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Dynamics of dendritic cell maturation are
identified through a novel filtering strategy
applied to biological time-course microarray
replicates
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Abstract

Background: Dendritic cells (DC) play a central role in primary immune responses and become potent stimulators
of the adaptive immune response after undergoing the critical process of maturation. Understanding the dynamics
of DC maturation would provide key insights into this important process. Time course microarray experiments can
provide unique insights into DC maturation dynamics. Replicate experiments are necessary to address the issues of
experimental and biological variability. Statistical methods and averaging are often used to identify significant
signals. Here a novel strategy for filtering of replicate time course microarray data, which identifies consistent
signals between the replicates, is presented and applied to a DC time course microarray experiment.

Results: The temporal dynamics of DC maturation were studied by stimulating DC with poly(I:C) and following
gene expression at 5 time points from 1 to 24 hours. The novel filtering strategy uses standard statistical and fold
change techniques, along with the consistency of replicate temporal profiles, to identify those differentially
expressed genes that were consistent in two biological replicate experiments. To address the issue of cluster
reproducibility a consensus clustering method, which identifies clusters of genes whose expression varies
consistently between replicates, was also developed and applied. Analysis of the resulting clusters revealed many
known and novel characteristics of DC maturation, such as the up-regulation of specific immune response
pathways. Intriguingly, more genes were down-regulated than up-regulated. Results identify a more
comprehensive program of down-regulation, including many genes involved in protein synthesis, metabolism, and
housekeeping needed for maintenance of cellular integrity and metabolism.

Conclusions: The new filtering strategy emphasizes the importance of consistent and reproducible results when
analyzing microarray data and utilizes consistency between replicate experiments as a criterion in both feature
selection and clustering, without averaging or otherwise combining replicate data. Observation of a significant
down-regulation program during DC maturation indicates that DC are preparing for cell death and provides a path
to better understand the process. This new filtering strategy can be adapted for use in analyzing other large-scale
time course data sets with replicates.

Background
Today’s technological advances have provided biomedi-
cal researchers with an abundance of information, espe-
cially in the field of molecular biology. High throughput
technologies, such as microarrays, are capable of

generating large volumes of data in a short period of
time. These technologies provide the unique opportunity
to study the temporal dynamics of biological processes
in a global fashion rather than one gene or small groups
of genes at a time. However, studying temporal
dynamics adds another dimension to data that is already
large scale—that of time. Even without this additional
dimension, the development of methods for the filtering,
organization and analysis of these large data sets is an
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active area of research and presents a major hurdle for
biologists [1,2].
Time course experiments are designed to observe the

temporal dynamics of a particular biological process. A
good example of such a process is the maturation of
dendritic cells (DC), an important cohort of cells that
serve as sentinels of the immune system. As reviewed in
Banchereau et al and Guermonprez et al [3,4], these
cells sense and respond to pathogens and inform the
adaptive immune system on the nature of the foreign
invader. Upon interaction with pathogens or their com-
ponents, DC undergo a transformation process known
as maturation. Through this process, their ability to sti-
mulate the immune responses is enhanced; thus, these
cells are critical initiators of the adaptive immune
response.
The well characterized cellular processes associated

with DC maturation include, but are not limited to: up-
regulation of co-stimulatory molecules and inflamma-
tory cytokines, down-regulation of endocytic/phagocytic
activity facilitated by changes in rates of membrane
turnover and changes in cytoskeleton, changes in cell
morphology and migration due to up-regulation of che-
mokines, chemokine receptors and adhesion molecules,
and increases in degradative capacity associated with
down-regulation of protease inhibitors [5-12]. DC
maturation is also a terminal differentiation process
marked by shut down of the cell cycle followed by the
eventual programmed death of the cell [13-16].
DC maturation is a highly complex, time-ordered pro-

cess involving changes at many levels including gene
expression, intracellular transport, cytoskeletal activity,
and localization within the host. A dynamic process
of interaction among gene transcripts, regulatory
sequences, and trans-acting factors creates an underlying
gene expression network that is extremely important for
controlling many of the observed changes that occur
during the process of DC maturation. A number of time
course studies of the process of DC maturation induced
by different stimuli have been published [17-21], provid-
ing significant insight into the dynamics of this process.
Biological data is, by nature, ‘noisy’; that is, there are

many points during the experimental and analysis pro-
cesses where biological and technical variations are
introduced [1,22]. Replicate experiments reduce the
effect of these variations on the results, and help ensure
that reported results are reproducible. Feature selection
methods must be able to identify those genes that were
reproduced in replicate microarray experiments. DC
time course maturation studies [17-21] evaluate replicate
data in different ways. Most often, the significance of
expression of each gene in each replicate is evaluated
individually, and then the expression signals are aver-
aged before clustering. In some studies, only one

replicate is used for clustering. In all cases, time points
are treated individually, thus these studies do not fully
utilize the time-dependent information inherent in these
replicate time course experiments.
Some of the most popular feature selection processes

for analysis of microarray data employ complex statisti-
cal methods such as Analysis of Variance (ANOVA)
[23] and Significance Analysis of Microarrays (SAM)
[24,25] to identify those genes that were significantly
expressed. Others perform feature selection through
simpler statistical methods involving t-statistics or other
techniques [26] such as selecting ad hoc fold change
thresholds. Most of the statistical methods use the var-
iance within arrays and between replicate arrays to
determine which genes are significantly expressed above
the statistical noise (i.e. for time course experiments
they consider each time point in isolation of the others).
These techniques work well for all types of microarray
experiments and have been shown to elucidate biologi-
cally significant gene transcripts [25,27,28]; however, the
dynamic time-dependent information may not be fully
utilized.
Because time course experiments provide an addi-

tional dimension for feature selection methods to con-
sider, consistency in scale and pattern of response
across a time course profile, not just at a single mea-
surement, must be assessed. Here, we aim to develop a
filtering strategy that explicitly identifies consistency in
scale and pattern of time course replicate data, and we
apply this process to a DC maturation microarray time
course experiment.
Beyond the selection of significant gene expression

profiles, time course data must be further organized.
Clustering is an important exploratory tool that aids in
the analysis and organization of biological data by
dividing the data set into smaller, more manageable
groups based on some definition of similarity. Analysis
of differentially expressed gene clusters can reveal
functionally related genes [29,30] or genes that may
have the same regulatory mechanism [29,31]. This
popular analysis technique is generally performed on a
single data set using traditional clustering algorithms,
such as hierarchical agglomerative clustering (HAC), k-
means, or self-organizing maps [29]. Consensus clus-
tering is another strategy that aims at identifying
highly robust clusters in a data set. This is generally
done using a bootstrap technique [32] with one clus-
tering algorithm or by taking a consensus over many
different clustering algorithms [33].
An issue that surfaces during any cluster analysis is

that of reproducible results between replicate experi-
ments. A comparison analysis done by Yeung et al
concluded that incorporation of replicate expression
data into clustering produces clusters with higher
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stability [34]. Various techniques have been implemen-
ted to incorporate replicate gene expression data into
clustering. These methods generally use replicate data
to assess the variability of individual measurements
and incorporate this error information into the similar-
ity metric or directly into the clustering algorithm
[34-37]. These methods frequently combine replicate
values (often by averaging) for the final clustering
[34,36,37]; however, if clustering is performed on one
replicate, or the other, or the average, independently,
different results may be returned. This was observed in
our own experiments where clustering each replicate
experiment independently resulted in one replicate
being dominated by up-regulation and the other by
down-regulation. We expect some variation in biologi-
cal replicate experiments; however, we also expect the
bulk of the data to be reproducible, so that similar bio-
logical conclusions are reached in both experiments.
In this work we aim to identify key features in the

temporal dynamics of gene expression during DC
maturation following poly(I:C) stimulation through the
implementation of a new filtering strategy. Many avail-
able methods are designed for filtering and clustering
time course data [38-40]. Our filtering and clustering
strategy emphasizes the importance of reproducibility
between replicate experiments in both the feature selec-
tion and clustering. Our feature selection strategy uti-
lizes time course profiles, rather than isolated time
points, to identify genes that respond and behave consis-
tently to stimuli over time in replicate experiments. We
then apply a modified consensus clustering approach to
obtain robust gene clusters from replicate data sets.
Many of the previously known aspects of the DC
maturation process were observed here, supporting the
validity of our method. In addition, several novel pat-
terns of gene expression related to signaling and tran-
scriptional regulation are reported, highlighting the
potential of the method.

Results and Discussion
The Results and Discussion section is organized as fol-
lows. First we describe the results achieved from appli-
cation of each step of the filtering and analysis process
(methodological details of the process are presented in
the Methods section). Next, we demonstrate why this
method is important to obtaining reproducible data. We
then report on how our microarray data compares to a
similar time course microarray experiment, followed by
an overview of our results with comparison to the lit-
erature. Finally, a detailed evaluation of the observed
dynamic process of DC maturation is provided.

A filtering strategy that identifies those genes and gene
clusters that are highly consistent across two replicate
experiments
Feature Selection
In the feature selection phase of the analysis, the data
from both replicate microarray experiments (called
experiments 1 and 2; see methods) were subjected to a
two-step filtering process (Figure 1A, Steps 1 and 2).
This was done to ensure that the reported results
included only significant differentially expressed (Step
1) and consistent (Step 2) genes from each experiment.
Step 1 of the filtering process was performed on

each experiment independently, and was designed to
identify genes differentially expressed above a specific
detection threshold for at least one time point (Figure
1A steps 1a and 1b; see methods for details). At the 2-
fold level this resulted in an 82.3% and 82.1% decrease
in the total number of genes under consideration for
experiments 1 and 2, respectively (Figure 1B, green
and yellow circles, respectively). Likewise, filtering at
the 4-fold level decreased the number of genes by
94.5% and 94.1% for experiments 1 and 2, respectively
(Figure 1B, blue and red circles, respectively). After
completing this differential expression filtering
step, four gene lists remained—one 2-fold and one 4-
fold filtered gene list for each of the two replicate
experiments.
Step 2 of the filtering process was designed to identify

those detectable differentially expressed genes (those
from Step 1) that also consistently responded to stimuli
in both replicate experiments across all time points (see
Methods). For an expression profile to be considered
consistent between experiments, it must have: 1) been
above the detection threshold and differentially
expressed in both experiments (i.e. passed Step 1 in
both experiments); 2) exhibited a consistent level (or
scale) of response over time in both experiments; and 3)
exhibited a similar expression pattern over time in both
experiments. Therefore, Step 2 was implemented in
three stages (Figure 1A, Step 2).
In step 2a the intersection of the gene lists from Step

1 at each fold change level was identified. There were
4,439 genes common to both experiments at the 2-fold
level (Figure 1B, intersection of green and yellow circles;
Figure 1C, brown circle), and 1,000 genes at the 4-fold
level (Figure 1B and 1C, intersection of blue and red cir-
cles). Each identified gene list has two associated data
sets, one from each experiment. Note that replicate data
were not combined; this step merely identified genes
that had a detectable significant differential expression
at some point in both experiments.
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Steps 2b and 2c (Figure 1A) used the calculation of Eucli-
dean distance (ED) and Pearson’s correlation coefficient
(PCC) between replicate profiles to measure the consis-
tency of expression level and profile pattern across ana-
lyzed time points, respectively (see Methods). While use of
only ED or PCC is appropriate for some questions,

utilization of both criteria ensures identification of the tem-
poral profiles consistent in both scale and pattern across
both data sets (see Additional file 1 for an example). Steps
2b and 2c resulted in a 51.7% and 60.5% reduction in genes
for the 2-fold and 4-fold filtered gene lists, respectively
(Figure 1C, green and yellow circles, respectively).

