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Abstract

Microglia play critical roles in neural development, homeostasis and neuroinflammation and are 

increasingly implicated in age-related neurological dysfunction. Neurodegeneration often occurs 

in disease-specific spatially-restricted patterns, the origins of which are unknown. We performed 

the first genome-wide analysis of microglia from discrete brain regions across the adult lifespan of 

the mouse and reveal that microglia have distinct region-dependent transcriptional identities and 

age in a regionally variable manner. In the young adult brain, differences in bioenergetic and 

immunoregulatory pathways were the major sources of heterogeneity and suggested that cerebellar 

and hippocampal microglia exist in a more immune vigilant state. Immune function correlated 

with regional transcriptional patterns. Augmentation of the distinct cerebellar immunophenotype 

and a contrasting loss in distinction of the hippocampal phenotype among forebrain regions were 

key features during ageing. Microglial diversity may enable regionally localised homeostatic 

functions but could also underlie region-specific sensitivities to microglial dysregulation and 

involvement in age-related neurodegeneration.

Introduction

Microglia are a specialised population of tissue macrophages resident in the central nervous 

system (CNS) parenchyma and adapted to the unique properties of the CNS environment1. 

Recent studies have revealed an expanding array of functions for microglia during brain 

development and adult homeostasis and in neurodegeneration, infection and brain injury2. 

These studies have shown that the cellular activities of microglia extend beyond their well-

established role as immune sentinels and effectors to include synaptic organisation3, 4, 
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control of neuronal excitability5, phagocytic debris removal6 and trophic support for brain 

protection and repair7, 8.

The multifunctional roles of microglia may be considered part of a spectrum of 

environmental monitoring that is designed to sense perturbations and elicit appropriate 

microglial responses to maintain homeostasis. The local environment will therefore be a key 

influence shaping microglial phenotype. Notably, exposure to neuronal cell surface and 

soluble factors has been shown to maintain microglia in a comparatively quiescent 

immunophenotype (versus systemic macrophage populations)9, 10. Recent studies have 

extended these findings to describe key features of the genome-wide transcriptional profile 

of microglia that distinguishes their phenotype from non-CNS macrophages11, 12.

The microenvironment is not uniform throughout the various brain regions. Variations in 

neuronal subtypes, neurotransmitter profiles, haemodynamics and metabolism could all be 

an influence on and be influenced by local microglial phenotype. Moreover, the permeability 

of the blood-brain barrier and resultant exposure to systemic signals that can also modify 

microglial phenotype are regionally heterogeneous. It remains unclear if microglial 

phenotype is similarly diverse throughout the brain. Regional variations in microglial 

density13, surface expression of a small panel of immune molecules14, and dependency on 

maintenance by IL-3415, 16 suggest there could be differences.

Ageing is associated with alterations in the neuroinflammatory environment and recent 

studies have uncovered risk alleles in age-related neurodegenerative disease that implicate 

microglial dysfunction and neuroinflammatory processes as contributory factors17. The 

pathological targeting and progression of most neurodegenerative conditions occurs in 

region-specific patterns and regulatory mechanisms of gene expression in the human brain 

were recently shown to have regional differences18. This suggests that it is important to 

determine if ageing modifies any region-specific influences on microglial phenotype.

Here we have used genome-wide transcriptional profiling of adult microglia from discrete 

brain regions at three different ages in combination with network analyses to determine the 

nature of microglial diversity in the adult mouse brain and the impact of ageing. To our 

knowledge, these data provide the first account of the microglial regional transcriptome 

throughout the adult lifespan. Our data reveal microglia as richly diverse cells under steady-

state conditions, show that microglial ageing occurs non-uniformly in a region-dependent 

manner, and define the transcriptional basis and major functional features responsible for 

this region- and age-related diversity. Our datasets provide an extensive and publically-

accessible comparative resource for future studies exploring microglial function, dysfunction 

and contribution to age-related neurodegeneration.

