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Linearly solvable Markov Decision Process (LMDP) is a class of optimal control problem in
which the Bellman’s equation can be converted into a linear equation by an exponential
transformation of the state value function (Todorov, 2009b). In an LMDP, the optimal
value function and the corresponding control policy are obtained by solving an eigenvalue
problem in a discrete state space or an eigenfunction problem in a continuous state using
the knowledge of the system dynamics and the action, state, and terminal cost functions.
In this study, we evaluate the effectiveness of the LMDP framework in real robot control, in
which the dynamics of the body and the environment have to be learned from experience.
We first perform a simulation study of a pole swing-up task to evaluate the effect of
the accuracy of the learned dynamics model on the derived the action policy. The result
shows that a crude linear approximation of the non-linear dynamics can still allow solution
of the task, despite with a higher total cost. We then perform real robot experiments of
a battery-catching task using our Spring Dog mobile robot platform. The state is given by
the position and the size of a battery in its camera view and two neck joint angles. The
action is the velocities of two wheels, while the neck joints were controlled by a visual
servo controller. We test linear and bilinear dynamic models in tasks with quadratic and
Guassian state cost functions. In the quadratic cost task, the LMDP controller derived
from a learned linear dynamics model performed equivalently with the optimal linear
quadratic regulator (LQR). In the non-quadratic task, the LMDP controller with a linear
dynamics model showed the best performance. The results demonstrate the usefulness
of the LMDP framework in real robot control even when simple linear models are used for
dynamics learning.

Keywords: optimal control, linearly solvable Markov decision process, model-based reinforcement learning, model

learning, robot navigation

1. INTRODUCTION
When we want to design an autonomous robot that can act
optimally in its environment, the robot should solve non-linear
optimization problems in continuous state and action spaces. If a
precise model of the environment is available, then both optimal
control (Todorov, 2006) and model-based reinforcement learn-
ing (Barto and Sutton, 1998) give a computational framework to
find an optimal control policy which minimizes cumulative costs
(or maximizes cumulative rewards). In recent years, reinforce-
ment learning algorithms have been applied to a wide range of
neuroscience data (Niv, 2009) and model-based approaches have
been receiving attention among researchers who are interested in
decision making (Daw et al., 2011; Doll et al., 2012).

However, a drawback is the difficulty to find an optimal
policy for continuous states and actions. Specifically, the non-
linear Hamilton-Jacobi-Bellman (HJB) equation must be solved
in order to derive an optimal policy. Dynamic programming
solves the Bellman equation, which is a discrete-time version
of the HJB equation, for discrete states and actions problems.

Linear Quadratic Regulator (LQR) is one of the well-known
optimal control methods for a linear dynamical system with
a quadratic cost function. It can handle continuous states and
actions, but it is not applicable to non-linear systems.

Recently, a new framework of linearly solvable Markov deci-
sion process (LMDP) has been proposed, in which a non-linear
Bellman’s equation for discrete and continuous systems is con-
verted into a linear equation under certain assumptions on the
action cost and the effect action on the state dynamics (Doya,
2009; Todorov, 2009b). In fact, the basis idea of linearization
of the HJB equation using logarithmic transformation has been
shown in the book written by Flemming and Soner and its con-
nection to risk sensitive control has been discussed in the field of
control theory (Fleming and Soner, 2006). Their study has been
receiving attention recently in the field of robotics and machine
learning fields (Theodorou and Todorov, 2012) because there
exist a number of interesting properties in the linearized Bellman
equation (Todorov, 2009b). There are two major approaches in
LMDP: the path integral approach (Kappen, 2005a,b) and the
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desirability function approach (Todorov, 2009b). They are closely
related and new theoretical findings are reported (Theodorou and
Todorov, 2012), but there are some differences in practice. In
the path integral approach, the linearized Bellman is computed
along paths starting from given initial states using sampling meth-
ods. The path integral approach has been successfully applied
to learning of stochastic policies for robots with large degrees
of freedom (Theodorou et al., 2010; Sugimoto and Morimoto,
2011; Stulp and Sigaud, 2012). The path integral approach is best
suited for optimization around stereotyped motion trajectories.
However, an additional learning is needed when a new initial
state or a new goal state is given. In the value-based approach,
an exponentially transformed state value function is defined as
the desirability function and it is derived from the linearized
Bellman’s equation by solving an eigenvalue problem (Todorov,
2007) or an eigenfunction problem (Todorov, 2009c; Zhong and
Todorov, 2011). One of the benefits of the desirability function
approach is its compositionality. Linearity of the Bellman equa-
tion enables deriving an optimal policy for a composite task
from previously learned optimal policies for basic tasks by lin-
ear weighting by the desirability functions (da Silva et al., 2009;
Todorov, 2009a). However, the desirability function approach has
so far been tested only in simulation. In this study, we test the
applicability of the desirability function approach to real robot
control.