Figure 1 Outline of feature selection and cluster analysis process. A flow chart of the analysis process is shown in (A) and is composed of 3
steps. Step 1 is the significant differential expression filtering where each gene was required to have at least one time point where the signal’s
change p-value and the fold change met the indicated criteria. Step 2 is the consistency filtering of the results from Step 1 where genes that
exhibit consistency of expression level and profile pattern between experiments are identified. Step 3 is the cluster analysis of all data from Step
2 and includes a FOM analysis followed by consensus clustering. (B) A representation of all datasets generated from Step 1 in (A) and their
overlaps. The gray circle represents all 45,101 genes contained on the Affymetrix GeneChip; the green (7982) and blue (2469) circles on the left
are the number of probe sets that met the 2-fold and 4-fold filtering criteria respectively for experiment 1; the yellow (8076) and red (2642)
circles on the right represent the number of probe sets that met the 2-fold and 4-fold criteria respectively for experiment 2. (C) An expanded
view of the dotted box in (B) showing the results of Step 2 in (A): the purple (1000) and brown (4439) circles represent the common gene lists
for the 4-fold and 2-fold criteria between both experiments (step 2a). The inner yellow (395) and green (2142) circles represent the two final sets
of genes that were determined to have the most significant and consistent differential expression for the 4-fold and 2-fold filtered data,
respectively.
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Overall, the two steps in the feature selection process
reduced the total 45,101 genes on the chip to 2,142
genes (95.3%) for the 2-fold filtered and 395 genes
(99.1%) for the 4-fold filtered data. These genes are con-
sidered to have a detectable, significant differential
expression and their temporal profiles were consistent
in both shape and scale.
A common approach to replicate data has been to

average the data points and calculate a standard devia-
tion or similar statistic for each data point
[18,20,34,36,37,41]. Many studies average replicate
experiment data for visualization [21], or as part of the
process in identifying differentially expressed genes
[18,20,41]. Averaging alters the data and could result in
expression profiles that may not accurately represent the
original. Several examples provided in Additional file 2
demonstrate how the average expression profile is differ-
ent in both expression level and pattern from either of
the replicate expression profiles used in the calculation.
The 2-step feature selection method used in this study
does not require averaging of data for either visualiza-
tion or analysis, and it ensures that each expression pro-
file exhibits a consistent pattern and scale across the
time course. Thus, the list of significantly regulated and
consistent genes obtained from Step 2 are similar
enough that related biological conclusions should be
reached no matter which experiment is used for
visualization.
Consensus Clustering
Feature selection was followed by cluster analysis
(Figure 1A, Step 3), which was performed in two stages,
a and b. Step 3a is a preliminary analysis of all data sets
to determine the optimal clustering schema (clustering
algorithm and number of clusters) and step 3b is a
modified version of consensus clustering.
Step 3a uses the figure of merit (FOM), an internal

validation measure that aids in quantitatively determin-
ing the optimal clustering schema [42,43]. The chosen
schema optimizes cluster homogeneity with respect to
the distance measure used. This is necessary because
different underlying structures in the data are revealed
depending on the clustering schema chosen. Various
internal validation methods have been designed to find
the best approximation of the natural cluster structure
for biological data without imposing a priori biological
knowledge on the data; however, many studies neglect
to perform this step. Assessing the natural cluster struc-
ture of biological data is now being recognized as an
important part of microarray data analysis [44]. In a
recent study by Giancarlo et al [45], several of the more
popular internal validation measures, such as FOM,
Clest [46], Gap Statistic [47], Model Explorer [48] and
others, were compared. Results showed that while FOM
was not the overall best on computational time it did

have good accuracy in predicting the correct number of
clusters from a “gold standard” model. Since the filtered
data sets in this study were small and computation time
was not an issue, we used FOM to determine the opti-
mal clustering schema [43]. For all the 2-fold and 4-fold
filtered data sets, FOM analysis indicated that using 8
clusters and k-means was the optimal schema for this
data (Figure 2).
In the last step, 3b, consensus clustering was done to

identify those groups of genes that consistently clustered
together in both replicate experiments to form robust
clusters. Because k-means is a non-deterministic cluster-
ing method, each replicate data set was clustered several
times to generate multiple clustering solutions

Figure 2 Figure of merit analysis on both significant datasets
indicates optimal clustering parameters. The FOM scores over a
range of cluster numbers for the 4-fold filtered data (A, 395 genes)
and the 2-fold filtered data (B, 2142 genes) have been graphed.
Both (A) and (B) were generated using the data from experiment 1
(experiment 2 exhibited similar results; not shown). This analysis
indicates that k-means is the optimal clustering algorithm for both
datasets since it has the lowest average FOM score (though this
was not significant for the 4-fold data). The box on each graph
indicates the optimal range for the ideal number of clusters is
between 6 and 8; 8 was chosen as optimal for both data sets.
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associated with each experiment; then a consensus was
taken over all solutions to identify the robust clusters
(see Methods). There are two important aspects of this
consensus clustering approach: 1) standard clustering
repetitions (for stochastic methods like k-means) on the
same data set are used to identify groups of genes that
form clusters within each experiment independently;
and 2) the method identifies those sub-groups of genes
that cluster consistently in replicate data sets. The first
is important because it associates expression profiles
that have highly similar patterns or expression levels
without the bias of historical functional knowledge
imposed on the clusters. The second identifies clusters
of genes that respond to stimuli as a group even though
the response may be different in each replicate experi-
ment (Additional file 3 provides an example). Such clus-
ters may be controlled by a common regulatory
mechanism. Clustering methods that incorporate the
error or variation between replicate data [34,36,37] may
not identify these groups of genes because they ulti-
mately combine replicate data into one solution. Con-
sensus clustering across experimental conditions other
than a time course could be used to identify groups of
genes that consistently change together in response to
different stimuli or in different tissues (such as diseased
and normal), which might suggest underlying biological
mechanisms. These proposed variations in consensus
clustering will require further investigation to determine
their full potential.
The application of consensus clustering on the filtered

data sets resulted in a total of 140 (2-fold) and 47
(4-fold) consensus clusters with 2 or more genes per
cluster (see Additional file 4: Tables S1 and S2 for a full
list of consensus clusters). There were 117 genes from
the 2-fold data set and 34 genes from the 4-fold data set
that formed singleton clusters and were not included in
subsequent analysis.
Overall, this filtering strategy resulted in more than a

95% reduction in genes under consideration and
revealed a number of clusters, which were then used to
explore the dynamics of DC maturation.

A partial analysis would result in different and
contradictory conclusions about the process of DC
maturation
Our long term objective is to understand the molecular
mechanisms underlying the temporal gene expression
program of DC maturation. We argue that it is crucial
to identify the most reproducible features across repli-
cate experiments and that all steps shown in Figure 1A
are important to achieving this goal. Stopping at any
point in the analysis would yield different impressions of
the DC maturation process.

For example, if the data were filtered using only Step
1 followed by k-means clustering, then the resulting
clusters for each experiment would portray the DC
maturation process differently: as primarily up-regulated
(experiment 1, Figure 3a) or primarily down-regulated
(experiment 2, Figure 3b). Step 2 of the filtering process
identifies and removes any gene that does not consis-
tently respond to stimuli in both experiments. Thus,
clustering these data provides a more similar view of the
process of DC maturation (Figures 3c and 3d). However,
even these clusters show differences between experi-
ments: more up-regulated clusters in experiment 2 than
in experiment 1. Performing consensus clustering (Step
3) on the filtered data sets (Figures 3e and 3f) refines
our view even further by identifying genes that also con-
sistently cluster together in both replicate experiments.
In this comparison, it can be seen that the average clus-
ter profiles are almost identical except for minor varia-
tions in expression at a few time points.
The graphs shown in Figure 3 illustrate the well-

known concept that performing replicate experiments is
important: if only one experiment was done then,
depending on the data collected, different impressions
of the DC maturation process would be obtained. These
graphs also demonstrate that the full analysis to identify
genes that are consistent in expression level, expression
pattern, and clustering partners identifies temporal pro-
files that are consistent between replicates.

Flow cytometry indicates a robust response to treatment
with poly(I:C)
Before analysis, we demonstrated that poly(I:C) treat-
ment does indeed cause a typical maturation response
in DC. Upon poly(I:C) treatment of bone marrow-
derived DC (BMDC), we typically observe a roughly
10-fold increase in the mean fluorescence intensity of
CD86 expression over untreated DC along with strong
increases in CD40, CD80 and MHC class II. We mea-
sured the cell surface expression of CD86 by flow cyto-
metry at 24 hours post treatment. As depicted in
Additional file 5, we observed a strong up-regulation of
CD86 expression on virtually all of the DC 24 hours
post treatment in experiment 1. This response was also
observed in experiment 2 (data not shown). Therefore,
these DC showed a robust maturation profile based on
their cell surface phenotype.