Results

Isolation of adult microglia from discrete brain regions

We refined established techniques to purify adult mouse microglia by density gradient and 

immuno-magnetic separation (Fig 1 and Supplementary Fig 1a). We first validated the 

consistency of microglial extraction from all regions of interest (cerebellum, cerebral cortex, 
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hippocampus, striatum). The CD11b antigen is ubiquitously expressed on microglia 

throughout all brain regions as shown by colocalisation with GFP+ microglia in the Csf1r-
EGFP “MacGreen” reporter mouse (Supplementary Fig 1b). The post-purified selected 

fraction consisted of a single population of CD11b+ and F4/80+ cells and there was no 

detectable CD11b or F4/80 staining in the post-purified non-selected fraction confirming 

CD11b as an efficient target for purification (Supplementary Fig 1c). Microglia obtained 

from all regions showed a uniform CD11b+F4/80+CD45lo profile (Fig 1a) characteristic of 

resident brain microglia and distinguishing them from CD45hi systemic macrophage 

populations. This indicated that we were extracting an equivalent microglial population from 

all brain regions. Expression of Itgam (encodes CD11b) and other established microglial/

macrophage genes including Csf1r and Cx3cr1 was similarly enriched in purified microglia 

from each region in comparison to the respective mixed brain cell homogenates (Fig 1b). 

Additional genes recently reported as microglial “signature” genes (e.g. Tmem119, 

P2ry13)11, 12, 19 were also highly enriched in purified samples (Fig 1c) whereas markers of 

neurons, astrocytes and oligodendrocytes were expressed at negligible levels in purified 

microglia (Fig 1d). Genes highly expressed in blood leukocyte subsets including Cd3e (T 

lymphocytes), Cd19 (B lymphocytes) and Ly6g (granulocytes) were undetectable in purified 

microglia (Fig 1e) and there was no expression of systemic macrophage-specific genes 

identified from a recent study (e.g. Fabp4, Serpinb2)11 in microglial samples (Fig 1f). 

Immunostaining of isolated cells in culture showed that all cells stained positively for the 

microglial/macrophage antigens IBA1 and F4/80 (Fig 1g). Together these data verify the 

purity and consistency of microglial extraction across brain regions.

The microglial transcriptome is regionally heterogeneous

We initially determined whether the microglial transcriptome in the healthy young adult 

brain (4 months of age) is regionally heterogeneous. Principal components analysis (PCA) 

showed clustering of samples in a region-dependent manner and indicated a close 

relationship between microglial expression profiles of the cerebral cortex and striatum and 

relatively more distinct profiles in the cerebellum and hippocampus (Fig 2a). These 

relationships were validated non-subjectively using the network visualisation and analysis 

tool BioLayout Express3D (http://www.biolayout.org/). Sample-to-sample correlation 

analysis showed clustering according to brain region with similar inter-regional relationships 

as PCA (Fig 2b). Thus, the global gene expression profile of adult microglia in the healthy 

brain is regionally heterogeneous.

Expression of 3,131 probesets (~7% of total) representing 2527 genes was differentially 

regulated by brain region (FDR q < 0.05) (Supplementary Table 1). Hierarchical clustering 

of samples based on differentially expressed probesets demonstrated the marked contrast in 

expression profile between cortical/striatal and cerebellar microglia and the intermediate 

profile in hippocampal microglia (Fig 2c). Genes involved in multiple aspects of immune 

function were among the most differentially expressed by region (Supplementary Table 1) 

including those with established function and others previously unexplored in microglia. 

Analysis of Gene Ontology (GO) biological processes using DAVID revealed “immune 

response” and “immune effector response” as significantly over-represented (Supplementary 

Table 2). There was also a striking over-representation of multiple processes associated with 
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energy metabolism (Supplementary Table 2). We used the Enrichment Map (http://

baderlab.org/Software/EnrichmentMap/) network visualisation tool to remove redundancy in 

GO enrichment annotation. The key feature of the network was the presence of two major 

clusters each comprising functionally-related and highly-connected enriched gene sets with 

roles in immune function and energy metabolism (Fig 2d). Full annotation of nodes within 

these clusters is presented in Supplementary Table 3. These data indicated 

immunoregulatory and bioenergetic/metabolic processes as the major contributors to 

regional diversity in microglial phenotype of the young adult brain.