In order to apply the LMDP framework to real robot applica-
tions, the environmental dynamics should be estimated through
the interaction with the environment. This paper proposes a
method which integrates model learning with the LMDP frame-
work and investigates how the accuracy of the learned model
affects that of the desirability function, the corresponding policy,
and the task performance. Although Burdelis and Ikeda proposed
a similar approach for the system with discrete states and actions
(Burdelis and Ikeda, 2011), it is not applicable to a continuous
domain. We test the proposed method in two tasks. The first
task is a well-known benchmark, the pole swing-up problem.
We use linear and non-linear models for approximation of the
environmental dynamics and investigate how the accuracy of the
dynamics model affects the estimated desirability function and
the corresponding policy. The second task is a visually guided
navigation problem using our Spring Dog robot which has six
degrees of freedom. The landmark with the LED is located in
the environment and the Spring Dog should approach the land-
mark. We compare linear and bilinear dynamics models with
quadratic and Gaussian state cost functions. Experimental results
showed that the LMDP framework with model learning is appli-
cable to real robot learning even when simple dynamics models
are used.

2. MATERIALS AND METHODS
2.1. LINEARLY SOLVABLE MARKOV DECISION PROCESS
At first, we show how a non-linear Bellman’s equation can be
made linear under the LMDP setting formulated by Todorov
(2009b). Let X ⊆ R

Nx and U ⊆ R
Nu be the continuous state and

continuous action spaces, where Nx and Nu are the dimension-
ality of the spaces, respectively. At time t, the robot observes
the environmental current state x(t) ∈ X and executes action

u(t) ∈ U . Consequently, the robot receives an immediate cost
c(x(t), u(t)) and the environment makes a state transition
according to the following continuous-time stochastic differential
equation,

d x = a(x)d t + B(x)(ud t + σd ω), (1)

where ω ∈ R
Nu and σ denote Brownian noise and a scaling

parameter for the noise, respectively. a(x) describes the passive
dynamics of the system while B(x) represents the input-gain
matrix. Note that Equation (1) is generally non-linear with
respect to the state x but linear with respect to the action u.
It is convenient to represent Equation (1) in discrete time. By
discretizing the time axis with step h, we obtain the following
transition probability,

puk(xk+ 1|xk) = N (xk+ 1|μ(xk, uk)+ xk, h�(x)), (2)

where N (x|μ,�) denotes a Gaussian distribution with mean μ

and covariance matrix �, and

μ(x, u) = h(a(x)+ B(x)u), (3)

�(x) = σB(x)TB(x), (4)

where μ(x, u) can be regarded as a deterministic state
transition function. Note that xk = x(hk) and uk = u(hk).
It should be noted that a state transition probability is
defined as an uncontrolled probability when no control is
applied (u = 0), and otherwise, it is called a controlled
probability.

A control policy or controller π(u|x) is defined as a probability
of selecting the action u at state x. When the goal of the robot is
to find an optimal control policy π∗ that can lead the robot to the
desired state xg ∈ Xg ⊆ X , the objective function is formulated
as minimization of the expected value of cumulative costs,

vπ(x) = E

⎡
⎣

Tg−1∑
k= 1

c(xk, π(xk))+ g(xg)

⎤
⎦ , (5)

where and c(x, u) and g(x), respectively denote the immediate
and terminal cost. Tg represents an arrival time. vπ(x) is known
as a cost-to-go or value function. The optimal value function is
the minimal expected cumulative cost defined by

v∗(x) = min
π

vπ(x). (6)

It is known that the optimal value function satisfies the following
Bellman’s equation

v∗(x) = min
u

(
c(x, u)+ Ex′∼pu(·|x)v

∗(x′)
)

(7)

v∗(xg) = g(xg), xg ∈ Xg .

Since Equation (7) is non-linear, it is difficult to solve the opti-
mal value function in general. However, the Bellman’s equation
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is simplified if it is assumed that the immediate cost function is
represented by

c(x, u) = hq(x)+ KL(pu(·|x)‖p0(·|x)), (8)

where q(x) is a non-negative state cost function and the second
term on the right hand side of Equation (8) is a control cost
given as the KL-divergence between controlled and uncontrolled
probability distributions. 1 In this case, the non-linear Bellman’s
equation is converted to the following linear equation

z(x) = exp(−hq(x))G[z](x) (9)

z(xg) = exp(−g(xg)), xg ∈ Xg,

where z(x) is the desirability function defined by

z(x) = exp(−v∗(x)). (10)

Hereafter, Equation (9) is called a linearized Bellman’s equation.
The operator G shown on the right hand side of the linearized
Bellman’s Equation (9) is the integral operator given by

G[f ](x) =
∫

p0(x′|x)f (x′)d x′. (11)

It should be noted that Equation (9) is always satisfied by the
trivial solution (z(x) ≡ 0 for all x) if no boundary conditions are
introduced.

