically derive the equations of a bond graph model.

We chose model parameters to match the Huang and Ferrell [50] model as closely as possi-

ble. Because in that model the energetics of ATP hydrolysis were ignored and irreversible reac-

tions were used, we reformulated the model to reintroduce both the effects of ATP hydrolysis

and reversibility (details in Appendix A of S1 Text, with parameters given in S1 Table).

Because the Huang and Ferrell model used irreversible reactions, an exact fit was impossible.

Nonetheless, the reformulated model behaves almost identically to the original model

(Figure A in S1 Text) under comparable physiological conditions.

We construct and run simulations of the model using the Python package BondGraphTools

[31]; a tutorial for using this package can be found in Appendix C of S1 Text. The results are

shown in Fig 5A, which plots the percentage of the activated kinase at each level of the cascade.

We found that the concentrations settled to steady-state concentrations. These concentrations

were recorded for different concentrations of input, resulting in the signal-response curves in

Fig 5B. Under different input concentrations, the response of each substrate was sigmoidal. As

expected from existing modelling studies [50], there was an amplification effect as the steep-

ness of the transition from inactivated to activated forms became more pronounced towards
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the end of the cycle. When the energy supplied by ATP hydrolysis was reduced, a greater con-

centration of input was required to activate each of the kinases, with the effects being amplified

at the lower levels of the cascade (Fig 5C).

While we took a black-box approach to modularity in this example, recent developments in

bond graph modelling have enabled a more flexible white-box approach to modularity [55]. In

Appendix B in S1 Text, we outline how this model could be constructed using such an

approach where each module is itself a simulatable model.

Incorporation of feedback. An advantage of using a graphical and modular representa-

tion is that it is relatively easy to make incremental changes to models. We demonstrate this by

modifying the model in Fig 4D—which we will now refer to as the “core” model—to include

the effects of feedback. Both positive and negative feedback loops exist in MAPK cascades, but

Fig 4. A hierarchical and thermodynamic model of the MAPK cascade. Generic modules can be made for (A) kinases and (B) phosphatases. (C)

These modules can then be assembled into larger modules defining phosphorylation loops. To ease biological interpretation, the specific biological

names are given in green where known. (D) Multiple copies of phosphorylation loops can be reused and connected to form a model of the MAPK

cascade. For clarity, ATP, ADP and Pi have been omitted in (D).

https://doi.org/10.1371/journal.pcbi.1009513.g004

PLOS COMPUTATIONAL BIOLOGY Modular assembly of dynamic models in systems biology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009513 October 13, 2021 13 / 27

https://doi.org/10.1371/journal.pcbi.1009513.g004
https://doi.org/10.1371/journal.pcbi.1009513


these often operate on molecules upstream of the cascade represented here [56]. To keep the

model simple, we incorporate the effects of feedback with a generic mechanism assuming that

the feedback operates on the input molecule MAP4K, and that the feedback occurs due to a

phosphorylation event that either activates or inactivates the kinase.

To incorporate feedback, the core model of the MAPK cascade is rewired so that the input

MAP4K and output MAPKPP are connected through a feedback module (Fig 6A). Because

feedback is through a phosphorylation event, we model feedback by reusing the phosphoryla-

tion cycle module in Fig 4C. The new model contains the MAP4K-I species, representing the

inactive form of MAP4K. Note that in Fig 6A, the feedback ports that the input and output spe-

cies connect to (referred to as X1 and X2) determine whether positive or negative feedback

results. In the case of positive feedback, the active form of MAP4K is the phosphorylated form,

i.e. X1 = XP and X2 = X (Fig 6B). For negative feedback, the active form of MAP4K is the

unphosphorylated form, i.e. X1 = X and X2 = XP (Fig 6C).

Simulations of the MAPK cascade with feedback to steady-state are shown in Fig 6D, along

with the corresponding simulation of the model without feedback for comparison. As has

been predicted previously, negative feedback reduced ultrasensitivity [57, 58]. When viewed as

an amplifier, negative feedback can increase the range of usable input concentrations at the

expense of reduced gain [22, 59, 60]. The model with positive feedback exhibited bistability, a

property seen in previous models of the MAPK cascade [56]. When the model was initialised

in an active state, the response curve was virtually identical to the system without feedback.