Three major patterns of region-dependent microglial gene co-expression

We next sought to define the region-specific microglial phenotypes by assessing patterns of 

gene co-expression using BioLayout Express3D (http://www.biolayout.org/)20. The utility of 

BioLayout Express3D for the identification of spatiotemporal patterns of gene expression 

and the discovery of transcriptional networks underpinning common functional pathways 

has been described previously20. A network graph constructed from the set of 3,131 

regionally differentially expressed probesets was clustered using a Markov clustering 

algorithm to non-subjectively sub-divide the graph into discrete sets of co-expressed genes. 

Overall graph structure consisted of 14 clusters ranging in size from 10 to >1,000 nodes (Fig 

3a and Supplementary Fig 2a). Three major clusters distributed across two distinct regions 

of the graph were evident (Fig 3a and Supplementary Table 4). The mean expression profiles 

of these three clusters showed that cluster 1 contained genes whose expression was relatively 

greater in cerebral cortex and lower in cerebellum (Fig 3b). In contrast, clusters 2 and 3, 

which were located together and distant from cluster 1, both contained genes with relatively 

greater expression in the cerebellum (with greater hippocampal expression in cluster 2). The 

expression profile for individual genes within each cluster generally followed the cluster 

mean (Fig 3c). Increasing the Pearson correlation threshold did not materially affect the 

overall graph or clustering structure (Supplementary Fig 2)

Microglial immunophenotyppic and bioenergetic heterogeneity

Genes which share highly correlated expression profiles across a range of experimental 

conditions (i.e. are co-expressed) are often distinct components of a common pathway or 

biological process21. A large number of cluster 3 genes (high expression in cerebellum) 

were immune-related. GO analysis revealed “immune response” and “defence response” as 

the most overrepresented biological processes (Supplementary Table 5) and clustering using 

Enrichment Map underlined the array of enriched immune-related processes (Fig 4a). To 

gain further insight to the molecular functions encoded in cluster 3, we manually annotated 

genes according to the following major categories: pathogen/self-recognition, cell adhesion 

and chemotaxis, signalling integration, antigen presentation, and microbial killing/

sequestration (Fig 4b). Genes from multiple molecular classes involved in pathogen (or self) 

recognition were present in cluster 3. Bacterial recognition genes included the C type lectins 

(Clec4e (Mincle), Clec7a (Dectin 1), Cd209a (DC-SIGN)) and Fcnb (Ficolin B) and the 

formyl peptide receptors Fpr1 and Fpr2. Viral recognition was also evident in the high 

expression of the Zbp1 gene, which encodes cytoplasmic sensors of viral DNA22. Consistent 

with antiviral activity, there were a large number of interferon pathway genes (e.g. Stat1, 

Stat4, Ifit2, Ifitm3, Irf7, Oas1, Plscr1) and pathway analysis in Ingenuity identified an 
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enriched interferon network and both interferon gamma and the type I interferon receptor 

(IFNAR) as top upstream regulators (Supplementary Fig 3 and Supplementary Table 6). A 

striking feature of cluster 3 was the presence of multiple genes involved in antigen 

processing and presentation, including both MHC-I (H2-D1, H2-K1) and MHC-II (H2-Aa, 

H2-Ab1, H2-Eb1, Cd74) pathways. Upstream regulation was evident through the presence 

of Ciita encoding the master regulator of MHC-II expression and Nlrc5, the master regulator 

of MHC-I gene expression. Pathway analysis in KEGG identified antigen processing and 

presentation as a significantly over-represented pathway (Supplementary Fig 4 and 