2.2. LEARNING MODEL PARAMETERS
In the LMDP framework, the system dynamics (Equation 1) are
assumed to be known in advance. When they are unknown,
estimation of the dynamics is required from samples collected
by the passive dynamics. Many methods exist which can esti-
mate the system dynamics (Nguyen-Tuong and Peters, 2011;
Sigaud et al., 2011), we adopt a simple least squares method to
estimate a(x) and B(x) with basis functions. Specifically, we esti-
mate a deterministic state transition (Equation 3). It should be
noted that the scale parameter of noise σ is generally unknown,
but it is determined by the experimenters here since it can
be regarded as the parameter that controls exploration of the
environment.

Let us suppose that the deterministic state transition μ(x, u)

is approximated by the linear function with Nϕ basis functions
ϕi(x, u),

μ(x, u;W) =WTϕ(x, u). (12)

where W is a weight matrix and ϕ(x, u) is a vector con-
sisting of basis functions. Suppose that the training sam-
ples {x1, u1, . . . , xNs , uNs, xNs+1} are obtained by the passive

1The Kullback–Leibler (KL) divergence measures the difference between two
distributions. If two distributions are the same, the KL-divergence becomes 0.
In the LMDP, the control cost is defined by how certain control u affects on
state transition probability.

dynamics. The objective function of model learning is given by
the following sum-of-squares error function,

E = 1

2

∑
k= 1

{
�xk −WTϕ(xk, uk)

}2
, (13)

where �xk = xk+ 1 − xk. Setting ∂E/∂W = 0 yields

W = (�T�)−1�T�X, (14)

where �X is the matrix whose a row vector consisted of state
transition in each sample �xk and � is also the matrix whose
a column vector consisted of the basis functions in each sample
ϕ(xk, uk). The detail is as follow,

�X = [
�x1 · · · �xNs

]T
, � = [

ϕ(x1, u1) · · · ϕ(xNs, uNs)
]
.

2.3. LEARNING A DESIRABILITY FUNCTION
The desirability function is approximated by

z(x;w, θ) =
Nz∑

i= 1

wif (x, θi) = w	f (x, θ), (15)

where wi is a weight, w is the weight vector [w1, . . . , wNz ]T,
f (x, θi) is a basis function parameterized by θi, and f (x; θ) is the
vector consisting of basis functions [f (x; θ1), . . . , f (x; θNz )]T.
We adopt an unnormalized Gaussian function as Todorov sug-
gested (Todorov, 2009c):

f (x; θi) = exp

(
−1

2
(x−mi)

T Si (x−mi)

)
, θi = {mi, Si}

(16)

where mi and Si denote a center position and a precision matrix
of the i-th basis function, respectively. One advantage of using the
Gaussian function that the integral operator (Equation 11) can be
calculated analytically as follows:

G[fi](x) = |V i|− 1
2 exp

(
−1

2

(
y −mi

)T
Hi

(
y−mi

))
, (17)

where y(x) = x+ μ(x, 0), fi = f (x, θi) for brevity and

H i = Si − SiCV−1
i CTSi, V i = I + CTSiC,

C = σh1/2B.

It should be noted that y, Hi, V i, C are functions of x.
The desirability function (Equation 15) should satisfy the lin-

earized Bellman’s equation (9). Therefore, in order to optimize w
and θ we can construct the following objective function for given
collocation states {x1, . . . , xNc }:

e = ‖r(w, θ)‖2, r(w, θ) =
[

F(θ)− G(θ)

f (xg; θ)T

]
w −

[
0

exp(−g(xg))

]
,

(18)
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where F(θ) and G(θ) are Nc × Nz matrices and their (n, i)
components are defined by

[F(θ)]ni = fi(xn), (19)

[G(θ)]ni = exp(−hq(xn))G[fi](xn). (20)

The objective function (Equation 18) is a quadratic function with
respect to w and a non-linear function with respect to θ. See
Appendix A for optimization of w and θ.

2.4. OPTIMAL CONTROL POLICY
In the LMDP framework, the optimal control policy is given by

pu∗(x′|x) = p0(x′|x)z(x
′
)

G[z](x)
. (21)

Specifically, when the dynamics are represented in the form of
the stochastic differential equation (1) and the basis function
of the approximated desirability function is Gaussian, then the
optimal control policy is represented by

u∗(x) = σ

Nz∑
i= 1

wiG
[
fi(x)

]
∑Nz

k= 1 wkG
[
fk(x)

]di(x), (22)

di(x) = V−1
i CTSi (mi − x− ha(x)) .

See Todorov (2009c) in more detail.