Dynamics of the DC maturation process induced by poly
(I:C) are consistent with previously published data
Five general phases of response were identified in the
set of consensus clusters for the 2-fold filtered data:
early, early-mid, mid, mid-late, and late. Grouping the
consensus clusters based on these general phases, and
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ordering those groups temporally reveals the progression
of the DC maturation process, involving both gene up-
regulation and down-regulation, upon stimulation with
poly(I:C). Figure 4 contains a summary of the five tem-
poral phases with the associated functions and processes
that were affected at each phase. To ensure our findings
are consistent with previously published data, we com-
pare expression profiles within each phase to a similar
time course microarray experiment in the literature. We
then discuss the similarities of our identified phases of
response with previously defined phases of DC
maturation.
Comparison of our microarray data to that of Amit

et al [49] indicates a strong positive correlation of gene
expression profiles on both a global and local scale.
Amit et al performed a similar time course microarray
experiment with 2 replicates using BMDC stimulated
with poly(I:C) for 0.5, 1, 2, 4, 6, 8, 12, 16 and 24 hours.
Scatter plots of data from Amit et al versus the

corresponding data in this study show that on a global
scale our data are positively correlated at each time
point after 1 hour (Additional file 6). The 2,142 genes in
the 2-fold filtered data set (which represents our most
consistent data) were compared. Of the 2,142 genes,
1,641 were identified in the data provided by Amit et al.
The array correlation between the genes in each repli-
cate was above 0.7 in all cases, except the first time
point (Additional file 6: Table S4). Examples of well cor-
related genes (PCC >= 0.89) between the two experi-
ments from both up- and down-regulated clusters in
each identified phase of response (Figure 5) show that
the most highly correlated and consistent gene profiles
in our data set are also highly correlated with the corre-
sponding profiles reported by Amit et al. Thus, the data
presented in this study are similar to published data on
both a global and individual gene level.
The phases of DC maturation identified in this study
(Figure 4) show similar characteristics to the common

Figure 3 Progression through the analysis process increases consistency of average cluster profiles. Step 1 of the analysis process was
performed on each experiment individually and the average profile for each cluster was plotted. The resulting data sets were analyzed with the
FOM and clustered using k-means into 12 clusters. Experiment 1 (A) portrays the DC maturation process as mostly up-regulated (orange profiles),
whereas experiment 2 (B) portrays it as mostly down-regulated (blue profiles). Next, Steps 1 and 2 were performed on experiments 1 (C) and 2
(D). The resulting data sets from each experiment were analyzed with the FOM and clustered using k-means into 8 clusters. These clusters are
now more consistent across experiments, however, experiment 2 (D) is now showing DC maturation to be more up-regulated than experiment
1 (C). Finally, Step 3, consensus clustering, was performed on experiments 1 (E) and 2 (F) using the parameters defined in Methods. These
clusters are now consistent across experiments. The 1 hour time point was not used for filtering or clustering, and is shown for reporting
purposes only.
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DC maturation response defined by Huang et al [5]
(Additional file 7 shows a detailed comparison of gene
annotations at each phase). Congruent with the litera-
ture, our experiments show that shortly after stimulation
with poly(I:C), DC initiate significant up-regulation of
anti-viral genes, type I interferon signaling, immune
response genes such as the cytokine Tnf-alpha, and
cytoskeletal genes. This early response is similar to the
common maturation response of human monocyte
derived DC stimulated by C. albicans, Influenza A virus
or E. coli reported by Huang et al [5], which indicates
that stimulation with poly(I:C) elicits many of the

reported core maturation responses in DC. As 6 and 12
hours pass (middle phase), many signaling molecules are
up-regulated along with transcriptional pathways and
more inflammatory and immune response genes. After
12 hours (late in the process) the DC up-regulate anti-
gen processing molecules, apoptosis genes, co-stimula-
tory and more signaling molecules, transcriptional
regulators, and motility and migration genes. This again
follows a similar pattern to those mid and late phases of
the common DC maturation response reported by
Huang et al where, after stimulation, the human DC
increased expression of signaling genes, transcription

Figure 4 Temporal ordering of clusters reveals progression of the DC maturation process induced by poly(I:C). The top 42 consensus
clusters for the 2-fold filtered data set were manually placed into groups based on the visual expression profile exhibited by the heat map
representation of each cluster. Five phases were identified for both the up- and down-regulated clusters: early, early-mid, mid, mid-late and late.
These groups of clusters with similar expression patterns were ordered temporally to create a timeline. Each phase has one or more
representative cluster heat maps, which indicate the patterns associated with that phase, and a red arrow indicating how long that phase lasted.
A summary of the annotations included in each phase is provided next to each representative heat map (obtained from DAVID). Heat maps are
formatted so that rows represent genes and columns are time points (3, 6, 12 and 24 hours); yellow indicates up-regulation, blue indicates
down-regulation, and black indicates no change in expression relative to time zero. Phase assignments for each consensus cluster are included
in Additional file 4: Table S2.
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factors, antigen processing and presentation genes, and
migration-related genes.
Overall, the up-regulated expression program induced

by poly(I:C) (Figure 4) exhibits many features to that of
the common up-regulated program reported by Huang
et al; however, the down-regulated program summarized
in Figure 4 and Additional file 7 is more extensive than
that previously reported. Between 6 and 24 hours genes

associated with a large number of metabolic and cata-
bolic processes are down-regulated, along with various
cellular processes, cellular organization, binding, cataly-
tic activity, and a large number of cellular component
related genes. Thus, this more comprehensive down-
regulated program may provide information on possible
interplay between the up- and down-regulation that
induces DC maturation. Both up- and down-regulated

Figure 5 Gene expression profiles are consistent with previously published microarray data. Comparison to a similar experiment
performed by Amit et al was done to ensure gene expression profiles were consistent with previously published data. Corresponding time
points from the Amit et al data set were used to calculate Pearson’s correlation coefficient between selected expression profiles from the 2-fold
filtered data set. All graphs except one have a positive average correlation coefficient greater than 0.89; Tle3 (C) has an average correlation of
0.66. Figures are as follows: (A) Ifih1 (1426276_at) cluster 27; (B) Fst (1421365_at) cluster 11; (C) Tle3 (1419654_at) cluster 3; (D) Gpr180
(1417245_at) cluster 14; (E) Clcn7 (1450408_at) cluster 20; (F) Siglecf (1424975_at) cluster 2; (G) Trim34 (1426092_at) cluster 5; (H) C1qbp
(1448274_at) cluster 17; (I) Grina (1436297_a_at) cluster 1; (J) Fgf13 (1418497_at) cluster 25.
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programs induced by poly(I:C) are now discussed in
more detail.

Differentially expressed genes are primarily observed late
during the cell maturation process and are dominated by
down-regulation
A global view of gene expression during the maturation
process was obtained by plotting the distribution of
gene expression at each time point (Figure 6). The
4-fold filtered (Figure 6a) and the 2-fold filtered (Figure
6b) data sets both exhibited a change in distribution
from being unimodal at 3 hours to bimodal at subse-
quent time points. This result reflects a characteristic of
the DC maturation process: the majority of those differ-
entially expressed genes were not highly expressed or
repressed until 12 to 24 hours following stimulation.
Thus, many transcriptional regulatory processes and
functions are not detectably affected by DC maturation
induced by poly(I:C) until late in the process.
The histograms in Figure 6b also reveal another interest-

ing observation: the bimodal distribution at 12 and 24
hours is skewed toward the negative side of zero, where
no obvious skew is observed in Figure 6a. This indicates
two things. First, more processes in DC maturation are
down-regulated rather than up-regulated overall. Second,
a large number of down-regulated genes at the later time
points were significantly repressed at a level between 2-
and 4-fold. A count of how many transcripts that were

up- versus down-regulated at any given point reveals that
if only transcripts induced or repressed by more than 4-
fold are considered (Figure 6c), the maturation process is
dominated by up-regulation. However, the down-regulated
program becomes the dominant feature if we include tran-
scripts induced or repressed by 2-fold or more (Figure 6d).
This result revealed two interesting characteristics

about the genes involved in DC maturation: 1) there
were relatively few transcripts that were highly expressed
(395 with greater than 4-fold change was about 0.9% of
the total array), however, the majority (58% at 3 hours) of
those that were, were up-regulated (Figure 6c); and 2)
when transcripts not so strongly expressed were observed
(greater than 2-fold change), the maturation process
became dominated by down-regulation in the later stages
with 64% of the genes down-regulated by 24 hours
(Figure 6d). These results suggest that many important
characteristics of DC maturation might be found in the
large numbers of genes that exhibit late down-regulation
with expression changes between 2- and 4-fold. In the
next several sections, we explore more explicitly which
genes are up-regulated or down-regulated during DC
maturation in the 2-fold filtered data set.

The dendritic cell maturation “program": sustained
temporal patterns of up-regulated gene expression
The gene expression patterns we observed over the 24
hour time course included many of the expected profiles

Figure 6 The majority of transcripts are significantly expressed after 12 hours and are dominated by down-regulation. The gene
expression distributions at 3 (orange), 6 (gray dots), 12 (gray dashes) and 24 (black) hours for the 395 2-fold (A) and 2142 4-fold (B) filtered data
sets for experiment 1 are portrayed as histograms (experiment 2 was similar; data not shown). The number of up- (SLR > 0) and down-regulated
(SLR < 0) transcripts for the 2-fold (C) and 4-fold (D) filtered data sets were also counted at each time point to determine where up-regulation
and down-regulation dominated the maturation process (experiment 2 was similar; data not shown). The number of transcripts with an SLR
exactly equal to zero was not included in the bar graphs.
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such as up-regulation in immune response genes. There
were three clusters of genes that were up-regulated
quite strongly and remained so for the duration of
maturation (Figure 4, early phase). These included clus-
ters 22, 27, and 29, all of which exhibited strong induc-
tion (SLRs up to 2.5, 6, and 8 respectively). Not
surprisingly, considering poly(I:C) is a strong inducer of
the type I interferon response, many genes found in
these clusters are involved in the type I interferon sig-
naling and response pathways and/or exhibit anti-viral
activity [50,51].
Cluster 29 (12 genes, 15 probe sets) is the most

strongly up-regulated of the three clusters with genes up
to 256-fold over-expressed. Analysis with the functional
annotation clustering tool provided by DAVID [52]
revealed one highly significant functional group in this
cluster (p-value = 3.73 × 10-6). This functional group
included 4 genes (6 probe sets) with a Gene Ontology
(GO) (biological process) annotation of response to
virus/other organism: Irf7, Rsad2, Tgtp and hypothetical
protein LOC677168 (Affymetrix probe ID
1431591_s_at). Several of the genes in this cluster are
important for the type I interferon response such as
Irf7, which is an important transcription factor for the
type I interferon signaling pathway [53], as well as Iigp1,
Isg20, and Rsad2 which are target genes of the type I
interferon response [54,55].
Cluster 27 contains 17 genes (18 probe sets) which are

also strongly up-regulated (SLRs up to 6). Functional
annotation clustering with DAVID did not identify any
significant functional groups, however, several important
and interesting genes were found in this cluster. These
included the interferon activated genes, Ifi47, Ifi203, and
Ifih1 as well as the anti-viral gene Oas3 [56,57]. The
chemokine Ccl5, which is important for T cell recruit-
ment [58-60], was also present. Interestingly, this cluster
includes three members of the Schlafen family involved
in negative regulation of the cell cycle, Slfn1, Slfn3-4,
and Slfn5 [61-63]. Thus, even at early stages, the cell is
beginning to shut down division and proliferation in
favor of differentiation.
Cluster 22 includes 22 genes (23 probe sets) that are

up-regulated (SLRs up to 2.5) at 6, 12, and 24 hours.
Functional annotation clustering found no significant
functional groups in this cluster, however, there are sev-
eral genes involved in the immune response: Tap2 and
Psmb10, which are important for peptide translocation
and antigen processing, Irak2 and Dok1 which are
involved in innate immune signaling, and Cd47, which
is known to play an important role in maturation of
specific DC subtypes [64-66]. We also found several
other genes involved in intracellular transport such as
syntaxin binding protein 1 (Stxbp1), and cytoskeletal

reorganization genes including sarcoglycan beta (Sgcb)
and microtubule-associated protein homolog (Tpx2).
Sustained up-regulation indicates that the processes

represented by clusters 22, 27 and 29 are important
throughout the duration of the maturation process.
Thus, we hypothesize that this pattern of early and sus-
tained up-regulation in the intracellular transport and
cytoskeletal reorganization genes is important for the
transport of MHC and co-stimulatory molecules to
the cell surface for recognition by T cells and/or for the
migration process to lymphoid organs.