Supplementary Table 7). Genes encoding several classes of immune effector molecules, 

many involved in pathogen killing or sequestration, were present in this cluster. Camp and 

Ngp, genes encoding the anti-microbial peptides mCRAMP and neutrophilic granule protein 

respectively, were of particular note because a recent study identified these genes as 

unexpectedly highly expressed in microglia compared to non-CNS macrophages11. The 

regional expression profile of selected genes from cluster 3 was further assessed by 

quantitative PCR (Fig 4c) and at the protein level by flow cytometry with both 

demonstrating comparable profiles to the microarray data (Fig 4d, e). We also noted a panel 

of immunoregulatory molecules in cluster 1 (relatively high expression in cortex and low in 

cerebellum) indicating that some immunoregulatory pathways may be more active in regions 

other than the cerebellum (see below also). These were largely immune signalling genes 

(e.g. Cd47, Cd300a) encoding molecules that limit the strength of myeloid cell responses to 

external stimuli.

The bioenergetic profile of myeloid cells is tightly linked to their immunophenotype and the 

environmental conditions they are exposed to (e.g. normoxia/hypoxia)23. We were therefore 

interested that cluster 2 (high expression in cerebellum and hippocampus) contained a large 

number of genes associated with key components of energy production systems and their 

regulation (Fig 4f-h). This was validated by GO analysis which revealed “generation of 

precursor metabolites and energy”, “electron transport chain” and “oxidative” 

phosphorylation” as among the most highly over-represented processes (Supplementary 

Table 8) and visualisation in Enrichment Map showed multiple clusters associated with 

glycolysis, the electron transport chain, ATP synthesis and redox metabolic activity (Fig 4f). 

Genes encoding most enzymes in the glycolytic pathway, the tricarboxylic acid (TCA) cycle, 

multiple subunit constituents of each of the proton pump complexes in the electron transport 

chain (I, III, IV) and the ATP synthase complex were present in cluster 2 (Fig 4g). Key 

regulators of energy metabolism were also present, notably peroxisome proliferator-

activated receptor gamma (Pparg) and the associated co-activator peroxisome proliferator-

activated receptor gamma coactivator 1-alpha (Ppargc1a), which co-operate to control 

transcription of an array of genes involved in mitochondrial function and energy 

metabolism. Antioxidant responses, important for counteracting oxygen radicals produced 

during oxidative phosphorylation, were also represented, including the superoxide dismutase 

(Sod1, Sod2), catalase (Cat), peroxiredoxin (Prdx2, Prdx5) and glutathione peroxidase 

(Gpx4, Gpx8) families (Fig 4g). Individual gene expression profiles of representative 

examples for each of the above classes are shown in Fig 4h.
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Collectively, the above data support the suggestion that cerebellar and hippocampal 

microglia maintain a more immune-alert state than microglia in the striatum and cortex and 

this is accompanied by relatively greater expression of an extensive set of co-regulated genes 

involved in energy metabolism.

Microglial steady-state heterogeneity in immune alertness

Immune cells maintain a balance between activating and inhibitory signals to fine-tune the 

strength of their responses in part through cell surface activating receptors that associate 

with immunoreceptor tyrosine-based activation motifs (ITAMs) and counteracting inhibitory 

receptors containing immunoreceptor tyrosine-based inhibition motifs (ITIMs)24. Given the 

more immune-alert state of cerebellar and hippocampal microglia suggested above, we 

explored whether there were regional differences in microglial expression of ITAM-

associating and ITIM-containing immunoreceptors. We focussed on the triggering receptor 

expressed on myeloid cell (TREM), sialic acid-binding immunoglobulin-type lectins 

(Siglec), CD200R, CD300 and signal regulatory peptide (SIRP) families, each of which 

contains activating and inhibitory members (Fig 5a). In all families, we found inter-regional 

differences in expression of both ITAM and ITIM-signalling members and strikingly there 

was an opposing pattern of expression for activating and inhibitory receptors (Fig 5b, c). 