2.5. EXPERIMENT
In this paper, we conduct two experiments to evaluate the LMDP
framework with model learning. One is a swing-up pole task in
simulation. The other is a visually-guided navigation task using a
real robot.

2.5.1. Swing-up pole
To verify that an appropriate control policy can be derived based
on estimated dynamics, we conducted a computer simulation of
the swing-up pole task. In the simulation, the one side of pole
was fixed and the pole could rotate in plane around the fixed
point as shown in Figure 1. The goal was to swing the pole to an
upward position and stop at this position. The state in this task
consisted of the vertical angle ϑ and the angular velocity ϑ̇, the
origin of the state space was set at the goal position. It should be
noted that ϑ was normalized to be in the range (−π, π] (rad)
while ϑ̇ was bounded: ϑ̇ ∈ [−4π, 4π] (rad /s). The control
input and noise affected the torque of the pole. Therefore,
the pole is assumed to obey the following stochastic state
equation,

d ϑ = ϑ̇d t (23)

d ϑ̇ =
(

m
g

l
sin(ϑ)− kϑ̇

)
d t + ud t + σd ω,

where l, m, g, and k denote the length of the pole, mass,
gravitational acceleration and coefficient of friction, respectively.

FIGURE 1 | Swing-up pole task.

The above state equation is represented in the form of
Equation (1) as follows;

a(x) =
[
ϑ̇, m g

l sin(ϑ)− kϑ̂
]T

, B = [
0, 1

]T
.

It should be note that the passive dynamics a(x) is a non-linear
vector function of x while B is a constant vector. In this sim-
ulation, the physical parameters were l = 1 (m), m = 1 (kg),
g = 9.8 (kg/s2) and k = 0.05 (kg m2/s). The state equation was
discretized in time with a time step of h = 10 (ms) and the noise
scale was set to σ = 4. The state cost was defined so that it was
zero at the goal state, using the following unnormalized Gaussian
function,

q(x) =
(

1− exp
(

xT�−1
costx

))
, (24)

where diag (�cost) = [0.1, 1.6].
As written in section 2.2, the weight matrix was estimated

by Equation (14). In the sample acquisition phase we repeated
simulations sufficiently, each simulation started from differ-
ent initial states to avoid unevenly distributed samples. As a
result, N = 1000 samples were extracted randomly as a training
data set.

In this simulation, we prepared two types of basis functions
ϕ(x, u), as shown in Table 1, for approximation of the environ-
mental dynamics. The first was a simple linear model with respect
to x and u while the second model added the normalized radial
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Table 1 | Basis functions used in the swing-up pole simulation.

ϕ(x, u)

Linear model
[
xT uT]T

Linear-NRBF model
[
xT ψ1(x) ψ2(x) · · · ψM (x) uT]T

basis functions (NRBF) ψi(x, u) to the linear model,

ψi(x) =
exp

(
− 1

2 (x− μi)
T�−1

ψi
(x− μi)

)
∑

k exp
(
− 1

2 (x− μk)
T�−1

ψk
(x− μk)

) . (25)

The centers, μi, of the basis functions, ψi(x, u), were determined
by K-means clustering among the states of the training data. The
covariance matrices �ψi were determined experimentally and set
to diag(�ψi) = [π/4, π]. In the linear-NRBF model, Nψ = 25
basis functions were used.

The set of collocation states {x1, . . . , xNs}, which were
required to optimize the parameters of the desirability func-
tion, were uniformly distributed in the state space. The centers
mi of the basis functions fi(x) were initialized so as to dis-
tribute them uniformly in the state space. On the other hand,
the covariance matrices Si were determined empirically and set to
diag([16, 1]). The optimal control policy u∗(x) was derived from
Equation (22).

2.5.2. Visually-guided navigation task
To evaluate the performance of the optimal control policy derived
from the estimated dynamics and the desirability function, we
conducted a visual navigation task using a wheel type robot called
the Spring Dog. Figure 2 shows the Spring Dog and the battery
pack in the experimental field. The Spring Dog has six degrees
of freedom: two fore legs, two rear wheels, and a pan-tilt cam-
era head. There are several sensors such as a 3D accelerometer,
a combined 3D gyroscope, and a USB camera mounted on the
head, and so on. Three-color LED is attached to the top of the
battery pack.

Figure 3 shows the control diagram, where three control
policies were implemented in this experiment. The first one
was a visual servoing controller, which controlled the cam-
era head so as to keep tracking the battery pack continuously.
The second one was a navigation controller using the two
rear wheels, this was optimized by the LMDP framework. In
other words, the navigation controller controlled the left and
right wheels in order to move around in the environment. The
desired velocities of left and right wheels correspond to control
input u in Equation (1). The last one was a seeking behav-
ior, in which the Spring Dog explored the environment to find
the battery pack when the robot lost track of it. The navi-
gation controller learned by the LMDP framework while the
visual servoing and searching controllers were designed by the
experimenters.

