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Abstract: Restoration of the orbit is the first and most predictable step in the surgical treatment
of orbital fractures. Orbital reconstruction is keyhole surgery performed in a confined space. A
technology-supported workflow called computer-assisted surgery (CAS) has become the standard
for complex orbital traumatology in many hospitals. CAS technology has catalyzed the incorporation
of personalized medicine in orbital reconstruction. The complete workflow consists of diagnostics,
planning, surgery and evaluation. Advanced diagnostics and virtual surgical planning are techniques
utilized in the preoperative phase to optimally prepare for surgery and adapt the treatment to the
patient. Further personalization of the treatment is possible if reconstruction is performed with a
patient-specific implant and several design options are available to tailor the implant to individual
needs. Intraoperatively, visual appraisal is used to assess the obtained implant position. Surgical
navigation, intraoperative imaging, and specific PSI design options are able to enhance feedback
in the CAS workflow. Evaluation of the surgical result can be performed both qualitatively and
quantitatively. Throughout the entire workflow, the concepts of CAS and personalized medicine are
intertwined. A combination of the techniques may be applied in order to achieve the most optimal
clinical outcome. The goal of this article is to provide a complete overview of the workflow for
post-traumatic orbital reconstruction, with an in-depth description of the available personalization
and CAS options.

Keywords: patient-specific implants; orbital reconstruction; computer-assisted surgery; surgical
navigation; additive manufacturing

1. Introduction

The orbit is an inward-projecting bony structure in the shape of a cone (or pyramid) at
the transition between midface and skull base [1–3]. The base of the orbit, the orbital rim, is
composed of thick bone; in contrast, the orbit’s inner walls are thin bony structures. The
orbit provides the casing for the soft-tissue structures associated with the visual (motor)
system: neurovascular structures, connective tissue, ocular muscles, and the globe [4,5].

With its central position and thin bony walls, the orbit is probably the most vulnerable
part of the facial skeleton [1,2]. Two possible theories of orbital fracture pathogenesis have
been suggested. The buckling theory suggests that the energy of a traumatic impact on the
orbital rim after blunt-force trauma is propagated to the thin inner walls and leads to a
fracture in these weaker structures [6–8]. Hydraulic theory considers increased pressure
after impact on the globe and orbital contents as the main reason for orbital wall fractures.
The exact nature and specifics of a fracture may be explained by a combination of both
mechanisms [7].

The orbital volume may be increased, and soft tissue may be displaced into the
adjacent sinuses due to the impact or the dislocation of supporting bony structures. The
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globe’s position may be displaced after trauma, for instance, with inward displacement
(enophthalmos) or inferior displacement (hypoglobus). The orbital soft tissue may be
affected by the traumatic impact as well. The structural integrity and functional capacities
of connective tissue or extraocular muscles may be disrupted, resulting in a disturbance
of ocular motility and double vision (diplopia). The location and type of the impact, in
combination with the amount of energy transferred to the orbit’s bony structures and
orbital soft tissue, are responsible for the heterogeneity in clinical presentation.

There is an ongoing debate on the indication of surgical reconstruction, and system-
atic reviews have not been able to provide evidence-supported guidelines [9–11]. Some
advocate a radical approach to prevent clinical symptoms [12], while others choose a more
conservative approach with a delayed surgery if clinical symptoms develop [13]. Indication
for reconstruction remains a subjective decision in most cases, depending on the surgeon
and patient characteristics. The surgical management of orbital fractures focuses on the
repositioning the orbital contents and the globe and reinstating the structural support to
recover ocular function. Restoration of the orbit is the first and most predictable step in the
surgical treatment of orbital fractures [14,15].

Nowadays, titanium mesh implants have become the preferred biomaterial for the
surgical reconstruction of the orbit. Titanium implants can be categorized into flat implants,
preformed implants, and patient-specific implants (PSIs). Flat implants are manually
shaped and trimmed by the surgeon. A generic or individual model of the (mirrored)
orbit may aid in the molding process. Preformed implants have a predefined shape, based
on a model of the average orbit [10,16]. Patient-specific implants (PSIs) are designed
on an individual basis for the patient and are subsequently produced through additive
manufacturing.