Activating ITAM-associating members were more highly expressed in cerebellar microglia 

whereas ITIM-containing inhibitory members showed the reverse pattern. For example, in 

the CD300 family, CD300a is the only member with a cytoplasmic tail containing an ITIM 

motif and Cd300a was expressed at lower levels in cerebellum and hippocampus. In 

contrast, other CD300 members have consensus sequences enabling association with ITAM-

containing adapters such as DAP12 and all showed the opposite pattern of expression to 

Cd300a. One caveat relates to TREM2, which although associating with the ITAM-

containing DAP12 adapter molecule, dampens microglial pro-inflammatory reactions, and 

thus the expression profile is consistent with other inhibitory immunoreceptors. Expression 

of the genes encoding the ITAM-containing adapter proteins DAP12 and DAP10 was 

consistent across brain regions, perhaps reflecting their common use for signalling by 

several receptors (Fig 5a).

We next determined if the regional immunophenotypes of microglia extended to differences 

resembling overtly polarised states of microglia activation. We mined published microglial 

microarray datasets25 to establish a set of non-overlapping genes induced by classical (LPS) 

or alternative (IL-4) activation. This identified 216 LPS-induced genes and 132 IL-4-induced 

genes (Fig 5d). 17% of these LPS-induced genes and 18% of IL-4-induced genes were 

differentially expressed according to brain region in the present study. The LPS-inducible 

subset showed greater expression of the majority of genes in the cerebellum and 

hippocampus (Fig 5e). In contrast, greater expression of the differentially expressed subset 

of IL-4-inducible genes was not restricted to any particular brain region (Fig 5f). 

Furthermore, the majority of microglial genes associated with classical or alternative 

activation were expressed at almost undetectable levels in all brain regions, including the 

archetypal marker genes Nos2 and Arg1 (Fig 5g). Thus it appears the more “alert” 

phenotype of microglia in the cerebellum and hippocampus is distinct from conventional 

states of activation or polarisation.
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We reasoned that steady-state differences in microglial immune alertness could predispose to 

region-dependent variations in function. To assess this directly, it was important to use an 

assay with freshly isolated microglia (prepared as for microarray) exposed to an equivalent 

challenge and over a short timeframe to avoid prolonged culturing which could result in de-

differentiation from in vivo regional phenotypes. We achieved this using a bacterial 

phagocytosis and replication assay. Fewer bacteria were recovered from cortical microglia 

than cerebellar microglia 1 h after gentamicin treatment (Fig 5h), which may reflect distinct 

phagocytic or killing capacity, or both. Relative to the population of bacteria present inside 

microglia at 1 h after gentamicin treatment, there was a significant increase in intracellular 

net replication of bacteria in cortical but not cerebellar microglia by 4 h (Fig 5h). This 

suggested that cerebellar microglia were better able to control the net replication of 

internalized bacteria and support distinct functional responses of microglia to challenge that 

correlate with their region-specific immune alertness transcriptional profiles.

Transcriptional regulators of region-dependent co-expression networks

As described above, clusters 2 and 3 contained genes encoding known transcriptional 

regulators (e.g. Pparg, Nlrc5) of many of the respective cluster genes. To gain further insight 

to transcriptional control mechanisms that may drive microglial diversity we searched the 

annotated promoter regions of genes within these clusters for over-representation of 

transcription factor binding (TFB) motifs from the JASPAR collection26 using Clover27. 