To realize a visually-guided navigation task, image binarization
was applied to a captured image in order to separate the battery
pack with the green LED from background. Some image features
were calculated as shown in Figure 4. The state space consists of

FIGURE 2 | Spring Dog, wheel typed robot and the battery pack.

six variables described below: the center position of the battery
pack (extracted pixels) in the image plane (xcx, xcy), average of
absolute values around the center in horizontal and vertical axes
of the extracted pixels (xax, xay), and the current joint angles of
the neck controlled by the visual servoing controller. The state
and action were summarized as follows:

x = [xcx, xcy, xax, xay, xtilt, xpan]T, u = [uleft, uright]T.

It should be noted that each value was scaled as follow,

−1 ≤ xcx, xcy, xtilt, xpan ≤ 1,

0 ≤ xax, xay ≤ 1,

−1 ≤ uleft, uright ≤ 1.

The desired state, xg , was set to comprise of both a posture
and location which allowed the Spring Dog to successfully cap-
ture of the battery. The view feed from the USB camera allowed
recognition of the desired proximity and posture, as shown in
Figure 2.

Two types of state dependent cost functions q1(x) and q2(x)

were considered in the experiment. Each cost function was
defined to be zero at the goal state as follows,

q1(x) = α
(
x− xg

)T
�−1

cost

(
x− xg

)
(26)

q2(x) = α
(

1− exp
(
− (

x− xg
)T

�−1
cost

(
x − xg

)))
, (27)

where α was a scaling constant.
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FIGURE 3 | Control diagram in the Spring Dog.

FIGURE 4 | Image binarization and image features. (A) Original captured
image. (B) Binarized image.

Next we explain the procedure for estimation of visual-motor
dynamics. At first, the Spring Dog moved around using the fixed
stochastic policy and obtained data. In the experiment, the con-
trol cycle was required to keep h = 300± 60 (ms), but it was
sometimes violated interference from other processes. To deal
with this problem in sampling, we rejected the corresponding
data. In addition, If the target became invisible, or the tilt or pan
angle reached by setting, its limitation, the corresponding data
was rejected from samples also. As a result, we obtained the data

set, D =
[[

xT
1 uT

1

]T
, . . . ,

[
xT

ND uT
ND

]T
]

. After normalizing this

data set, the environmental dynamics were estimated as described
in section 2.2.

In this experiment, we used two types of basis functions
ϕ(x, u), as shown in Table 2, to estimate visual-motor dynam-
ics. If we apply the linear model for visual-motor dynamics and
use a quadratic state cost function in Equation (26), the problem
setting is identical to that of Linear Quadratic Regulator (LQR).
Therefore, we can confirm that the LMDP finds the same optimal
policy as LQR.

Table 2 | Basis functions used in the robot experiment.

ϕ(x, u)

Linear model
[
(x− xg)T uT]T

Bilinear model
[
(x− xg)T uleft(x− xg)T uright(x− xg)T uT]T

Procedure 1 | Setting initial position of the centers of the basis

functions, Minit .

Input: The date set of state, Dx.

Output: The set of initial center positions, Minit

Minit ← ∅
while Dx = ∅ do

x = ChooseSample(Dx)

Dx ← XD − {x}
if ∀i fi (x;mi ) < τ or Minit = ∅ then

Minit ←Minit
⋃{x}

end if

end while

return Minit

As well as the swing-up pole task, collocation states
{x1, . . . , xNs} were uniformly distributed in the state space, and
the covariance matrices Si were determined by hand. Moreover,
only centers of basis functions of desirability were updated and
covariance matrices were fixed in the experiment. The optimal
control policy u∗(x) was derived from Equation (22). The ini-
tial position of the center mi in each basis function fi(x) was
taken from the data set of state, Dx =

[
x1, . . . , xND

]
, which was

extracted state data from the data set D. However, it was not
appropriate for the computational resources of the real robot to
use all of the data. For this reason, the set of initial positions of
the centers of the basis functions, Minit = [m1, . . . , mNz ], were
chosen from the data set of state Dx following Procedure 1. As a
result, at least one of the basis functions could return the value,
which was over the threshold, τ, for every samples.

As already explained, to verify that LMDP can be apply to non-
linear state transition system and non-quadratic cost function
and the obtained controller performs optimal. In the experiment
we tested the following four conditions:
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1. Linear model + quadratic state cost.
2. Bilinear model + quadratic state cost.
3. Linear model + Gaussian based state cost (non-quadratic).
4. Bilinear model + Gaussian based state cost (non-quadratic).

Note that LQR can be applicable in the first condition. Therefore,
LQR was also implemented to compare the result of the LMDP
framework to the ground truth obtained from LQR in the first
condition.