However, when the model was initialised to an inactive state, the response curve remained

inactive for a wide range of input concentrations and only activated at high input

concentrations.

Benchmarking rate laws in a model of glycolysis

Kinetic models of metabolic systems make use of numerous rate laws, such as mass action,

Michaelis-Menten and Hill equations. However, in many cases, these rate laws are not thermo-

dynamically consistent. The bond graph approach builds on existing work by using thermody-

namically independent parameters to ensure that rate laws are thermodynamically consistent

[15, 44, 48]. In this section, we use glycolysis as an example to demonstrate the ability of bond

graphs to swap out rate laws for one another and to benchmark the performance of alternative

rate laws.

Fig 5. Simulations of the model of the MAPK cascade. (A) The activation of kinases over time. Activation is defined as the percentage of each kinase

in its active state, i.e. the phosphorylated form of MAP3K and the biphosphorylated forms of MAP2K and MAPK. (B) The effect of input concentration

on the steady-state concentrations of each of the activated kinases. Each curve is normalised to the highest concentration achieved for that species. (C)

The activation curve in (B), but with reduced (80%) energy from ATP hydrolysis. The model was simulated with the initial conditions xMAP3K = 3 nM,

xMAP2K = 1.2 μM, xMAPK = 1.2 μM, xMAP3K-Pase = 0.3 nM, xMAP2K-Pase = 0.3 nM, xMAPK-Pase = 0.12 μM. In (A), we initially set xMAP4K = 0.03 nM,

whereas this initial condition was varied for (B) and (C). All other species had an initial concentration of zero.

https://doi.org/10.1371/journal.pcbi.1009513.g005
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Fig 6. Feedback within the MAPK cascade. (A) Feedback can be added by modifying the core model of the MAPK cascade such that the input

(MAP4K) and output (MAPKPP) are connected through a feedback module, which is implemented using the phosphorylation cycle defined in Fig 4C.

The nature of the connections can give rise to both positive and negative feedback loops. ATP, ADP and Pi have been omitted for clarity. (B) For

positive feedback, the active form of MAP4K is the phosphorylated species; (C) whereas for negative feedback, the active form of MAP4K is the

dephosphorylated species. (D) The steady-state response (MAPKPP) of each system in response to changing input. (top) No feedback; (middle) positive

feedback; (bottom) negative feedback. The initial conditions are the same as in Fig 5. The model with positive feedback is bistable, and the upper curve

is obtained by setting the initial conditions for MAP3K, MAP2K and MAPK to zero, and instead using xMAP3KP = 3 nM, xMAP2KPP = 1.2 μM, xMAPKPP =

1.2 μM.

https://doi.org/10.1371/journal.pcbi.1009513.g006
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One can create a model of glycolysis by using the stoichiometry to define a high-level reac-

tion structure with swappable modules for each enzyme, and then choose an appropriate rate

law for each enzyme, depending on the fit to data (Fig 7). Indeed, this approach was taken by

Gawthrop et al. [48].

A detailed rate law, used by Mason and Covert [5], is given by the equation

v ¼ �ke0

eAf =RT � eAr=RT

� 1þ
Q

s2S 1þ
ems=RT

Rb;s

 !

þ
Q

p2P 1þ
emp=RT

Rb;p

 !
ð14Þ

where �k is a rate parameter, S is the set of all reactants, P is the set of all products and Rb,z is

the binding parameter associated with the substrate z. In the case of multiple stoichiometries,

each binding site has a separate parameter Rb,z; S and P include multiple instances of such spe-

cies (distinguished by numerical indices) in this scenario. For reactions where all reactants and

products have a stoichiometry of one, the rate law is identical to convenience kinetics [44].

However, when multiple stoichiometries are involved (for example, in the enzyme pps, Fig

7A), this contains additional parameters. For this reason, we will refer to this rate law as the

“generalised kinetics” (GK) rate law.