The soft tissue’s intricate architecture and the proximity to vital structures pose surgical
challenges in orbital reconstruction [17,18]. Orbital reconstruction is keyhole surgery
performed in a confined space. This contributes to limited visualization, which is further
enhanced by protruding fat. The margin of error is small: an incorrectly positioned implant
may have significant implications for the clinical outcome and the patient’s quality of
life, and it is considered a ground for revision surgery in the literature [19,20]. Medical
technology has been incorporated in the clinical workflow of orbital reconstructions to
reduce the risk of implant malpositioning [21].

This technology-supported workflow, called computer-assisted surgery (CAS), has
become the standard for complex orbital traumatology in many hospitals [22]. The in-
troduction of CAS has also enabled personalization of the treatment: treatment planning
is customized to fit the options and needs of the patient, and intraoperative guidance
is adjusted to the anatomical possibilities. The main aim of this article is to provide a
complete overview of the (CAS) workflow for orbital reconstruction, with an in-depth
description of the techniques embedded in the workflow and with a special focus on
treatment personalization through patient-specific implant design.

2. Post-Traumatic Orbital Reconstruction Workflow

The conventional workflow of post-traumatic orbital reconstruction and possible CAS
techniques are illustrated in Figure 1. The individual phases are explained in detail in the
following paragraphs.
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sists of several techniques that may be combined and affect one or multiple workflow stages. Several 
CAS technologies may be combined. 

2.1. Diagnostics 
A thorough clinical and radiographic evaluation of the patient is essential to deter-

mine the optimal treatment. Clinical evaluation should at least assess the amount of globe 
displacement and the degree of double vision. The Hertel exophthalmometer is the sim-
plest tool to quantitatively measure the relative ventrodorsal globe position [23]. It is the 
current gold standard despite the known limitations, such as the asymmetry of lateral 
orbital rims, the compression of soft tissue, and the lack of a uniform technique [23,24]. 
There are no readily available reproducible tools for measuring the relative craniocaudal 
globe position [25]. It is assessed by the Hirschberg test, which evaluates the light reflex 
centered on each pupil to reveal vertical asymmetry [26]. Alternative methods have been 
proposed to quantify globe position differences based on imaging, but these have not been 
broadly implemented [23,27]. 

One of the difficulties in clinical decision-making is to address the most common 
complaint in orbital fractures: diplopia. It is challenging to find the actual cause of di-
plopia; in most cases, it is caused by a restriction of ocular motility. Ocular motility can be 
disturbed by impingement or the entrapment of the ocular muscles and surrounding soft 
tissue, but also by muscle edema, muscle injury, hemorrhage, emphysema, or motor nerve 
palsy. In a trauma setting, orthoptic measurements may be challenging to perform due to 
logistics, limited mobility of the patient, or considerable periorbital swelling. Absolute 
restrictions, as seen in trapdoor fractures, need to be treated shortly after the trauma. Oc-
ular motility deficits with different etiology may improve or resolve over time, and sur-
gery might not be indicated. In these cases, it is advisable to perform several orthoptic 
assessments over time to monitor spontaneous improvement. Moreover, the orthoptist 

Figure 1. Schematic overview of the technological possibilities within the orbital reconstruction
workflow. Chronologically, a clinical workflow consists of diagnostics, planning, surgery, and
evaluation. In the conventional workflow, the surgeon is dependent on clinical assessment and
preoperative imaging, visual appraisal during surgery and postoperative imaging for evaluation.
CAS consists of several techniques that may be combined and affect one or multiple workflow stages.
Several CAS technologies may be combined.

2.1. Diagnostics

A thorough clinical and radiographic evaluation of the patient is essential to determine
the optimal treatment. Clinical evaluation should at least assess the amount of globe
displacement and the degree of double vision. The Hertel exophthalmometer is the simplest
tool to quantitatively measure the relative ventrodorsal globe position [23]. It is the current
gold standard despite the known limitations, such as the asymmetry of lateral orbital
rims, the compression of soft tissue, and the lack of a uniform technique [23,24]. There
are no readily available reproducible tools for measuring the relative craniocaudal globe
position [25]. It is assessed by the Hirschberg test, which evaluates the light reflex centered
on each pupil to reveal vertical asymmetry [26]. Alternative methods have been proposed
to quantify globe position differences based on imaging, but these have not been broadly
implemented [23,27].