3. RESULTS
3.1. COMPUTER SIMULATION
As described in the section 2.5.1, we used the linear and the
linear-NRBF models to approximate the environmental dynam-
ics of the swing-up pole. To evaluate the accuracy of estima-
tion using these models, we measured the estimation errors.
We extracted N = 500 samples randomly as a test data set and
then calculated the estimates of the deterministic state transi-
tion μ(x, u;W) when two models were applied, respectively.
After that, we computed the mean squared error (MSE) of each
component,

MSE of the k-th component = 1

N

N∑
n= 1

(�xkn − wkϕ(xn, un))
2 ,

(28)

where wk denotes the elements of k-th row in the weight
matrix W .

Figure 5 shows the MSE of the angle and angular velocity
component. According to the this result, the estimation of the
angle component was quite accurate in both models because it
was deterministic transition. On the other hand, the estimation
of the angular velocity component was inaccurate as compared
with the angle component since it was a stochastic state tran-
sition. According to Equations 2, 3 and the parameter setting
of the time step, h = 10 (ms), the noise scale, σ = 4, and B =

FIGURE 5 | Mean squared error of the joint angle and angular velocity.

Each error bar represents the standard deviation.

[0, 1]T, the covariance matrix was derived diag (�) = [0, 0.04].
The covariance matrix affects to the MSE by square, the MSE
between real deterministic state transition and an observed tem-
poral state transition should be at least 1.6× 10−3. The MSE
of angular velocity component in the linear-NRBF model was
also 1.6× 10−3, it was suggested that most of the error was
caused by noise. Consequently, This result suggested that the
environmental dynamics were accurately approximated by the
linear-NRBF model. The estimated input gain matrices were
given by

Blinear =
[

0.0000
0.9965

]
, Blinear-NRBF =

[
0.0000
1.0113

]
.

they were very close to the true matrix B = [0, 1]T.
The desirability function was optimized using the estimated

dynamics and the control policy derived from the obtained desir-
ability function. Figure 6 displays the results where the left panels
show the desirability function z(x) and the right panels show the
learned policy u∗(x). The black line in the right panels shows a
typical trajectory of learned behaviors starting from x = [π, 0]T.
The top panels of Figure 6 display the results using the true
dynamics. It should be noted that the desirability function is
discontinuous around the central diagonal band since this sys-
tem is under-actuated. Simulation results using the linear and
linear-NRBF models are shown in the middle and bottom pan-
els of Figure 6, respectively. As compared with the result based on
the true dynamics, both of the linear and linear-NRBF models
could approximate the desirability function. However, the pol-
icy obtained by the linear model was worse than that by the
linear-NRBF model.

To evaluate the performance in more detail, we measured the
cumulative costs corresponding to each of the obtained policies.
In this test simulation, the initial state was set to x = [π, 0]T
which corresponds to the bottom position. Figure 7 shows mean
cumulative costs of 50 episodes, each episode was terminated
when the pole arrived at the goal state or the duration reached
was over 20 (s) (2000 step). Note that the immediate cost in each

step was calculated by c(x, u) = h
(

q(x)+ 1
2σ2 ‖u‖2

)
.

Figure 7 compares the cumulative costs among the three poli-
cies. Not surprisingly, the control policy derived from the true
dynamics achieved the best performance. It should be noted that
the control policy based on the dynamics estimated with the
linear-NRBF model produced a comparable performance, and it
was better than the performance of the linear model. As discussed
in the previous section, the linear-NRBF model gave more correct
estimation than the linear model. Consequently, these results sug-
gest that we can obtain the better control policy by forming more
accurate estimates.

3.2. REAL ROBOT EXPERIMENT
As described in section 2.5.2, we used the linear and bilinear
models for environmental dynamics approximation. After the
data acquisition phase, we obtained ND = 9509 samples and we
extracted N = 2500 samples for a test data set, the rest of samples
were used as a training data set. As well as the swing-up the pole
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FIGURE 6 | Results of the swing-up pole task. z(x) is on the left, u∗(x) on the right, true dynamics at the top, linear model in the middle, and linear and
NRBF model at the bottom. The black line shows a typical trajectory.

task, we obtained weight matrix using Equation (14) and then
calculated MSE in the test data set to evaluate the accuracy of
estimation.

Figure 8 shows the result. There was no significant difference
between linear and bilinilear models. It suggests these models
have almost the same quality for approximating environmen-
tal dynamics. Comparing to other components, xcx and xpan

derive larger MSE in both model. The reason is these compo-
nents change more significantly than other components. During
the sample acquisition phase, more movement in the rotatory
direction occurred than in the translation direction. As a result,
the variation of xcx, which was caused by movement of rotatory
direction, was large and the variation of xpan also became large
due to visual servoing to keep track of the battery in center of
visual field.