In many cases, it can be helpful to substitute complex rate laws with simpler ones, for exam-

ple, to ease parameter estimation or to make mathematical analyses more tractable [61]. Thus,

we constructed simplified versions of the generalised kinetics model (with parameters taken

from Mason and Covert [5]) using both Michaelis-Menten kinetics (Eq 13) and mass action

kinetics (Eq 6). In brief, the parameters were chosen to match the steady state of the general-

ised kinetics model. In the case of Michaelis-Menten kinetics, the binding parameters were

chosen to match the behaviour of the enzyme to internal species where possible. Details of

how parameters were derived for the simplified models are given in Appendix A of S1 Text,

with parameters in S2 Table.

In order to obtain nonzero steady-state flows through the system, we assume that certain

species (G6P, PYR, NAD, NADH, ATP, ADP, AMP, Pi, H, H2O) have a zero rate of change,

modelling their replenishment through the environment. These are the external species, or

“chemostats” in bond graph terminology [47].

Transient perturbations. We firstly tested each of the models by perturbing the concen-

trations of each of the internal species, causing transient shifts away from the reference steady

state (Fig 8). The responses of the simplified models were firstly compared against the original

generalised kinetics model by calculating the response time, which was defined as the time

required for the system to return to within 5% of its maximum deviation. Distance from the

reference steady state was calculated using the Euclidean norm

d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s2Si

ðxs � xs;ssÞ
2

s

ð15Þ

where Si ¼ fF6P; F16P;DHAP;GAP; 13DPG; 3PG; 2PG;PEPg is the set of all internal species

and xs,ss is the concentration of s at the reference steady state. The response times are plotted in

the top row of Fig 8. We also compared the models by plotting the concentration of PEP, the

most downstream internal species against time (Fig 8; bottom row).

As seen in all perturbations, the Michaelis-Menten model matched with the original gener-

alised kinetics model extremely well. This was expected as the Michaelis-Menten model was

parameterised to match the behaviour of the generalised kinetics models with respect to the

internal species. The minor differences between the models stem from the fba enzyme, which
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Fig 7. Modelling of enzymes within the glycolysis pathway. (A) A network-level representation of the system, where the blue modules are free to be

swapped depending on the rate law. Species without circles are considered to be external to the system, and in cases where they occur more than once,

they are connected by equal potential components (●, omitted for compactness) to ensure mass conservation. (B) For illustrative purposes, we show the

rate laws for the pgk enzyme. (C) The enzyme can be modelled using the mass action (top), Michaelis-Menten (middle) or generalised kinetics

(bottom) rate laws. The notation for the mass action and Michaelis-Menten components are defined in Fig 3B. Note that since generalised kinetics rate

laws depend on the chemical potentials of all substrates (and not just their sums), they cannot be decomposed into smaller modules.

https://doi.org/10.1371/journal.pcbi.1009513.g007
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has two products and therefore could not be exactly matched to the generalised kinetics model

(see Appendix A of S1 Text).

The mass action model behaved substantially differently from the generalised kinetics

model with respect to the perturbations, notably having a faster response time. Additionally,

the concentration of PEP had a greater maximum deviation from its steady-state value in

response to perturbations of the more upstream species. Unlike the other rate laws, the law of

mass action does not account for the rate-limiting step of enzyme complexes releasing product.

Thus, these observations could potentially be attributed to the lack of saturation in the mass

action rate law, causing increased reaction fluxes.