One of the difficulties in clinical decision-making is to address the most common
complaint in orbital fractures: diplopia. It is challenging to find the actual cause of diplopia;
in most cases, it is caused by a restriction of ocular motility. Ocular motility can be disturbed
by impingement or the entrapment of the ocular muscles and surrounding soft tissue, but
also by muscle edema, muscle injury, hemorrhage, emphysema, or motor nerve palsy. In a
trauma setting, orthoptic measurements may be challenging to perform due to logistics,
limited mobility of the patient, or considerable periorbital swelling. Absolute restrictions,
as seen in trapdoor fractures, need to be treated shortly after the trauma. Ocular motility
deficits with different etiology may improve or resolve over time, and surgery might not be
indicated. In these cases, it is advisable to perform several orthoptic assessments over time
to monitor spontaneous improvement. Moreover, the orthoptist may be able to differentiate
between possible causes of double vision through repeated measurements [9,28].

Computed tomography (CT) is the modality of choice for radiographic evaluation
because of the superior visualization of bony structures. The size and extent of the fracture
may be estimated or measured in the coronal, sagittal, or axial plane. Considering that the
bone is paper-thin in certain areas, a maximum slice thickness of 1.0 mm is essential for
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evaluation. In individual cases, the evaluation of soft-tissue changes may become important.
Shape alterations of the inferior rectus muscle have been reported to affect delayed or
postoperative enophthalmos [29–31] and may affect treatment decisions [10]. In addition,
herniation of the orbital soft tissue might be an indication for surgical reconstruction.
Magnetic resonance imaging (MRI) provides superior soft-tissue contrast compared to CT
and is more sensitive for identifying extraocular muscle or periorbital fat entrapment [32,33].
Nevertheless, the acquisition of an MRI is not part of the standard imaging protocol for
orbital trauma [13]. This may change in the future, considering that all subsequent treatment
steps benefit from optimizing the information collection in the diagnostics phase.

2.2. Advanced Diagnostics

Advanced diagnostics aim to maximize the information extracted from the available
image data. For this purpose, the CT scan is imported into the virtual surgical planning
software. The CT scan is subdivided into voxels (3D pixels), each with a grayscale value
corresponding to the X-ray absorption within that volume. These voxels may be segmented
(grouped) based on the tissue type or anatomical structure they belong to. Anatomical
structures of interest in orbital trauma are the orbit, orbital cavity, and possibly surrounding
bony structures such as the zygomatic complex. The segmentation is visualized as an over-
lay in the multi-planar view and as a 3D model. Additional information may be collected
through quantification (e.g., volume measurement), or manipulation (e.g., mirroring) of the
segmented anatomy (illustrated in Figure 2). The unaffected contralateral orbit and orbital
cavity can provide a reference for the affected orbit in unilateral fractures, which provides
insight into the extent of the fracture and displacement of orbital walls or surrounding
bony structures. The volume of the affected orbit can be compared to the unaffected
healthy side to determine the relative volume change, since it has been proven that the
orbits are highly symmetrical [33]. These volumetric changes can be incorporated into the
treatment plan [34]. Information may also be extracted from multiple image sets. Image
fusion allows aligning multiple datasets of the same modality over time or image sets from
different modalities. The image sets can be simultaneously visualized and evaluated after
image fusion. The segmentation process can also be based on information from multiple
fused modalities.
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as the globe and eye muscles. II: Zygomatic complex fracture (E–H). (E) Visualization of the 3D bone 
surface model. (F) Segmentation of the unaffected side. (G) Mirroring of the segmentation to the 
affected, contralateral side. (H) Visualization of the zygomatic complex displacement. 
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an accurate reconstruction of the pretraumatized anatomy is simulated. The potential of 
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implant manufacturers to provide STLs of their preformed implants. In modern planning 
software, the implant may be automatically aligned to another virtual model, for instance, 
the mirrored orbit. Manual adjustments could be necessary to prevent interferences with 
the bone and ensure the orbital defect is covered, with adequate implant support on the 
dorsal ledge and fixation possibility on the infraorbital rim.  