The dendritic cell maturation “program": genes that
exhibit both up and down regulation
While most consensus clusters exhibited only up- or
down-regulation, there were several genes identified by
our analysis as significantly and consistently both up-
and down-regulated at some point in the process. All of
these genes clustered together in Cluster 11 (32 genes,
35 probe sets) and exhibit a pattern of early up-regula-
tion followed by late down-regulation (Figure 4, early
and late phase). While no significant functional groups
were identified by DAVID, this cluster did contain the
immune response cytokine, Tnf, as well as Cxcl1, a regu-
lator of the inflammatory process. Other functions asso-
ciated with this cluster include signal transduction,
membrane transport, and one protein involved in
response to reactive oxygen species (Sod2). Some of the
protein products of these genes are often associated
with the early events of DC maturation. This pattern of
early up-regulation followed by significant and abrupt
down-regulation at 24 hours suggests that these genes
have potent effects, are tightly regulated, and may have
deleterious effects if expressed in large quantities or
over long periods of time.

The dendritic cell maturation “program": temporal
patterns of up-regulated gene expression
Aside from the sustained up-regulation of clusters 22,
27 and 29, several other patterns of up-regulation were
revealed by the consensus clusters. For example, clusters
3 and 15 exhibit a pattern of peak up-regulation at 6
and 12 hours. This pattern is largely terminated by 24
hours (Figure 4, early-mid phase). Cluster 3 contains a
large number of genes, 106 (125 probe sets), where sig-
nificant (p-values < 0.05) functional group annotations
include serine/threonine-protein kinases, phosphoryla-
tion, cell motility and migration, and response to
wounding/immune response. Many of the genes
included in cluster 3 are involved in the well character-
ized NF-kB signaling and transcriptional pathways such
as Tank, T2bp, Map2k1, and NF-kB subunits epsilon
and zeta (Nfkbie and Nfkbiz respectively). The RNA
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sensing pattern recognition receptor, toll-like receptor 7
(Tlr7), is also part of this cluster along with a number
of inflammatory response genes such as interleukin 1
alpha (Il1a). There are many other signaling molecules,
kinases and phosphatases, found in this cluster, includ-
ing Akt3, Ccnd1, Map2k1, Minpp1, Phlpp and Ppp2r5a.
These results suggest that much of the intracellular sig-
naling associated with the DC maturation program
begins within this “early to mid phase”. Additionally, the
program of cell motility and migration appears to be
initiated in this phase as well. The 31 genes (34 probe
sets) found in cluster 15 had a similar pattern of up-reg-
ulation in the middle phase of the program with a
slightly higher magnitude of induction than cluster 3
(cluster 3 SLRs up to 2.5; cluster 15 SLRs up to 3.2).
Significant (p-values < 0.05) functional group annota-
tions for cluster 15 were different from the immune
response oriented annotations of cluster 3 and included
zinc finger B-Box and RING-type associated genes
involved in transcriptional regulation. The genes identi-
fied in clusters 3 and 15 indicate that cell signaling and
transcriptional regulation are important in the early-mid
phase of DC maturation.
We observed one cluster of up-regulated genes, cluster

20 (24 genes, 27 probe sets), that exhibited peak gene
expression only at the 12 hour time point (Figure 4, mid
phase). This cluster contains the interleukin 13 receptor
(Il13ra1), which is associated with the immune response,
as well as Atf3, which is a transcription factor known to
dampen innate immune signaling [67]. Among the func-
tionally clustered genes identified by DAVID was a
group of phosphotransferase/kinases (p-value = 0.04),
none of which had previously been associated with the
process of DC maturation: Pftk1, Hk2, Rnasel, Brd2,
Zcchc6, and Hif1a. These proteins have generally been
associated with metabolic pathways and intracellular
transport. The significance of this particular group of
genes to DC maturation remains to be determined, but
provides an interesting cohort of novel genes for study.
A set of five clusters demonstrated a pattern of strong

up-regulation later in the program at 12 and 24 hours
including clusters 5, 6, 13, 32, and 34 (Figure 4, mid-late
phase). Significant DAVID functional groups indicate
that these clusters are enriched in immune response
genes, and further investigation revealed that these clus-
ters contained most of the “hallmark” genes known to
be associated with DC maturation. Cluster 5 (64 genes,
73 probe sets) contained several highly significant
DAVID functional groups with annotations that include
MHC class I molecules (p-value = 2.95 × 10-7), SPRY
and SPRY-like domains (p-value = 8.53 × 10-5), SAND
family proteins (p-value = 4.37 × 10-4) and apoptosis/
programmed cell death (p-value = 0.03). Genes that
were part of the DAVID functional groupings were the

co-stimulatory molecule Cd86 and two MHC class I
molecules (H2-T22 and H2-Q1). This cluster also con-
tained antigen processing molecules involved in the
MHC class I processing pathway, such as Tap1, which
were not part of a significant DAVID functional group.
We also observed a strong type I interferon response,
including Ifi35, Stat1 and Oas1a, and anti-viral gene
induction. Other molecules of note in this cluster are
those involved in the induction of apoptosis including
caspase 4 (Casp4), caspase recruitment domain 4
(Card4), CASP8 and FADD-like apoptosis regulator
(Cflar), Fas death domain-associated protein (Daxx) and
clusterin (Clu).
Cluster 6 (51 genes, 54 probe sets), also one of the

mid-late phase up-regulated clusters, contains a highly
significant DAVID functional group (p-value = 1.02 ×
10-15) that includes a probe set associated with several
interferon alphas (1422403_at), as well as response to
virus associated genes Akt3 and H2-D1. A second signif-
icant (p-value = 4.2 × 10-3) functional group is also
found in Cluster 6 which includes the antigen proces-
sing TAP binding protein (Tapbp) and TAP binding
protein-like (Tapbpl) genes. Likewise, the 30 genes (35
probe sets) found in cluster 13 include genes involved in
the activation of T cells such as interleukin 18 (Il18).
Clusters 32 and 34 are composed of 13 genes (13 probe
sets) and 10 genes (12 probe sets), respectively, that
include a broad range of functional annotations such as
immune response and antiviral activity as well as signal-
ing, transcriptional regulation, and intracellular trans-
port. Thus, most of the genes up-regulated in these
mid-late phase clusters fall into expected categories
based on what is already known about DC maturation.
Looking globally at these results, it is interesting to

note that Tapbp (cluster 6) and Tap1 (cluster 5) are not
up-regulated until late in the DC maturation process
while Tap2 (cluster 22) had an early and sustained up-
regulation. These three TAP gene products are crucial
to the MHC class I antigen presentation pathway where
TAP1 and TAP2 form a dimer that transfers peptides
from the cytoplasm into the endoplasmic reticulum for
loading onto the MHC class I molecules [68]. Tapasin
(Tapbp) mediates the loading of peptides onto MHC
molecules [69] where it is then processed and trans-
ported to the cell surface for activation of T cells. The
up-regulation of Tap1 and Tapbp coincides with the
timing of DC migration to the lymph nodes where T
cell activation takes place, suggesting that the three pro-
teins working together is important at that mid-late
phase of maturation. The delayed up-regulation of Tap1
and Tapbp suggest that these may be the rate limiting
molecules that facilitate higher levels of antigen presen-
tation late in the maturation process. These TAP genes
demonstrate how our filtering strategy is able to
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highlight interesting temporal dynamics within a small
group of interacting proteins.
Cluster 1 is the only cluster whose genes are up-regu-

lated at the latest time point (24 hours). It is a very
large group of 225 genes (270 probe sets) whose expres-
sion is strongest primarily at 24 hours (Figure 4, late
phase). In this cluster, DAVID analysis shows a count of
20 genes (24 probe sets) with GO (biological process)
annotations of apoptosis or programmed cell death
(p-value = 0.02). Genes in this functional group included
apoptosis-inducing factor, oncostatin M (Osm), and Sco-
tin, and genes involved in cell motility and morphogen-
esis. Another functional group identified by DAVID
(p-value = 0.02) included 4 genes (5 probe sets), Per1,
Per2, Pde8b, and Hif1a, with a common GO (biological
process) annotation: two-component signal transduction
system (phospho-relay). Interestingly, these genes have
homology to the Drosophila PAS/PAC genes thought to
be involved in a two component signaling cascade.
These molecules are largely attributed to signaling and
development in neuronal systems and circadian
rhythms, and have not been associated with DC matura-
tion previously [70-72]. This novel observation bears
further investigation in relation to DC maturation.
In the clusters described so far, two genes (Akt3 and

Hif1a) have appeared in two separate clusters. The rea-
son for this is that both of these transcripts are targeted
by two different probe sets. The Akt3 transcript is tar-
geted by 1460307_at (cluster 6) and 1422078_at (cluster
3). Both of these probe set expression profiles peak
around 12 hours even though they were placed in differ-
ent phases, which indicates that this gene remains
expressed between 6 and 24 hours. The Hif1a transcript
is targeted by 1416035_at (cluster 20) and 1427418_a_at
(cluster 1). Both of these transcripts were placed in con-
secutive phases, indicating that Hif1a is probably up-
regulated at both 12 and 24 hours.