Figure 9 shows one typical example of the obtained desirabil-
ity function and the control policy when the cost function is
quadratic and the visual-dynamics is estimated using the linear
and bilinear models. The upper row corresponds to the LQR’s
case and the middle and bottom rows correspond to the LMDP
trained with the proposed method using linear and bilinear mod-
els, respectively. In all figures, the horizontal and the vertical axes
denote the pan and tile angle of the neck joint, respectively; the
rest of the state components are set to the desired state. Blue dots
plotted on middle and lower rows are mi, the center positions of
the basis functions for approximating the desirability function.
Although the peak of the desirability functions trained with the
proposed method is broader than that of the desirability of LQR
due to function approximation, obtained controllers show almost
same tendency.
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FIGURE 7 | Total costs collected by the obtained control policy. Each
error bar represents the standard deviation.

FIGURE 8 | Mean squared error of each state variable. Each error bar
represents the standard deviation.

Next, to evaluate performance of obtained controllers, we
tested the approaching behavior under the each controller. In
the test, the initial position of the robot was set at a distance
of 1.5 (m) left the target. The initial direction for each episode
was selected randomly a set of three directions; target is placed
directly in front of the robot, at a 15◦ offset to the right of
the robot’s line of motion or at a 15◦ offset to the left side,
as shown in Figure 10. Figure 11 shows the mean total costs of
30 episodes, the maximum period in one learning episode was
15 (s) (50 steps). For comparison, Figure 11 shows only quadratic
cost function case. Note that the immediate cost in each step

was regarded as c(x, u) = h
(

q1(x)+ 1
2σ2 ‖u‖2

)
, and was ignored

when the target is not visible in the visual field.
Comparing the total cost among the three controllers using

quadratic cost as shown in Figure 11, the controller using the
linear model resulted in the almost same performance to the
result using LQR controller. This result is reasonable because

these controllers solve the same problem. The trajectories were
very similar shown in Figure 12.

On the other hand, the controller using a bilinear model
acquired marginally worse result as compared with the other
controllers. One possible reason is that over fitting occurred in
bilinear model.

In comparing performance among all obtained controllers, we
cannot use the total cost because of the difference on state costs.
For this reasons we calculated L-1 norm2 between the current state
and the goal state as quantity of controller performance which
can be comparable in all controllers. Figure 13 shows this. All of
controllers brought the Spring Dog to almost the goal state in 10 s.
Particularly, the controllers using the non-quadratic cost func-
tion brought the Spring Dog closer to the battery pack than other
controllers. The reason can be considered that the non-quadratic
cost function gave a lower cost in more narrow region than the
quadratic cost.

4. DISCUSSION
Although it has been reported that the framework of LMDP
can find an optimal policy faster than conventional reinforce-
ment learning algorithms, the LMDP requires the knowledge of
state transition probabilities in advance. In this paper, we demon-
strated that the LMDP framework can be successfully used with
the environmental dynamics estimated by model learning. In
addition, our study is the first attempt to apply the LMDP frame-
work to real robot tasks. Our method can be regarded as a of
model-based reinforcement learning algorithms. Although many
model-based methods includes model learning (Deisenroth et al.,
2009; Hester et al., 2010) have been proposed in this field, they
compute an optimal state value function which is a solution of
a non-linear Bellman’s equation. Experimental results show that
our method is applicable to real robot behavior learning which is
generally stochastic and including non-linear state transition. In
our proposed method, a cost function is not estimated. However,
it is possible to extend to estimate a cost function as well as sys-
tem dynamics simultaneously, because it is usually formulated as
a standard supervised learning problem. In addition, it is not so
difficult to assume that a cost function is given in the real robot
application, because the robot usually compute the reward by
itself in many application.

In the swing-up pole task, the linear and linear-NRBF models
were tested to approximate the pole dynamics. The policy derived
from the linear model achieved the task of bringing the pole to
the desired position even though it cannot represent the dynam-
ics correctly. In the visually-guided navigation task, we compared
the desirability function and control policy of LMDP with those
of LQR if the environmental dynamics and the cost function
were approximated by the linear model and the quadratic func-
tion, respectively. In this setting, the optimal state value function
and the control policy were calculated analytically by LQR, and
therefore, we obtained the optimal desirability function. The
obtained desirability function and control policy were not exactly
the same as those of LQR. However, we confirmed that the

2The L-1 norm of a vector x = (x1, . . . , xn)T is the sum of the absolute value
of the coordinate of x, computed by ‖x‖1 =∑

i|xi|.
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FIGURE 9 | Results of the robot navigation task. LQR with the linear model is at the top, LMDP with the linear model in the middle, LMDP with the bilinear
model at the bottom, z(x) on the left, u∗left(x) on the center, u∗right(x) on the right. Black dots represent the centers of the basis functions ϕ(x, u).