The implant may be virtually trimmed to simulate the cutting of medial or posterior 
parts of the implant. The surgery can be simulated multiple times in the virtual surgical 
planning, with different implant types and sizes (Figure 3). This enables comparison be-
tween preformed implant options and substantiated decision making before surgery. The 
number of try-ins in virtual planning is limitless without consequences for the patient, in 
contrast to try-ins during actual surgery. Establishing the optimal position in virtual plan-
ning provides the surgeon with intraoperative feedback, which could reduce the operat-
ing time and extent of manipulation inside the orbit during surgery [36]. 

Figure 2. Advanced diagnostics for two cases. I: Solitary orbital reconstruction (A–D). (A) Visual-
ization of the 3D bone surface model. (B) Segmentation of the unaffected orbit. (C) Mirroring of the
segmented orbit to the affected, contralateral side. (D) Visualization of additional structures, such as
the globe and eye muscles. II: Zygomatic complex fracture (E–H). (E) Visualization of the 3D bone
surface model. (F) Segmentation of the unaffected side. (G) Mirroring of the segmentation to the
affected, contralateral side. (H) Visualization of the zygomatic complex displacement.
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2.3. Virtual Surgical Planning

Virtual surgical planning (VSP) is a simulation of the actual surgery on the imaging
data [35]. It is based on information gathered in the previous treatment stages. The exact
content of the virtual surgical planning depends on the type of implant. If a flat mesh plate
is used, the virtual models of the mirrored orbit and affected orbit can be exported and 3D
printed to serve as individual bending template(s) for molding the flat mesh.

In the preformed implant setting, the stereolithographic model (STL) of a preformed
implant is imported into the planning environment to perform a virtual reconstruction of
the affected orbit. The implant’s fitting potential is evaluated and its optimal position for
an accurate reconstruction of the pretraumatized anatomy is simulated. The potential of
VSP in the preformed implant setting is thus highly dependent on the willingness of the
implant manufacturers to provide STLs of their preformed implants. In modern planning
software, the implant may be automatically aligned to another virtual model, for instance,
the mirrored orbit. Manual adjustments could be necessary to prevent interferences with
the bone and ensure the orbital defect is covered, with adequate implant support on the
dorsal ledge and fixation possibility on the infraorbital rim.

The implant may be virtually trimmed to simulate the cutting of medial or posterior
parts of the implant. The surgery can be simulated multiple times in the virtual surgical
planning, with different implant types and sizes (Figure 3). This enables comparison
between preformed implant options and substantiated decision making before surgery.
The number of try-ins in virtual planning is limitless without consequences for the patient,
in contrast to try-ins during actual surgery. Establishing the optimal position in virtual
planning provides the surgeon with intraoperative feedback, which could reduce the
operating time and extent of manipulation inside the orbit during surgery [36].
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Figure 3. Virtual fitting of different preformed implants in a solitary orbital fracture. Three-
dimensional models of the preformed implants of KLS Martin (A), Synthes (B) and Stryker
(C) are visualized with potential cutting lines (black lines) in the first column. The implants are
virtually positioned (red contour) and the fit is evaluated in the coronal, sagittal, and axial slices.
Important considerations are adequate support (on the posterior ledge, on the medial wall and on
the infraorbital rim) and a lack of interference with bone.
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2.4. Patient-Specific Implant Design

Reconstructing the orbit with a PSI is the ultimate step of individualization for orbital
reconstruction. A PSI is virtually modelled from scratch, using information from the
(advanced) diagnostics phase and exported virtual models. In dedicated design software,
a prototype implant is generated. The prototype is imported into the virtual surgical
planning and its fit is evaluated. The position of the prototype is not adjusted in the virtual
surgical planning to improve the fit, but the design of the prototype is adjusted and the
novel prototype is reimported. Even though the design of a PSI is not set in stone by
protocols, various design considerations have been described in the literature. An overview
of options is summarized in Table 1. This overview is not comprehensive, and novel design
options are regularly introduced in the literature.

Table 1. List of different design considerations as reported in the literature.