The dendritic cell maturation “program": temporal
patterns of down-regulated gene expression
Over the course of 24 hours the up-regulated program
induced by poly(I:C) contained many of the known and
well characterized processes induced during DC matura-
tion, as well as several novel observations. However, we
were surprised to find that the majority of the overall
gene expression patterns in the 2-fold filtered data set
exhibited down-regulation (Figure 6d), where 29 of the
42 consensus clusters were down-regulated at some
point during the process. Also, it is of interest that the
general magnitude of down-regulation is about a 3- to
8-fold (SLR of -1.5 to -3) decrease in expression, with
only one cluster exhibiting an expression decrease of
32-fold or more (cluster 8 with SLR of -5). Among the

down-regulated gene clusters, none showed consistent
repression across all time points. Instead, the pattern in
these clusters was waves of down-regulation, peaking
early-to-mid, mid, mid-to-late, or late in the DC
maturation process (Figure 4). No cluster exhibited sig-
nificant down-regulation at the earliest analyzed time
point of 3 hours.
Unlike the up-regulated clusters, there were very few

genes associated with immune response, inflammation,
or anti-viral response in the down-regulated clusters.
Most of the genes participating in the waves of down-
regulation were associated with biosynthetic processes
such as transcription, translation and protein synthesis,
as well as metabolism. There were even housekeeping
genes needed for the maintenance of cellular integrity
and metabolism included in these down-regulated
clusters. The down-regulation followed a specific time-
ordered series of events (Figure 4): transcriptional regu-
lation (early-mid), protein-making machinery and
ribosomal processing (mid), translation and metabolic
processes (mid-late), and transcription, RNA processing
and components of organelles (late).
The first set of genes to be down-regulated were those

found in cluster 14, which was observed to be down-
regulated at the early-mid phase of 6 to 12 hours (Fig-
ure 4, early-mid phase). Three annotation groups were
identified by DAVID as being significant: zinc fingers
(p-value = 0.01), zinc or cation binding (p-value = 0.04),
and nuclear localization (p-value = 0.02). This observa-
tion suggests that many genes in this cluster are
involved in transcriptional regulation, including Zfp472
[73], Zdhhc14 [74], Zfyve21 and Statip1, an activator of
transcription. Clearly, transcriptional programming is
important in this early-mid phase of DC maturation.
Analysis of the temporal program of DC maturation
identifies some genes involved in transcription that are
down-regulated and others that are up-regulated (see
Cluster 3) at this early-mid phase. It is likely that this
transcriptional regulation sets the stage for the subse-
quent maturation process.
Many more clusters and genes were down-regulated

during the subsequent phases, mid, mid-late, and late, of
the DC maturation process (Figure 4). In the mid-phase,
which shows down-regulation of protein-making
machinery and ribosomal processing, clusters 2, 7, 8, 12,
16, 19, 31, and 35 contain a number of known genes,
including tRNA synthetases and ribosomal proteins
(Yars2, Nars2, Qrsl1, Rps3 in cluster 2, and Vars2 in
cluster 8).
DAVID analysis of the mid-late stage shows focus on

translation and metabolic machinery. These genes
include eukaryotic translation initiation factor 3, subunit
1 alpha (Eif3s1) in cluster 24. Additionally, several
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carbohydrate metabolism genes are down-regulated:
ADP-dependent glucokinase (Adpgk) in cluster 9 and
chondroitin synthase 1 (Chsy1) in cluster 17.
Late stage down-regulated genes are significantly

annotated with functions related to transcription, RNA
processing, pro-survival genes, and components of cellu-
lar organelles. A few interferon-related genes are down
regulated at this stage: interferon, alpha-inducible pro-
tein 27 (Ifi27), interleukin 1 beta (Il1b), and interferon
induced transmembrane protein 3 (Ifitm3). Additionally,
in this late phase, we observed down-regulation of pro-
survival genes, suggesting that apoptosis might be a next
stage event (Figure 4, late phase). In general, the down-
regulation of this large number of genes across the
entire DC maturation process has not been widely
reported and paves the way for analysis of the complete
transcriptional regulatory network, both up- and down-
regulation, for DC maturation.

Conclusions
The overall goal of this work was to identify the repro-
ducible dynamic features of the DC maturation process
induced by poly(I:C) over a period of 24 hours. The
integration of replicate data sets into the feature selec-
tion filter and consensus clustering analysis identifies
genes and gene clusters that show a high level of consis-
tency across replicate experiments. Using one filtering
strategy without the other may have its advantages;
however, using both together, as done here, allows us to
have confidence that the resulting data and biological
conclusions are consistent in both scale and pattern
across the temporal profile and, thus, represent consis-
tent features of the DC maturation process.
Known and novel biological features were observed

from applying this novel filtering strategy. The gene
expression patterns observed over the 24 hour time
course included many of the expected profiles such as
up-regulation in immune response genes. The data also
revealed several novel genes that have not been pre-
viously associated with the process of DC maturation.
We were surprised to find that the down-regulated tran-
scriptional program contained the majority of gene
expression patterns and emerged as the dominant fea-
ture of the DC maturation process. This program
included many genes involved in protein synthesis,
metabolism, and housekeeping genes needed for mainte-
nance of cellular integrity and metabolism. The tem-
poral dynamics of these important processes indicate
that DC are preparing for cell death.
Our long term objective is to understand the molecu-

lar mechanisms underlying the temporal process of DC
maturation. Using this global analysis of DC maturation
as a guide for future research we can now begin to
delve deeper into the finer details of the transcriptional

programs that are consistently part of DC maturation
induced by poly(I:C), and to compare those programs to
those induced by other biological perturbants that sti-
mulate DC maturation. The feature selection method
developed here is not limited to DC maturation, time
course experiments, or microarray data. The main ideas
behind this method can be adapted to other large scale
data sets, particularly those which include replicates, to
identify consistent features of other biological systems.
Consensus clustering can also be used to cluster multi-
ple condition experiments, such as tissue comparisons,
which would aid in the identification of groups of genes
that consistently respond together in all conditions.
Obtaining reproducible results is an important aspect of
biological research, and has been the driving force
behind the development of the filtering strategy pre-
sented here. The results obtained from the application
of these methods are the first steps toward understand-
ing the interlaced transcriptional programs that are con-
sistently part of the DC maturation process.

Methods
Generation of DC
Bone marrow was harvested from the femurs and tibias
of 3-4 month old female C57BL/6 mice (the bone mar-
row of one mouse was used to initiate the cell culture
and generate all of the DC for one experimental repli-
cate). Following lysis of red blood cells, cells were cul-
tured in 20 ng/ml GM-CSF (Biosource) for 6 days [75].
At this point, the cells were typically 85% CD11c+ or
higher and had low levels of expression of the DC
maturation markers, CD80, CD86, CD40, and MHC
class II. To select for only DC, they were purified by
CD11c positive selection using the Miltenyi system,
according to manufacturer’s instructions (Miltenyi). Fol-
lowing purification, the cells were over 97% CD11c+.

Time course of DC maturation induced by poly(I:C)
Day 6 DC were plated in 6 well plates (1 × 107/well in 5
ml) and treated with 20 μg/ml poly(I:C) (InvivoGen).
Following 1, 3, 6, 12, or 24 hours of treatment, the cells
were treated with RNAlater (Ambion). RNA was then
isolated using the RNAqueous kit (Ambion) according
to manufacturer’s instructions. Microarray hybridization
and preliminary analysis (normalization) was performed
by the Wake Forest University microarray core facility
using Affymetrix Mouse 430 2.0 oligonucleotide chips.

Replicate Experiments
Two biological replicate experiments were performed
several months apart where each adhered to the above
described methods. Microarray hybridization and data
normalization was performed independently on each
replicate experiment by the array facility; these replicate
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experiments are referred to as experiments 1 and 2
where experiment 1 was performed first followed by
experiment 2.

Data Pre-processing
All experimental data was normalized according to Affy-
metrix QC software [76] using MAS5.0 [77] and the
standard GCOS settings by the Wake Forest University
microarray core facility. Reported data included the
change p-value and signal log2 ratio (SLR) for each
gene. The change p-value was calculated using Wilcox-
on’s Signed Rank test, a non-parametric alternative to
the standard student’s t-test [76,78]. A Change (or com-
parative) call is made based on user defined cut-offs of
change p-value, indicating a change in transcript level
between a control array and an experiment array, while
not necessarily indicating a statistically significant
change in expression level. The SLR was calculated
using the one-step Tukey’s biweight method [76,79] and
is a measure of the magnitude and direction of change
for each gene on an array compared to the baseline
array (control/time zero). The SLR is the fold change on
a log2 scale [76]; both of these measures of gene expres-
sion are used throughout this report.

Identification of significant differentially expressed genes
Identification of significant differentially expressed genes
was performed on each replicate experiment indepen-
dently, and was carried out in two stages, as outlined in
Figure 1A: Step 1. A gene was determined to have a
detectible change in transcript level (step 1a) if, at any
one time point, the change p-value met the Affymetrix
recommended p-value cutoffs of >= 0.998 or <= 0.002
[76], which represents a detectible decrease or increase
from the baseline array (time zero), respectively. Addi-
tionally, a gene was determined to have significant dif-
ferential expression (step 1b) if the absolute value of the
SLR was >= 1.0 (equivalent to a 2-fold change up or
down) at the same time point identified in step 1a. This
2-fold change was chosen based on the current litera-
ture standard for differential expression and the knowl-
edge that the MAS5.0 algorithm has been shown to
introduce noise into the data when gene expression is
low [80-82]. Other normalization methods, such as
RMA, have been shown to be more reliable in detecting
low gene expression [81]; however, our feature selection
method should compensate for this effect by requiring
consistency in replicate data and filtering out the noisy
data. A more stringent cutoff with an absolute SLR
value >= 2.0 (equivalent to a 4-fold change up or down)
was also applied to obtain a more focused view of the
genes that were highly affected during DC maturation
induced by poly(I:C).