FIGURE 10 | Initial position of the Spring Dog and battery in the test

phase. Three possible positions of the battery pack are considered.

performance using the obtained control policy was comparable to
the performance using LQR. Both models prepared in this exper-
iment failed to approximate a part of state transition such as xcx

and xpan. This means that the Spring Dog could not predict the
future position of the battery pack precisely when turned left or
right. Nevertheless, the robot could approach the battery pack
appropriately. This result suggests that LMDP with model learn-
ing is promising even though the estimated model was not so
accurate. Fortunately, the control policy which brings the robot

FIGURE 11 | Average of total cost using the quadratic state cost

function. Each error bar represents the standard deviation.

to the desired position can be obtained with simple linear model
in both experiments. We plan to evaluate the proposed method
to non-linear control tasks such as learning walking and running
behaviors.
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FIGURE 12 | Trajectories of the pan angle xtilt and the immediate state

cost under the quadratic state cost.

FIGURE 13 | Trajectories of the L-1 norm between the current and

goal states.

As discussed in section 3, the quality of obtained control policy
depends on the accuracy of the estimated environmental model.
For instance, the bilinear model used in the robot experiment did
not improve the approximation accuracy, as shown in Figure 8,

even though its computational complexity is a rather than the
linear model. In addition, a part of the conditional mean μ(x, u)

was estimated by the least squares method in the current imple-
mentation but it would be more informative to estimate the state
transition probability distribution puk(xk+1|xk) itself. There exist
several methods for estimating a probability distribution from
samples. For example, Gaussian process is widely used to estimate
environmental dynamics (Deisenroth et al., 2009; Deisenroth and
Rasmussen, 2011). Sugiyama et al. (2010) proposed the method
to estimate a conditional density distribution efficiently in the
manner of density ratio estimation and applied it to state tran-
sition estimation in simulated environments. One advantage of
their method is that it can estimate a multi-modal distribution by
the least squares method. In this case, it is no longer tractable ana-
lytically to compute the integral operator even if Gaussian basis
functions are used for approximation, and it should be replaced
by the Monte Carlo estimates. Integration of sophisticated model
learning methods with the LMDP framework is our future work.

The other extension is to develop a model free approach
of learning desirability functions, in which the environmen-
tal dynamics is not estimated explicitly. Z learning is a typical
model-free reinforcement learning method which can learn a
desirability function for discrete states and actions, and it was
shown that the learning speed of Z learning was faster than
that of Q-learning in grid-world maze problems (Todorov, 2007,
2009b). Application of least squares-based reinforcement learn-
ing algorithms (Boyan, 2002; Lagoudakis and Parr, 2003) is
promising direction. However, in the continuous state case, as
mentioned in section 2.1, the optimality equation derive a trivial
solution without boundary conditions. In addition, the desir-
ability function should satisfy the inequality 0 ≤ z(x) ≤ 1 in
order to recover a correct value function by v(x) = − log(z(x)).
Furthermore, values of the desirability “function tend to be
too small” because of the exponential transformation. For
these reasons boundary conditions must be carefully considered.
Consequently, the constrained optimization methods should be
solved to find the optimal desirability function while learning
of the value function is considered as unconstrained optimiza-
tion. For the extension of model-free learning, this issue have to
be solved.
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APPENDIX
AOPTIMIZATION OF FUNCTION APPROXIMATION PARAMETERS
When the cost function is non-negative, the value function v(x)

is also non-negative, and therefore, the inequality 0 ≤ z(x) ≤
1 holds at any x by the definition of the desirability func-
tion (Equation 10). In order to satisfy this inequality, the con-
straint wi ≥ 0 for all i is required since we assume that the
basis function is a non-normalized Gaussian function. This con-
strained optimization on w is efficiently solved by the following
quadratic programming

min
w

e, s.t. wi ≥ 0, ∀i. (29)

To optimize θ, it is possible to apply the Levenberg–
Marquardt algorithm to minimize the square error (Equation 18).
However, it was reported that the desirability function become

z(xn;w, θ) ≈ 0 during the minimization process because the cen-
ter position of the basis functions mi move away from collocation
states xn (Todorov, 2009b). To avoid the trivial solution z(x) = 0,
the following constraint is introduced,

1TF(θ)w =
∑
n= 1

ẑ(xn;w, θ) = const. (30)

This constrained problem is optimized by the Levenberg–
Marquardt algorithm. When we define J = ∂r/∂θ and g =
∂(1TF(θ)w)/∂θ, then the objective function is given by

min
δ

1

2
δT(JTJ + γI)δ+ δTJTr s.t. gTδ = 0, (31)

where δ and γ denote the gradient direction of the update rule
and the parameter between 0 and 1, respectively. This is solved by
the Lagrange multiplier methods.
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