Design Consideration Effect on Options References Notes

Thickness Positioning,
stability

0.3 mm [22,37,38]

Atraumatic cord
Positioning,
stability

Present [37,39,40]

Absent [38,41,42]

Grid
Clinical
symp-
toms

Horizontal [22,37,40,43]
Squares [38,39,41,44]
Porous [42,45,46]

Support Stability,
accuracy

Three points [22] Infraorbital rim, medial wall, posterior ledge

[38] Anteromedial, anterolateral, posterior
Ledge [37,40,43] Inverted shovel design

Lateral posterior wall [43] Stabilizer for self-centering implant

Extension Accuracy Orbital rim [22,42,44,46–48]
Lateral posterior wall [43]
Specific bone features [45]

Anterior elevation Clinical
symp-
toms

[22] Rim elevation to correct hypoglobus

Overcorrection
Clinical
symp-
toms

Location
[22] Posterior to bulbus
[49] Orbital floor elevated in sagittal relation

Amount [22] Based on clinical findings, advanced
diagnostics

[38] Slight overcorrection
[50] Same amount in cubic cm as mm enophthalmos

Intraoperatively [51] Spacers

Navigation Accuracy Markers [22,37–39,52] Eminence lacrimal foramen [38]
Vectors [37,40,43]

Fixation Stability Absent [38,44,48]
Present [22,37,39,40,42,

46,47,53]
Eccentric screw alters implant position [47]

Fix implant if form stable [40]

Fixation re-use Accuracy Re–used screw hole [54] Only in secondary reconstruction

Multi-piece Positioning,
stability,

Lazy-S [42,47,49]

accuracy Interlocking [46,48,55,56]

Design considerations can be categorized based on their intended effect: stability,
positioning ease, accuracy of implant positioning or alleviation of clinical symptoms. The
size and shape of the implant are dependent on the extent of the defect. The defect should
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be covered by the implant and its shape should reflect the intended reconstruction of
the affected orbital walls. Support on existing bony structures is taken into account to
ensure the stability of the reconstruction. Analogous to the preformed implants, support is
most often found at three points in the orbit [22,38]. Fixation is recommended to ensure
a stable position of the PSI [39,40]. Possible screw positions can be assessed in virtual
planning, factoring in the patient’s anatomy and local bone quality. The thickness of the
implant and implementation of an atraumatic cord around the edge are considerations
that affect both the stability of the implant and the positioning ease during surgery. Due to
additive-manufactured titanium’s rigidity, an implant thickness of 0.3 mm in combination
with an atraumatic cord results in a good balance between rigidity and positioning ease.

The accuracy of implant positioning can be controlled by extensions over unaffected
bony pillars. A compelling fit is created by the extension(s) of the implant over bony struc-
tures. An infraorbital rim extension limits rotation and translation in the anteroposterior
direction [47]. Additional flanges to the posterior lateral wall may be implemented to
prevent unwanted implant movement [43]. Screw positions from fixation material from a
previous reconstruction can be re-used in secondary reconstruction to provide guidance
and thus improve the accuracy of the implant positioning [54]. Another design option is
to incorporate navigation markers and vectors, which can enhance the interpretation of
feedback from the intraoperative navigation system.

The last category, clinical symptoms, deals with the correction of globe displacement.
The orbital volume is corrected to alleviate globe displacement, but the volume may be
overcorrected to counteract fat atrophy and the anticipated iatrogenic loss of soft tissue [57].
The amount of overcorrection might be subjectively determined during surgery, by inserting
additional spacers [51], or it may be fully integrated into the design of the PSI, posterior to
the equator of the bulbus [22,38,50]. On the other hand, hypoglobus is the result of caudal
displacement of the infra-orbital rim. An anterior elevation corresponding to the amount of
downward displacement of the orbital rim may alleviate hypoglobus (Figure 4). The grid
of the PSI can be designed with different techniques: using a large horizontal pattern to
maximize drainage [37,40,43], or a more porous arrangement [42,45,46]. The multitude of
design options and manual design leads to a wide range of possible PSI shapes (Figure 5).
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Figure 5. Different shapes of the available preformed implants and patient-specific implants are
illustrated. There is a wide variety in shapes in the patient-specific implants. From left to right the
rim extension is increased. From top to bottom the medial wall support is increased.