Identification of consistently expressed genes
The identification of consistently expressed genes was
carried out in three stages as outlined in Figure 1A:
Step 2. A common list of significant differentially
expressed genes above detection threshold (obtained
from Step 1) was identified in step 2a by taking the
intersection of the two independently filtered lists (one
from each replicate experiment) at each fold change fil-
tering level. The application of step 2a reduced the four
gene lists from Step 1 to two lists that were common to
both experiments: one list for the 2-fold filtered and one
for the 4-fold filtered data.
Prior to performing steps 2b and 2c on individual

gene profiles, Pearson’s correlation coefficient (PCC)
was calculated between each replicate array using the
common gene lists obtained in step 2a for each time
point. This was done to ensure that one time point (1,
3, 6, 12 or 24 hours) did not exhibit a large variation
between experiments, because subsequent calculations
would otherwise be affected along with the consensus
clustering analysis (see Additional file 8 for more
details). Thus, any time point that did not return a large
positive correlation (greater than 0.5) between replicate
arrays was excluded from further calculations. The
results from this analysis found that the PCC scores for
all but the 1 hour arrays were greater than 0.80, indicat-
ing reasonable consistency between experiments. The
correlation for the 1 hour array, however, was less than
0.40 which indicated poor consistency between experi-
ments; thus this time point was not used in subsequent
analysis steps.
Next, steps 2b and 2c were executed by calculating

Euclidean distance (ED) and PCC, respectively, for all
genes in the two lists obtained from step 2a using the
expression profiles from each replicate experiment,
where each expression profile consisted of the 3, 6, 12
and 24 hour time points. A gene was considered to have
consistently responded to stimuli if the ED between
replicate profiles was <= 1.4 (0.0 indicates identity), and
the PCC between replicate profiles was >= 0.76 (1.0
indicates identity). Cutoff criteria were determined by
calculating the average ED and PCC score for each of
the lists of genes obtained from step 2a; thus there were
two ED averages and two PCC averages. The most strin-
gent individual cutoff values for ED and PCC were cho-
sen as the consistency filtering criteria for both lists of
genes.
ED and PCC are the most influential criteria in this

method and could actually be done before filtering for
differential expression, resulting in similar gene lists.
Here, differential expression filtering was done first to
reduce the amount of noise introduced by large num-
bers of low gene expression so a more accurate
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threshold for the ED and PCC criteria could be obtained
for this data set. Relaxing the PCC and/or ED criteria
would introduce genes that were not as consistent
across replicates. This in turn would affect the consen-
sus clustering phase.

Clustering Analysis
Clustering analysis was performed in two stages as out-
lined in Figure 1A: Step 3 on the gene lists obtained
from the feature selection phase. The FOM algorithm
(step 3a) was implemented in MATLAB (The Math-
Works, Inc.) following the specifications described in
Yeung et al [43]. An in-house MATLAB program was
developed to compare the clustering solutions of
MATLAB’s k-means and hierarchical agglomerative
clustering (HAC) algorithms using the FOM. Briefly, the
program clusters the input data using k-means and
HAC into a user-specified number of clusters to gener-
ate a clustering solution for each algorithm. The FOM
score is then calculated for the clustering solutions gen-
erated by both algorithms. This process is repeated for a
range of increasing cluster numbers, and then the FOM
score for each repetition is saved to a file and plotted.
The optimal clustering algorithm and the ideal number
of clusters are then determined using the set of calcu-
lated FOM scores for both clustering algorithms. Eucli-
dean distance was chosen as the similarity measure as
the FOM calculation is implicitly biased toward ED,
thus would produce inaccurate results if used with any
other measure [42]. The analysis was run using the fol-
lowing series of cluster numbers: 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28 and 30. The clustering algo-
rithm that yielded the lowest average FOM score over
the entire analysis was considered to be optimal [42,83].
After identifying the optimal clustering algorithm, the

FOM scores were used to identify the ideal number of
clusters for each data set [83]. An in-house algorithm
was implemented to calculate the number of clusters
where the FOM score is not significantly improved.
Briefly, this algorithm calculates the difference in the
FOM score for each cluster number range. This was
done for all cluster number ranges and the standard
deviation of these differences was calculated. The cluster
number range that had the smallest difference which
was greater than or equal to one standard deviation was
chosen as the optimal range for the ideal number of
clusters. The maximum value within the optimal range
was chosen as the number of clusters into which to
break each data set.
The analysis results from step 3a were used as input

parameters for the consensus clustering in step 3b. The
generation of consensus clusters is performed in three
sub-steps: i) all experiment data for one of the gene lists
obtained in Step 2 is independently clustered repeatedly

to obtain x number of clustering solutions each contain-
ing y clusters (where y is the optimal number of clusters
determined by FOM); ii) a consensus of all x clustering
solution is taken to identify genes that are consistently
clustered together to form robust (consensus) clusters;
iii) a heat map of each consensus cluster is generated
using the Clustergram function provided by MATLAB’s
Bioinformatics Toolbox. This process is then repeated
for each gene list obtained in Step 2.
Each replicate data set was clustered 5 times using the

k-means algorithm with ED as the similarity measure
(10 clustering solutions for each gene list). Choosing a
larger or smaller number of k-mean repetitions would
have noticeable effects on the resultant clusters. Less
repetition would produce fewer consensus clusters with
more genes per cluster on average. Likewise, more repe-
titions would produce more clusters that were smaller
in size on average, including a larger number of single-
ton clusters (data not shown). Based on the familiarity
with the data and several trial runs with differing num-
bers of k-mean repetitions, the number of repetitions
was chosen to produce medium sized, stable clusters for
analysis.
These clustering solutions were input into an in-house

MATLAB program designed to identify all consensus
clusters. This program follows a similar algorithm to
Monti et al [32] and Swift et al [33] with minor differ-
ences. Briefly, each of the n genes in the input data set
were paired with every other gene in that data set which
created an n × n matrix using the gene IDs as the row
and column labels. The algorithm examined each of the
x clustering solutions one at a time; every time a pair of
genes was found in the same cluster a count for that
gene pair was incremented by one in the corresponding
matrix location. If a pair of genes was found in the
same cluster in all x clustering solutions, then the count
for that pair was equal to x, otherwise the count was
less than x. Consensus clusters were extracted by exam-
ining each gene, r, in the data set. A group of genes c
that was found in the same cluster as gene r for all clus-
tering solutions was identified as a consensus cluster.
After the consensus clusters were identified,

MATLAB’s Clustergram function was used to generate
heat maps for visualization. This function hierarchically
clustered each consensus cluster, using ED as the simi-
larity measure, to organize the genes according to great-
est similarity in expression level.
It is worth mentioning that the resultant consensus

clusters can potentially be affected by the normalization
method chosen during the pre-processing stage of analy-
sis. It has been shown that normalization methods such
as RMA and GCRMA, while able to detect lower
expression changes more reliably [80-82], add a signifi-
cant number of correlative artifacts to the data [84].
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This would affect the consensus clustering where genes
would appear to cluster more robustly than they would
otherwise. Thus, it is important to consider which nor-
malization procedure to use depending on the type of
subsequent analyses that are going to be performed.

DAVID Analysis
The functional annotation clustering tool provided by
DAVID [52,85,86] was used to analyze a subset of the 2-
fold consensus clusters. This subset was chosen to be the
largest 42 consensus clusters (those with 10 genes or
more; the top 76% of genes) for the 2-fold filtered gene
list. This cluster size cutoff was chosen because any cluster
smaller than 10 genes returned few (if any) significant
results from DAVID. The list of Affymetrix IDs for each
consensus cluster was input into DAVID as separate lists.
For each cluster list the background data set was chosen
to be the Affymetrix Mouse430_2 chip, and only those
genes associated with Mus musculus were selected for ana-
lysis by DAVID. The Gene Ontology (GO) search terms
were changed from the default of ALL to levels 3, 4 and 5
for the biological process, cellular component and molecu-
lar function. The terms associated with each cluster’s list
of genes were then clustered using the functional annota-
tion clustering tool with the classification stringency set to
the default high setting. Functional groups that had an
enrichment score greater than 1.3 (p-value of 0.05 or less)
were considered significant and analyzed further.

Additional material

Additional file 1: ED and PCC filtering example. Examples of why
both ED and PCC criteria are important to identifying consistent gene
expression profiles.

Additional file 2: Average expression profile example. Demonstration
of how the average expression profile does not always represent either
of the original profiles.

Additional file 3: Consensus clusters exhibit different expression
patterns in each replicate. Figure showing one consensus cluster that
has a slightly different expression pattern in replicate experiments, and
an explanation of the potential this has for the proposed method.

Additional file 4: Supplementary tables 1 and 2. MS Excel workbook
containing 2 tables of SLR expression values and cluster assignments for
the 2-fold and 4-fold consensus clusters discussed in this manuscript.

Additional file 5: Flow cytometry results. Bone marrow-derived DC up
regulate cell surface CD86 in response to treatment with poly(I:C).

Additional file 6: Validation of microarray data. Correlation
coefficients and scatter plots generated by comparing microarray data
from this study to a similar study done by Amit et al.

Additional file 7: Annotation comparison to published results.
Summary of a DAVID annotation analysis to compare annotation terms
present in each temporal phase of response in the 4-fold filtered data
set to those common response genes reported in Huang et al.

Additional file 8: Justification for removing the 1 hour time point.
Discussion of a parallel analysis done using the 1 hour time point for
filtering and consensus clustering, and the impact it had on the results.

Abbreviations
ED: Euclidean distance; PCC: Pearson’s correlation coefficient; DC: dendritic
cells; BMDC: bone marrow-derived dendritic cells; FOM: figure of merit; SLR:
signal log ratio; HAC: hierarchical agglomerative clustering; GO: Gene
Ontology.

Acknowledgements
This work is supported by the NSF-NIGMS Program in Mathematical Biology
through a grant, NIH R01-GM075304, to JSF; an NIH grant, 1R21-AI082474, to
EMH and JSF; and a Wake Forest University Cross-Campus Collaborative
Research Support Fund grant to JSF and EMH. The authors would like to
thank Stacy Knutson for a critical review of this manuscript.

Author details
1Department of Computer Science, Wake Forest University, Winston-Salem,
NC 27109, USA. 2Department of Microbiology and Immunology, Wake Forest
University School of Medicine, Winston-Salem, NC 27157, USA. 3Department
of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest
University School of Medicine, Winston-Salem, NC 27157, USA. 4Department
of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

Authors’ contributions
JSF and EMH conceived of the analysis. EMH performed the microarray
experiments and provided expert input into biological interpretation of
results. ALO created the analysis (including scripts and programs) described
in this manuscript and performed all analyses on the experimental data. JSF
worked closely with ALO to provide feedback at all stages of development
of the filtering strategy and to outline the manuscript. XL contributed
expertise to the statistical portions of this manuscript. ALO drafted the first
version of the manuscript and all authors were involved in significant
editing and re-writing of the manuscript. All authors read and approved the
final manuscript prior to submission.

Received: 27 September 2009 Accepted: 3 August 2010
Published: 3 August 2010

References
1. Wilkes T, Laux H, Foy CA: Microarray data quality-review of current

developments. Omics 2007, 11:1-13.
2. Dopazo J, Zanders E, Dragoni I, Amphlett G, Falciani F: Methods and

approaches in the analysis of gene expression data. J Immunol Methods
2001, 250:93-112.