Steady-state perturbations. We also tested the response of the models to prolonged per-

turbations with external species, which caused the models to move to different steady states

(Fig 9). Once again, the models were compared using the response time (top row) and concen-

tration of PEP (bottom row). While all models have the same steady state without the

Fig 8. Response of glycolysis models to perturbations to internal species. Each of the species (column titles) had its concentration instantaneously

increased by 30% from steady state. Top row: response times; bottom row: change in [PEP] over time. The colour key is blue: generalised kinetics (GK),

green: Michaelis-Menten (MM), red: mass action (MA). In cases where the curve for the generalised kinetics model is not visible, it matches with the

Michaelis-Menten model.

https://doi.org/10.1371/journal.pcbi.1009513.g008

Fig 9. Response of glycolysis models to prolonged perturbations to external species. Each of the species (column titles) had its concentration

instantaneously increased by 30% from steady state. Top row: response times; middle row: steady state deviation; bottom row: change in [PEP] over

time. The colour key is blue: generalised kinetics (GK), green: Michaelis-Menten (MM), red: mass action (MA). The response of the model to NADH

was omitted as there was a negligible change in steady state.

https://doi.org/10.1371/journal.pcbi.1009513.g009
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perturbation, they settle to different steady states under prolonged perturbations due to differ-

ences in how the rate laws react to changes in the concentration of boundary species. Accord-

ingly, we also quantified the magnitude of the shift in steady state using the Euclidean norm

(middle row).

While the Michaelis-Menten model still qualitatively resembled the generalised kinetics

model, differences started to emerge when external species were perturbed, as there were

insufficient parameters to match the behaviour in response to external species. These differ-

ences appeared to be most significant for perturbations to NAD, ATP and Pi. In general, the

response time for the Michaelis-Menten model was slightly longer than the full model.

Following the trend for internal perturbations, the mass action model behaved significantly

differently from the original model. The mass action model had a shorter response time and

reached a different steady state in many cases.

These results would appear to suggest that saturation is an important property to consider

when modelling the dynamic behaviour of metabolic networks, mirroring results from previ-

ous studies [62, 63]. Comparisons between the generalised kinetics and Michaelis-Menten

models illustrate that while quantitative differences arise from simplifying out the complex

binding properties of enzymes, simpler models may nonetheless be useful in studying the qual-

itative behaviour of metabolic networks, particularly under conditions where appropriate

assumptions are satisfied.

Energetics of the glycolysis pathway. In addition to exploring fluxes and concentrations,

bond graph models can be used to study the energetics of metabolic pathways, allowing model-

lers to incorporate thermodynamic measurements into methodologies for model parameteri-

sation and validation. In some cases, analysing the transduction and dissipation of energy can

result in novel insights and predictions [55].

The glycolysis pathway contains two points (fba/fbp and pyk/pps) at which carbon species

are cycled by two enzymes while dissipating energy. These futile cycles (or “Cyclic Flow Modu-

lation” [64]) are critical points of control, allowing the system to switch between glycolysis and

gluconeogenesis [65, 66]. Much of this regulation is performed by allosteric regulation, which

is not accounted for in this model. Nonetheless, the enzyme concentrations e0 can be changed

to model the effects of allosteric regulation.

We analyse the energetics of the generalised kinetics model of glycolysis in this section. To

simplify our analysis, we switch off the fbp and pps enzymes (generally associated with gluco-

neogenesis) by setting e0 to zero. The remaining reactions form a pathway, which we analyse

at steady state. Using the methods of Gawthrop and Crampin [67], the glycolysis pathway can

be defined as the sum of reactions

pgiþ pfkþ fbaþ tpiþ 2gapþ 2pgkþ 2gpmþ 2enoþ 2pyk: ð16Þ

This pathway has the overall reaction

G6Pþ 3ADPþ 2NADþ 2PiÐ 2PYRþ 3ATPþHþ 2NADHþ 2H2O: ð17Þ

Thus we can calculate the overall affinity of the pathway to be

Aglycolysis ¼ mG6P þ 3mADP þ 2mNAD þ 2mPi

� 2mPYR � 3mATP � mH � 2mNADH � 2mH2O

ð18aÞ

¼ Apgi þ Apfk þ Afba þ Atpi þ 2Agap þ 2Apgk þ 2Agpm þ 2Aeno þ 2Apyk: ð18bÞ
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The energy-based approach reveals a more detailed picture of how energy is dissipated

throughout the pathway. Using the concentrations of each metabolite at steady state, one can

calculate the affinity of each individual reaction. As expected, when scaled by the contribution

of each reaction to the pathway, the affinities of the reactions add up to the total affinity

(Table 1).