The PSI design can be adapted to facilitate the reconstruction of multi-wall defects, for
example, through the application of multiple PSIs (Figure 6). This enables a reconstruction
that covers the entire defect while limiting the size of the PSI and, in turn, the required inci-
sion [46,55]. Depending on the connection used, it also provides the opportunity to create
artificial support and relative feedback. A PSI that solely reconstructs the orbit will not suf-
fice in cases with concomitant fractures of the surrounding bony structures. Repositioning
the surrounding bone may be required in addition to the orbital reconstruction. Additional
design options are available to gain feedback from PSIs on the subsequent reconstruction
steps in these more extensive cases. An example of this is embedding the desired position
of the zygomatic complex in the PSI design to facilitate correct repositioning [54].
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extension is connected to a lateral wall implant dorsally with ridges and anteriorly with a puzzle
connection. (D) Four-wall reconstruction with a hook-and-bar connection for additional support for
the orbital floor implant.
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2.5. Intraoperative Feedback

During surgery, the surgeon aims to position the implant as closely as possible to
the ideal position that was established in the VSP. The availability of the VSP provides
intraoperative feedback that improves the result of the reconstruction [35]. Additional types
of feedback are available to aid in the accurate positioning of the implant (summarized in
Table 2). The design options relating to implant positioning ensure static feedback through
the unique and compelling fit of the PSI (Figure 7). In secondary cases, the re-use of screw
positions from the primary reconstruction will also help to find the planned position.

Table 2. Different feedback methods available in the operation room.

Feedback Method Static/Dynamic

Virtual surgical planning Static
Compelling fit patient-specific implant Static

Fixation re-use Static
Navigation Dynamic

Markers and vectors Dynamic
Intraoperative imaging Static
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Surgical navigation may be utilized to provide dynamic feedback on the implant
position. During the registration for surgical navigation, the patient’s position in the
operating room (OR) is linked to the preoperative imaging data in the virtual surgical
planning. Several registration methods are available: soft-tissue registration, bone-anchored
fiducials, and surgical splints [56,58]. Splint registration methods used to require repeated
radiographic imaging with the fiducial splint in place, but the fusion of intraoral scan data
in the advanced diagnostics phase allows the fabrication of a registration splint without
additional radiologic imaging [59]. The splint is designed on the individual patient’s
dentition and carries fiducials that can be indicated virtually in the planning software and
physically in the OR.

After registration, the navigation pointer’s position in the patient is visualized in the
virtual surgical planning on the navigation system’s screen. This provides the surgeon
with feedback on the position of the pointer, representing the position of the indicated
location (a specific spot on the implant’s surface). The quality and interpretability of the
feedback may be enhanced through navigation markers embedded in the design [39,52].
The markers are indicated in the VSP as navigation landmarks and used as a reference
in the OR. If the surgeon positions the pointer in the navigation marker on the implant,
visual and quantitative feedback about the pointer’s position compared to the landmark
is provided.
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2.6. Evaluation

Intraoperative imaging of the patient after implant positioning is highly recommended,
since the realized implant position can be qualitatively evaluated. If the surgeon is not
satisfied with the position, the implant can be repositioned in the same surgical setting,
preventing a revision surgery. For a complete quantitative evaluation of the surgical result,
the scan can be reconstructed and fused with the VSP. The planned position of the implant
can be compared to the achieved position of the implant to enable an objective assessment
(Figure 8). Differences between planned and realized position can be quantified in three
dimensions and expressed as rotations (roll, pitch and yaw) and translations (x, y and
z) [60]. Additionally, the volumetric difference between the reconstructed and unaffected
or planned orbit may be assessed. Post-operative CT-scans are indicated if intra-operative
CT is not acquired (or offered incomplete information), or if clinical considerations in the
follow-up period necessitate additional imaging.
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An optimally positioned orbital implant is no guarantee for a perfect clinical out-
come. Restoration of the globe position can be relatively well achieved with a PSI, even
in secondary reconstructions [22]. It is more complex to treat diplopia, as it involves the
mechanical mobility of the eye, combined visual perception, and processing in the visual
cortex. Visual processing may (partially) adapt over time. At discharge, the patient is
informed that double vision will be experienced for the first 10–14 days, possibly longer.
Ocular motility can be improved by training the extraocular muscles to prevent scarring
and anticipate fibrosis [61]. Instructions are provided to mobilize the eye as much as possi-
ble: monocular orthoptic exercises six times per day for 6–12 weeks to prevent adhesions
and stimulate a reduction in orbital soft tissue swelling, especially for the extraocular mus-
cles. This protocol positively affects clinical improvement in both primary and secondary
cases [13,22,47].