3. Banchereau J, Steinman RM: Dendritic cells and the control of immunity.
Nature 1998, 392:245-52.

4. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen
presentation and T cell stimulation by dendritic cells. Annu Rev Immunol
2002, 20:621-67.

5. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES,
Hacohen N: The plasticity of dendritic cell responses to pathogens and
their components. Science 2001, 294:870-5.

6. Steinman RM, Pack M, Inaba K: Dendritic cell development and
maturation. Adv Exp Med Biol 1997, 417:1-6.

7. Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I: Activation of
lysosomal function during dendritic cell maturation. Science 2003,
299:1400-3.

8. Turley SJ, Inaba K, Garrett WS, Ebersold M, Unternaehrer J, Steinman RM,
Mellman I: Transport of peptide-MHC class II complexes in developing
dendritic cells. Science 2000, 288:522-7.

9. Pierre P, Shachar I, Matza D, Gatti E, Flavell RA, Mellman I: Invariant chain
controls H2-M proteolysis in mouse splenocytes and dendritic cells. J
Exp Med 2000, 191:1057-62.

10. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES: Differential
lysosomal proteolysis in antigen-presenting cells determines antigen
fate. Science 2005, 307:1630-4.

11. Chow A, Toomre D, Garrett W, Mellman I: Dendritic cell maturation
triggers retrograde MHC class II transport from lysosomes to the plasma
membrane. Nature 2002, 418:988-94.

12. Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S,
Galan JE, Mellman I: Developmental control of endocytosis in dendritic
cells by Cdc42. Cell 2000, 102:325-34.

Olex et al. BMC Immunology 2010, 11:41
http://www.biomedcentral.com/1471-2172/11/41

Page 17 of 19

http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S4.XLS
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S7.XLS
http://www.biomedcentral.com/content/supplementary/1471-2172-11-41-S8.PDF
http://www.ncbi.nlm.nih.gov/pubmed/17411392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17411392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11251224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11251224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9521319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11861614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11861614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11679675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11679675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9286329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9286329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10775112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10775112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10727467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10727467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15761154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15761154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15761154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12198549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12198549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12198549?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10975523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10975523?dopt=Abstract


13. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P:
Dendritic cell survival and maturation are regulated by different
signaling pathways. J Exp Med 1998, 188:2175-80.

14. Bertho N, Blancheteau VM, Setterblad N, Laupeze B, Lord JM, Drenou B,
Amiot L, Charron DJ, Fauchet R, Mooney N: MHC class II-mediated
apoptosis of mature dendritic cells proceeds by activation of the protein
kinase C-delta isoenzyme. Int Immunol 2002, 14:935-42.

15. Kim JH, Chen J, Majumder N, Lin H, Falo LD Jr, You Z: ’Survival gene’ Bcl-xl
potentiates DNA-raised antitumor immunity. Gene Ther 2005, 12:1517-25.

16. Severa M, Remoli ME, Giacomini E, Ragimbeau J, Lande R, Uze G,
Pellegrini S, Coccia EM: Differential responsiveness to IFN-alpha and IFN-
beta of human mature DC through modulation of IFNAR expression. J
Leukoc Biol 2006, 79:1286-94.

17. Granucci F, Vizzardelli C, Pavelka N, Feau S, Persico M, Virzi E, Rescigno M,
Moro G, Ricciardi-Castagnoli P: Inducible IL-2 production by dendritic cells
revealed by global gene expression analysis. Nat Immunol 2001, 2:882-8.

18. McIlroy D, Tanguy-Royer S, Le Meur N, Guisle I, Royer PJ, Leger J, Meflah K,
Gregoire M: Profiling dendritic cell maturation with dedicated
microarrays. J Leukoc Biol 2005, 78:794-803.

19. Schoeters E, Nuijten JM, Van Den Heuvel RL, Nelissen I, Witters H,
Schoeters GE, Van Tendeloo VF, Berneman ZN, Verheyen GR: Gene
expression signatures in CD34+-progenitor-derived dendritic cells
exposed to the chemical contact allergen nickel sulfate. Toxicol Appl
Pharmacol 2006, 216:131-49.

20. Vizzardelli C, Pavelka N, Luchini A, Zanoni I, Bendickson L, Pelizzola M,
Beretta O, Foti M, Granucci F, Nilsen-Hamilton M, et al: Effects of
dexamethazone on LPS-induced activationand migration of mouse
dendritic cells revealed by a genome-wide transcriptional analysis. Eur J
Immunol 2006, 36:1504-15.

21. Zilliox MJ, Parmigiani G, Griffin DE: Gene expression patterns in dendritic
cells infected with measles virus compared with other pathogens. Proc
Natl Acad Sci USA 2006, 103:3363-8.

22. Coombes KR, Highsmith WE, Krogmann TA, Baggerly KA, Stivers DN,
Abruzzo LV: Identifying and quantifying sources of variation in
microarray data using high-density cDNA membrane arrays. J Comput
Biol 2002, 9:655-69.

23. Kerr MK, Martin M, Churchill GA: Analysis of variance for gene expression
microarray data. J Comput Biol 2000, 7:819-37.

24. Wu B: Differential gene expression detection using penalized linear
regression models: the improved SAM statistics. Bioinformatics 2005,
21:1565-71.

25. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001,
98:5116-21.

26. Jeffery IB, Higgins DG, Culhane AC: Comparison and evaluation of
methods for generating differentially expressed gene lists from
microarray data. BMC Bioinformatics 2006, 7:359.

27. Liang Y, Tayo B, Cai X, Kelemen A: Differential and trajectory methods for
time course gene expression data. Bioinformatics 2005, 21:3009-16.

28. Draghici S, Kulaeva O, Hoff B, Petrov A, Shams S, Tainsky MA: Noise
sampling method: an ANOVA approach allowing robust selection of
differentially regulated genes measured by DNA microarrays.
Bioinformatics 2003, 19:1348-59.

29. Jiang D, Tang C, Zhang A: Cluster Analysis for Gene Expression Data: A
Survey. IEEE Transactions on Knowledge and Data Engineering 2004,
16:1370-1386.

30. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci USA 1998,
95:14863-8.

31. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM: Systematic
determination of genetic network architecture. Nat Genet 1999, 22:281-5.

32. Monti S, Tamayo P, Mesirov J, Golub T: Consensus Clustering: A
resampling-based method for class discovery and visualization of gene
expression microarray data. Machine Learning 2003, 52:91-118.

33. Swift S, Tucker A, Vinciotti V, Martin N, Orengo C, Liu X, Kellam P:
Consensus clustering and functional interpretation of gene-expression
data. Genome Biol 2004, 5:R94.

34. Yeung KY, Medvedovic M, Bumgarner RE: Clustering gene-expression data
with repeated measurements. Genome Biol 2003, 4:R34.

35. Kim J, Kim JH: Difference-based clustering of short time-course
microarray data with replicates. BMC Bioinformatics 2007, 8:253.

36. Tjaden B: An approach for clustering gene expression data with error
information. BMC Bioinformatics 2006, 7:17.

37. Yao J, Chang C, Salmi ML, Hung YS, Loraine A, Roux SJ: Genome-scale
cluster analysis of replicated microarrays using shrinkage correlation
coefficient. BMC Bioinformatics 2008, 9:288.

38. Luan Y, Li H: Clustering of time-course gene expression data using a
mixed-effects model with B-splines. Bioinformatics 2003, 19:474-82.

39. Ma P, Castillo-Davis CI, Zhong W, Liu JS: A data-driven clustering method
for time course gene expression data. Nucleic Acids Res 2006, 34:1261-9.

40. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW: Significance analysis of
time course microarray experiments. Proc Natl Acad Sci USA 2005,
102:12837-42.

41. Kung C, Kenski DM, Dickerson SH, Howson RW, Kuyper LF, Madhani HD,
Shokat KM: Chemical genomic profiling to identify intracellular targets of
a multiplex kinase inhibitor. Proc Natl Acad Sci USA 2005, 102:3587-92.

42. Olex AL, John DJ, Hiltbold EM, Fetrow JS: Additional limitations of the
clustering validation method figure of merit. 45th ACM Southeast Annual
Conference Winston-Salem, NC 2007, 238-243.

43. Yeung KY, Haynor DR, Ruzzo WL: Validating clustering for gene
expression data. Bioinformatics 2001, 17:309-18.

44. Handl J, Knowles J, Kell DB: Computational cluster validation in post-
genomic data analysis. Bioinformatics 2005, 21:3201-12.

45. Giancarlo R, Scaturro D, Utro F: Computational cluster validation for
microarray data analysis: experimental assessment of Clest, Consensus
Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC
Bioinformatics 2008, 9:462.

46. Dudoit S, Fridlyand J: A prediction-based resampling method for
estimating the number of clusters in a dataset. Genome Biol 2002, 3:
RESEARCH0036.

47. Tibshirani R, Walther G, Hastie T: Estimating the Number of Clusters in a
Dataset via the Gap Statistics. Journal Royal Statistical Society B 2001,
2:411-423.

48. Ben-Hur A, Elisseeff A, Guyon I: A stability based method for discovering
structure in clustered data. Pac Symp Biocomput 2002, 6-17.

49. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M,
Grenier JK, Li W, Zuk O, et al: Unbiased reconstruction of a mammalian
transcriptional network mediating pathogen responses. Science 2009,
326:257-63.

50. Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, Matsumoto M,
Ohteki T, Kaisho T, Takaoka A, Akira S, et al: Selective contribution of IFN-
alpha/beta signaling to the maturation of dendritic cells induced by
double-stranded RNA or viral infection. Proc Natl Acad Sci USA 2003,
100:10872-7.

51. Lore K, Betts MR, Brenchley JM, Kuruppu J, Khojasteh S, Perfetto S,
Roederer M, Seder RA, Koup RA: Toll-like receptor ligands modulate
dendritic cells to augment cytomegalovirus- and HIV-1-specific T cell
responses. J Immunol 2003, 171:4320-8.

52. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA:
DAVID: Database for Annotation, Visualization, and Integrated Discovery.
Genome Biol 2003, 4:P3.

53. Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T,
Katsuki M, Noguchi S, Tanaka N, et al: Distinct and essential roles of
transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/
beta gene induction. Immunity 2000, 13:539-48.

54. Espert L, Degols G, Lin YL, Vincent T, Benkirane M, Mechti N: Interferon-
induced exonuclease ISG20 exhibits an antiviral activity against human
immunodeficiency virus type 1. J Gen Virol 2005, 86:2221-9.