The total pathway affinity predicted by the model is higher than the experimentally mea-

sured values [68]. Furthermore, all reactions contribute significantly to the overall affinity,

which differs from experimental measurements finding that the pfk and pyk are the predomi-

nant contributors to overall affinity, with the other reactions near equilibrium [68]. We note

that for this particular model, the parameters were derived in the absence of standard free

energies of formation [5]. Thus, a natural improvement to the model would be to use these val-

ues to parameterise models [69], which would likely improve the fit to experimental data.

After incorporating data on thermodynamic constants, this model could be regarded as a vali-

dated module available for coupling with other reactions to form more comprehensive models.

For example, recycling reactions such as the adenylate kinase and alcohol dehydrogenases

could be added to study variations in the concentrations of ATP, ADP, AMP, NAD and

NADH.

Discussion

It is widely accepted that a modular approach is essential to developing large-scale models in

systems biology. While significant progress has been made in using computational resources

to support modular modelling, it remains challenging to ensure the integrated models are con-

sistent with the laws of physics. In this paper, we have illustrated that bond graphs are both

modular and physically consistent, allowing them to unify developments from both software

and thermodynamical modelling. These principles were demonstrated by constructing physi-

cally consistent models of two well-studied systems using the modular properties of bond

graphs.

To construct the model of the MAPK cascade, we took advantage of the ability of bond

graphs to embed modules into reusable templates. Due to the presence of repeating motifs, the

development of the model was substantially simplified, illustrating how similar concepts may

be usable in streamlining the development of models of more complex systems. As demon-

strated in Appendix B of S1 Text, this approach can be extended to use white-box modules

with flexible interfaces. Furthermore, the merging of models can be automated through the

Table 1. Distribution of free energy changes in the glycolysis pathway. The total free energy corresponds to the over-

all reaction G6Pþ 3ADPþ 2NADþ 2PiÐ 2PYRþ 3ATPþHþ 2NADHþ 2H2O.

Reaction Affinity (kJ/mol)

pgi 43.4

pfk 81.0

fba 14.6

tpi 8.4

gap 51.5 (×2)

pgk 23.9 (×2)

gpm 13.5 (×2)

eno 45.1 (×2)

pyk 17.0 (×2)

Total 449.4

https://doi.org/10.1371/journal.pcbi.1009513.t001
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use of semantic annotations, and bond graphs have shown great potential in this space due to

their biophysical detail [70].

In addition to embedding multiple components into a module, bond graphs also enable

reactions to be modelled by a wide array of thermodynamically consistent rate laws. Using a

network-level representation of glycolysis as a template, we showed how parts of a bond graph

can be substituted for rate laws of varying complexity. This enabled a principled approach for

benchmarking and comparing models of glycolysis with different levels of complexity. While

not explored in this paper, a strength of this approach is that different parts of a model can be

represented at different levels of granularity. This modular approach would allow one to study

subsystems of interest using highly detailed models while using more manageable coarse-

grained representations for the rest of the model.

Due to their modular nature, bond graphs are compatible with existing approaches to cou-

pling reaction networks, as implemented in the SBML hierarchical package and PySB [28, 30].

These approaches are similar in that component definitions can be defined by either outer

modules (black-box modularity) or be merged with other components (white-

box modularity). This means that bond graphs could potentially be built on top of existing

software infrastructure for model annotation, composition and simulation [24, 25, 71]. How-

ever, the bond graph approach expands on existing approaches in a few ways. Firstly, bond

graphs explicitly account for the transfer of power, ensuring that models are thermodynami-

cally consistent. Secondly, unlike in typical kinetic models, species components contain their

own independent equations and parameters, allowing conflicts between models to be resolved.

Finally, the approach is generalisable to multi-physics systems such as mechanobiology and

electrophysiology.

An ongoing challenge to creating truly large-scale bond graph models is increasing the

number of models available to modellers. Ideally, one would look to convert existing kinetic

models in the literature into bond graphs. However, while bond graphs are readily converted

into kinetic models, the conversion in the other direction is not always possible as existing

kinetic models often use irreversible reactions or fail to satisfy detailed balance [47, 72, 73].