3. Discussion

Surgical complexity and the fact that an inappropriate reconstruction potentially
leads to an adverse outcome have led to the parallel incorporation of computer-assisted
surgery and personalized medicine in the orbital reconstruction workflow. Although
both concepts aim to optimize treatment outcome, their rationale differs. CAS centralizes
medical technology to improve the predictability and accuracy of all treatment stages, but
various steps have been standardized and can be considered independent of the patient.
CAS has catalyzed the incorporation of personalized medicine in orbital reconstruction:
virtual surgical planning technology enables surgical preparation, implant selection, and
the simulation of the desired implant position based on the individual’s characteristics. The
concepts are considerably intertwined in PSI reconstruction, and mutual interactions can be
discerned. Personalization of the implant design is directly affected by information gathered
in the preoperative CAS stage, and tailoring the implant to the patient’s anatomy provides
feedback on positioning during the intraoperative stage. Intraoperative CAS technology
supports the accurate positioning of the PSI, which is a prerequisite for achieving the
intended treatment effect of the personalized implant. In light of this symbiosis, surgical
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reconstruction with a PSI can be considered the pinnacle of both CAS and personalized
medicine in orbital reconstruction.

Several larger comparative studies have demonstrated the beneficial effects of (compo-
nents of) CAS on the accuracy of volumetric reconstruction [62], clinical outcome [36], and
need for revision surgery [63]. In practice, a combination of several CAS building stones is
often utilized. This yields heterogeneity in surgical approaches, which makes it difficult
to compare outcomes between studies. Differences in indication, patient and fracture
characteristics, or implant materials used further complicate comparison [64]. Isolating
the effect of individual CAS techniques on patient outcome is hampered by an overlap
of techniques within study populations. The individual effects of CAS techniques have
been assessed in a one-to-one comparison in a cadaver series [65]. Despite limitations
associated with the cadaver model and an inability to assess clinical outcome parameters,
positive effects of virtual planning, intraoperative imaging, and surgical navigation on
reconstruction accuracy were established.

Several indications for PSI in orbital reconstruction have been advocated, relating
to defect size, location, or timing of reconstruction [22,47,49,50,66–69]. The common de-
nominator between extensive defect size, the lack of bone support in the posterior third
of the orbit, or secondary reconstruction after inadequate primary reconstruction is that
the difficulty of reconstruction has been significantly increased. The possibility to perfectly
tailor the shape of the implant to the patient’s anatomy makes a PSI better suited for these
complex reconstructions compared to implants that lack these options. Other advantages
of PSIs are improved ease of use and precise, accurate fit, which leads to accurate implant
positioning and a decreased surgery time [41,43,45,49,50,70–72]. Iatrogenic soft-tissue dam-
age is prevented as much as possible since the number of try-ins necessary to correctly
position the implant is reduced, and no sharp edges are present around the implant’s
circumference [37,72–74]. These factors lead to the high predictability of functional and
aesthetic outcomes, fewer complications during or after surgery, and a lower revision rate
than other implant types [37,45,54,62,67].

The list provided in Table 1 stipulates an ever-increasing armamentarium of design
features to improve (ease of) positioning or alleviate clinical symptoms. The positioning-
related characteristics guarantee adequate implant support and a unique, compelling fit
for the implant. It is vital to evaluate the surgical accuracy of the PSI reconstruction and
the added value of the positioning features [72]. Several studies have used a comparison
between unaffected and reconstructed orbital volume or angulation between the floor and
medial to measure surgical accuracy [37,75–77]. These outcome parameters may conceal
incorrect implant positioning. In contrast, a direct comparison between planned and ac-
quired implant positions will reveal all surgical errors qualitatively and quantitatively [60].
Assessing individual degrees of freedom is even feasible with this approach. The evaluation
phase is an indispensable component of the CAS workflow and should be performed for
each orbital reconstruction. A direct comparison between planned and acquired implant
positions is advocated to maximize the potential of the evaluation phase.