55. Espert L, Degols G, Gongora C, Blondel D, Williams BR, Silverman RH,
Mechti N: ISG20, a new interferon-induced RNase specific for single-
stranded RNA, defines an alternative antiviral pathway against RNA
genomic viruses. J Biol Chem 2003, 278:16151-8.

56. Bain VG, Yoshida EM, Kaita KD, Swain MG, Heathcote EJ, Garcia A,
Moore PA, Yu R, McHutchison JG, Subramanian GM: Dynamics of
interferon-specific gene expression in peripheral blood of interferon
alfa-naive patients with genotype 1 chronic hepatitis C infection treated
with albumin-interferon alfa. Hepatol Res 2006, 35:256-62.

57. Sanda C, Weitzel P, Tsukahara T, Schaley J, Edenberg HJ, Stephens MA,
McClintick JN, Blatt LM, Li L, Brodsky L, et al: Differential gene induction by
type I and type II interferons and their combination. J Interferon Cytokine
Res 2006, 26:462-72.

Olex et al. BMC Immunology 2010, 11:41
http://www.biomedcentral.com/1471-2172/11/41

Page 18 of 19

http://www.ncbi.nlm.nih.gov/pubmed/9841930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9841930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12147630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12147630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12147630?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16052205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16052205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16624932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16624932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11526406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11526406?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15961579?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16780908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16780908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16780908?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16708398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16708398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16708398?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16492729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12323099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12323099?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11382364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11382364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15598833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15598833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11309499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872483?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15886280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15886280?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12874046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10391217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10391217?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15535870?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15535870?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17629922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17629922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16409635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16409635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18564431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18564431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18564431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12611802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16510852?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16141318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16141318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15738404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15738404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11301299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15914541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12184810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12184810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11928511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19729616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19729616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12960379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12960379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12960379?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14530357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12734009?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11070172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11070172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11070172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16033969?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12594219?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16731032?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16800785?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16800785?dopt=Abstract


58. Megiovanni AM, Sanchez F, Gluckman JC, Rosenzwajg M: Double-stranded
RNA stimulation or CD40 ligation of monocyte-derived dendritic cells as
models to study their activation and maturation process. Eur Cytokine
Netw 2004, 15:126-34.

59. Takahashi N, Yamada T, Narita N, Fujieda S: Double-stranded RNA induces
production of RANTES and IL-8 by human nasal fibroblasts. Clin Immunol
2006, 118:51-8.

60. Genin P, Algarte M, Roof P, Lin R, Hiscott J: Regulation of RANTES
chemokine gene expression requires cooperativity between NF-kappa B
and IFN-regulatory factor transcription factors. J Immunol 2000,
164:5352-61.

61. Brady G, Boggan L, Bowie A, O’Neill LA: Schlafen-1 causes a cell cycle
arrest by inhibiting induction of cyclin D1. J Biol Chem 2005,
280:30723-34.

62. Geserick P, Kaiser F, Klemm U, Kaufmann SH, Zerrahn J: Modulation of T
cell development and activation by novel members of the Schlafen
(slfn) gene family harbouring an RNA helicase-like motif. Int Immunol
2004, 16:1535-48.

63. Schwarz DA, Katayama CD, Hedrick SM: Schlafen, a new family of growth
regulatory genes that affect thymocyte development. Immunity 1998,
9:657-68.

64. Hagnerud S, Manna PP, Cella M, Stenberg A, Frazier WA, Colonna M,
Oldenborg PA: Deficit of CD47 results in a defect of marginal zone
dendritic cells, blunted immune response to particulate antigen and
impairment of skin dendritic cell migration. J Immunol 2006, 176:5772-8.

65. Latour S, Tanaka H, Demeure C, Mateo V, Rubio M, Brown EJ, Maliszewski C,
Lindberg FP, Oldenborg A, Ullrich A, et al: Bidirectional negative
regulation of human T and dendritic cells by CD47 and its cognate
receptor signal-regulator protein-alpha: down-regulation of IL-12
responsiveness and inhibition of dendritic cell activation. J Immunol
2001, 167:2547-54.

66. Demeure CE, Tanaka H, Mateo V, Rubio M, Delespesse G, Sarfati M: CD47
engagement inhibits cytokine production and maturation of human
dendritic cells. J Immunol 2000, 164:2193-9.

67. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC, Kennedy K, Hai T,
Bolouri H, Aderem A: Systems biology approaches identify ATF3 as a
negative regulator of Toll-like receptor 4. Nature 2006, 441:173-8.

68. Townsend A, Trowsdale J: The transporters associated with antigen
presentation. Semin Cell Biol 1993, 4:53-61.

69. Rufer E, Leonhardt RM, Knittler MR: Molecular architecture of the TAP-
associated MHC class I peptide-loading complex. J Immunol 2007,
179:5717-27.

70. Akashi M, Ichise T, Mamine T, Takumi T: Molecular mechanism of cell-
autonomous circadian gene expression of Period2, a crucial regulator of
the mammalian circadian clock. Mol Biol Cell 2006, 17:555-65.

71. Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T:
Transcriptional oscillation of canonical clock genes in mouse peripheral
tissues. BMC Mol Biol 2004, 5:18.

72. Shigeyoshi Y, Meyer-Bernstein E, Yagita K, Fu W, Chen Y, Takumi T,
Schotland P, Sehgal A, Okamura H: Restoration of circadian behavioural
rhythms in a period null Drosophila mutant (per01) by mammalian
period homologues mPer1 and mPer2. Genes Cells 2002, 7:163-71.

73. Jiang L, Tang D, Wang K, Zhang H, Yuan C, Duan D, Xiao X: Functional
analysis of a novel KRAB/C2H2 zinc finger protein Mipu1. Biochem
Biophys Res Commun 2007, 356:829-35.

74. Rinaldi A, Kwee I, Poretti G, Mensah A, Pruneri G, Capello D, Rossi D,
Zucca E, Ponzoni M, Catapano C, et al: Comparative genome-wide
profiling of post-transplant lymphoproliferative disorders and diffuse
large B-cell lymphomas. Br J Haematol 2006, 134:27-36.

75. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S,
Steinman RM: Generation of large numbers of dendritic cells from
mouse bone marrow cultures supplemented with granulocyte/
macrophage colony-stimulating factor. J Exp Med 1992, 176:1693-702.

76. GeneChip Expression Analysis: Data Analysis Fundamentals. [https://
www.affymetrix.com/support/downloads/manuals/
data_analysis_fundamentals_manual.pdf].

77. Pepper SD, Saunders EK, Edwards LE, Wilson CL, Miller CJ: The utility of
MAS5 expression summary and detection call algorithms. BMC
Bioinformatics 2007, 8:273.

78. “Wilcoxon Signed Rank Test” From MathWorld – A Wolfram Web
Resource. [http://mathworld.wolfram.com/WilcoxonSignedRankTest.html].

79. “Tukey’s Biweight” From MathWorld – A Wolfram Web Resource. [http://
mathworld.wolfram.com/TukeysBiweight.html].

80. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries
of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.

81. Millenaar FF, Okyere J, May ST, van Zanten M, Voesenek LA, Peeters AJ:
How to decide? Different methods of calculating gene expression from
short oligonucleotide array data will give different results. BMC
Bioinformatics 2006, 7:137.

82. Qin LX, Beyer RP, Hudson FN, Linford NJ, Morris DE, Kerr KF: Evaluation of
methods for oligonucleotide array data via quantitative real-time PCR.
BMC Bioinformatics 2006, 7:23.

83. Yeung KY: Cluster Analysis of Gene Expression Data. Dissertation Seattle,
WA: University of Washington 2001.

84. Lim WK, Wang K, Lefebvre C, Califano A: Comparative analysis of
microarray normalization procedures: effects on reverse engineering
gene networks. Bioinformatics 2007, 23:i282-8.

85. Huang da W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R,
Baseler MW, Lane HC, et al: DAVID Bioinformatics Resources: expanded
annotation database and novel algorithms to better extract biology
from large gene lists. Nucleic Acids Res 2007, 35:W169-75.

86. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, Stephens R,
Baseler MW, Lane HC, Lempicki RA: DAVID Knowledgebase: a gene-
centered database integrating heterogeneous gene annotation
resources to facilitate high-throughput gene functional analysis. BMC
Bioinformatics 2007, 8:426.

doi:10.1186/1471-2172-11-41
Cite this article as: Olex et al.: Dynamics of dendritic cell maturation are
identified through a novel filtering strategy applied to biological time-
course microarray replicates. BMC Immunology 2010 11:41.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Olex et al. BMC Immunology 2010, 11:41
http://www.biomedcentral.com/1471-2172/11/41

Page 19 of 19

http://www.ncbi.nlm.nih.gov/pubmed/15319172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15319172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15319172?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10799898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10799898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10799898?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15946944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15946944?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15351786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15351786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15351786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9846487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9846487?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16670282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16670282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16670282?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11509594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11509594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11509594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11509594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10657674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10657674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10657674?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16688168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16688168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8453065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8453065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16280364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16280364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16280364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15473909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15473909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11895480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11895480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11895480?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17397802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17397802?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16803564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16803564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16803564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1460426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1460426?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1460426?dopt=Abstract
https://www.affymetrix.com/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
https://www.affymetrix.com/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
https://www.affymetrix.com/support/downloads/manuals/data_analysis_fundamentals_manual.pdf
http://www.ncbi.nlm.nih.gov/pubmed/17663764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17663764?dopt=Abstract
http://mathworld.wolfram.com/WilcoxonSignedRankTest.html
http://mathworld.wolfram.com/TukeysBiweight.html
http://mathworld.wolfram.com/TukeysBiweight.html
http://www.ncbi.nlm.nih.gov/pubmed/12582260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12582260?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16539732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16539732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16417622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16417622?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17576678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17980028?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and Discussion
	A filtering strategy that identifies those genes and gene clusters that are highly consistent across two replicate experiments
	Feature Selection
	Consensus Clustering

	A partial analysis would result in different and contradictory conclusions about the process of DC maturation
	Flow cytometry indicates a robust response to treatment with poly(I:C)
	Dynamics of the DC maturation process induced by poly(I:C) are consistent with previously published data
	Differentially expressed genes are primarily observed late during the cell maturation process and are dominated by down-regulation

	The dendritic cell maturation “program
	The dendritic cell maturation “program
	The dendritic cell maturation “program
	The dendritic cell maturation “program
	Conclusions
	Methods
	Generation of DC
	Time course of DC maturation induced by poly(I:C)
	Replicate Experiments
	Data Pre-processing
	Identification of significant differentially expressed genes
	Identification of consistently expressed genes
	Clustering Analysis
	DAVID Analysis

	Acknowledgements
	Author details
	Authors' contributions
	References