Thus, to maintain the advantages of using bond graphs, an avenue of future work would be to

automatically generate bond graph versions of existing biomodels, such as those in the BioMo-

dels repository [74] or the Physiome Model Repository [75], and where necessary correcting

thermodynamic inconsistencies while minimally changing model behaviour. In cases where

the energetics of a process are considered negligible (for example gating in ion channels and

neural control in locomotion), one may choose to embed the kinetics of such processes inside

control elements of a bond graph [76]. This allows a kinetic model to be directly added to a

bond graph as a “black box” in which the energetics underlying its dynamic behaviour are

ignored.

Because bond graphs are inherently a modular and declarative representation, they are well

suited for taking advantage of developments in programmatic modelling where models are

constructed through a series of instructions from the software [7, 30]. Indeed, the models in

this paper were constructed using the BondGraphTools Python package [31], a highly flexible

and automatable approach for model construction that mirrors the approach of existing pack-

ages used within the systems biology community [30, 71]. Embedding bond graphs within a

programmatic environment enables the construction of models using higher-level descrip-

tions, allowing modellers define models using a relatively parsimonious set of commands. Pre-

vious work has shown that bond graphs can be constructed from a stoichiometric matrix [48]

and a series of reactions [31]. Nonetheless, further work is needed to help automate model

construction, in particular making use of rule-based approaches for constructing models of

highly complex interactions between proteins, ligands and receptors [77, 78].
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While we used the Python package BondGraphTools for the benchmarking and simulation

in this paper, it would also be relatively straightforward to use typical systems biology simula-

tors (for example COPASI [25], Tellurium [71] or PySB [30]) after a change of parameters.

However, we note that these programs do not allow species equations to be specified. Thus, we

advocate for retaining a bond graph representation of the model as a core representation that

can be later modified should the need arise. We are working on exporters to convert bond

graphs into more commonly used formats such as SBML and CellML to aid model reproduc-

ibility. A longer-term goal is to define bond graphs in SBML and CellML. CellML describes

the mathematics of physical systems, thus bond graphs are generally straightforwardly defined

in this standard. However, to implement the approach in SBML, one would need to extend the

standard so that species have their own equations and parameters, potentially through a sepa-

rate package.

In writing this paper, we hope to motivate the uptake of network thermodynamic models

(and bond graph models in particular) by the systems biology community. One of the objec-

tives of the Physiome Project is to embed bond graphs within the CellML modelling language

[79]. This will facilitate the development of more user-friendly tools, allowing the conversion

of existing models into bond graphs and subsequently coupling them. As the bond graph

methodology gradually becomes more widely adopted by the community, we anticipate that

existing mathematical and computational methods in the systems biology space will be used in

conjunction with the bond graph approach, allowing biomodels to be integrated in a physically

consistent manner.

In conjunction with the programmatic approach, bond graphs provide a useful framework

for updating models and recording their provenance. In the development of the model of the

MAPK cascade, we showed that incremental changes could be made to incorporate feedback.

Through a modular approach, these changes were made by changing the components and

connections within the network rather than deriving new equations entirely. Furthermore,

these incremental changes can be recorded within the code used to construct such models,

which could potentially enable an automated framework for profiling model provenance in

the future.

In order to develop comprehensive models of cells, ongoing and future work will focus on

expanding the range of cellular processes that bond graphs can represent. While significant

progress has been made in metabolic modelling and transport processes, how to model gene

regulation and signalling in an energy-based framework remains an open question. Modelling

such processes will likely require theoretical groundwork to be established for:

1. modelling discrete and stochastic systems

2. choosing an appropriate level of model granularity to model each biological process

3. dealing with the properties of macromolecules in a modular manner, so that the number of

associated parameters remains manageable

While the Network Thermodynamics approach implemented using bond graphs requires

modellers to take more care in developing their models in the short term, we believe that tak-

ing this approach will make large-scale models more robust, reusable and ultimately more use-

ful to the systems biology community in the years to come.
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