Incorporating clinical considerations in the design is currently not as clear as the
positioning-related features. Since the early introduction of PSI reconstruction, the over-
correction of resulting orbital volume has been suggested several times, and its use has
been described (see Table 1). Still, guidelines to the amount of overcorrection are arbitrary
and subjective, and not substantiated by evidence. Information about the location and
shape of the overcorrection is lacking. The overcorrection may even be introduced through
different pathways: it may be embedded in the PSI design or added afterwards through
titanium blocks [51]. While the second option provides some freedom to the surgeon
intraoperatively, the judgment is subjective and hampered by the soft-tissue reaction to
the surgery (and the trauma in a primary setting). Trial and error positioning leads to the
increased manipulation of orbital tissue, and any dislocation of the blocks may warrant
a second procedure [78,79]. Embedding overcorrection in the design is suggested to be
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the best solution for achieving an optimal result [78] and could be precisely tailored to the
individual patient in the future, provided the abovementioned knowledge gaps are filled.

Cost, lead time, and logistic demands are drawbacks of using a PSI [37,71,73,79]. Pric-
ing may vary based on geography, but the process usually costs EUR 1500-6000 [57,72,80,81].
Manufacturing of the implant takes approximately 3–5 working days; this does not in-
clude sterilization, or the time needed for virtual surgical planning and design. Korn et al.
described a mean communication time between the surgeon and the PSI company techni-
cian during virtual surgical planning of almost nine days for isolated wall fractures and
16 days for multi-wall fractures [82]. An adjustment to the initial design that the technician
proposed was necessary in nearly three-quarters of cases, but implants from technicians
with previous in-house training required fewer adjustments. Improved communication
and mutual understanding are suggested to be the reasons for the efficiency improvement.
Complete in-house planning and design by a dedicated, on-site technician may ameliorate
planning efficiency, ultimately greatly reducing the lead time (provided the surgeon and
technician are experienced and have cooperated on previous cases). In-house design is sug-
gested to reduce costs, since commercial partners are only relied upon for fabrication [81].
These benefits of in-house design may be why surgeons who use in-house planning feel
less hindered by the drawbacks of using a PSI [71].

Although this paper focuses on post-traumatic orbital reconstruction, other PSI ap-
plications relating to the orbit have also been described. In zygomatic reconstruction after
trauma, ablative surgery, or congenital malformation, PSIs were found to precisely restore
the anatomy without the need for additional bone grafts [83]. In secondary post-traumatic
reconstruction of the orbit and zygoma, PSIs enable a one-stage surgical procedure in
which the surgical order is reversed: by operating the orbit first, the functional result
of the orbital reconstruction is independent of repositioning the zygomatic complex [54].
PSIs may also be used to create an artificial orbital rim and floor for globe support after
maxillectomy [84,85]. The most extensive orbital PSI reconstructions have been described
after the resection of a spheno-orbital meningioma or neurofibroma [55,86]. In these cases,
the reconstruction of all four orbital walls with multiple PSIs enabled a predictable recon-
struction of the internal orbit in the same surgical setting as the resection. The PSI design
in the abovementioned cases could differ greatly from the design in the post-traumatic
reconstruction of solitary orbital fractures. Still, the rationale behind using a PSI is the same:
freedom of design to adapt the PSI to the patient’s anatomy and a predictable and accurate
final result.

4. Conclusions

An overview of the CAS workflow for post-traumatic orbital reconstruction has been
presented, with an in-depth description of the techniques embedded in the workflow
and a special focus on PSI. It has been demonstrated how the conventional workflow
can be complemented by both CAS and personalized medicine in order to optimize the
clinical outcome of post-traumatic orbital reconstruction. CAS technology has catalyzed
the incorporation of personalized medicine in orbital reconstruction. The reconstruction
of the orbit with a PSI can be considered the pinnacle of CAS and personalized medicine.
There are no strict guidelines for the design of patient-specific implants, but several design
considerations can be implemented to improve the positioning or alleviation of clinical
symptoms. Because of the high predictability of aesthetic and functional outcomes, the
use of PSIs has been advocated especially in difficult reconstructions. Cost, lead time,
and logistical demands are known drawbacks, although they may be alleviated by in-
house design.
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