Motifs recognised by the specificity protein (Sp), nuclear hormone receptor 4A (NR4A), 

estrogen related receptor (ERR) and RAR-related orphan receptor (ROR) were significantly 

over-represented in cluster 2 (Supplementary Table 9). Each of these families has established 

roles in regulating cellular energy metabolism28-31 which is consistent with the prominence 

of bioenergetic genes in cluster 2. The NR4A, ERR and ROR transcription factors are all 

members of the nuclear receptor family that act as both metabolic sensors and transcriptional 

regulators32, perhaps highlighting how the metabolic environment of microglia could direct 

region-dependent regulation of gene expression. TFB motifs over-represented in cluster 3 

included those bound by early B-cell factor-1 (EBF1), forkhead box L1 (FOXL1), activator 

protein 1 (AP1) and c-Rel (REL) (Supplementary Table 9) all of which are known regulators 

of immune and inflammatory gene expression33-35 and therefore consistent with the 

immunoregulatory gene profile of cluster 3.

Brain region disproportionately affects cell surface gene expression

A subset of genes encoding microglial cell surface proteins was described recently11 and 

termed the microglial “sensome” with reference to their involvement in sensing the 

environment. We hypothesised that brain region would have a substantial impact on the 

expression of the sensome genes given that regional heterogeneity of microglial phenotype 

may in part arise from exposure to varying local environmental demands. GO terms 

associated with the cell surface were highly enriched in the set of regional differentially 

expressed genes (Supplementary Fig 5a) and 34 of the 100 sensome genes were 

differentially expressed according to brain region. The majority were expressed at greater 

levels in the striatum and cortex (Supplementary Fig 5b) and related to immune signalling 

(Supplementary Table 10). Moreover, of the differentially-regulated sensome genes involved 

in immune signalling, many encoded proteins involved in restricting over-activation of 
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microglia, including Cx3cr1, Trem2, Cd33, Siglech and Fcgr2b (Supplementary Fig 5c). 

These data highlight that brain region has a disproportionately large effect on expression of 

genes encoding microglial cell surface proteins (compared to all genes) and that much of the 

heterogeneity affects receptors transducing microglial “off” signals10. Transmembrane 

pathways promoting microglial quiescence may therefore be active at differing levels 

depending on brain localisation and contribute to regional differences in immune alertness.

Inter-regional microglial heterogeneity mirrors macrophage tissue diversity

We assessed the extent of inter-regional microglial heterogeneity in the wider context of 

macrophage diversity by comparison of our regional microglial transcriptomes with selected 

purified macrophage datasets from the GNF Mouse GeneAtlas V3 (http://biogps.org/dataset/

2394/gnf-mouse-geneatlas-v3/) acquired on the same microarray platform. As anticipated, 

using PCA the 1st principal component distinguished macrophage populations (peritoneal 

and bone marrow) from all microglial samples (Fig 6a). The 2nd principal component 

identified inter-regional heterogeneity in microglia that was comparable in magnitude to the 

differences between bone marrow and peritoneal macrophages. In view of the established 

diversity of tissue macrophages outside the brain, these data give an indication of the extent 

of inter-regional microglial heterogeneity discovered in the present study. We next 

determined the genes which were most highly expressed (>10-fold, FDR q < 0.05) in 

microglia compared to macrophages and if these were commonly found in microglia from 

all regions. Microglia from all regions each expressed a similar number of microglial-

enriched genes (Fig 6b). Greater than 90% of these were common to at least two regions of 

the brain and approximately two-thirds to microglia from all regions (Fig 6c). Among these 

were genes recently identified as distinguishing microglia from macrophages including 

P2ry12, Tmem119 and Olfml311, 12, 19 (Fig 6d). Thus, in the healthy young adult brain, 

microglia express considerable regional heterogeneity yet retain a unifying core profile that, 

regardless of brain region, distinguishes them from tissue macrophages outside the brain.

Ageing of microglia occurs in a region-dependent manner

Ageing is associated with altered inflammatory status systemically and in the brain and 

involves marked changes in microglial morphology and phenotype. However, it is unclear if 

the impact of ageing on microglia is uniform throughout the brain. We first determined if the 

gene networks defining young adult regional heterogeneity were equally sensitive to ageing. 

Overall, approximately 50% of region-defining transcripts at 4 months were differentially-

regulated during ageing, however there was an unequal distribution across the major 4 

month-old region-defining clusters of gene co-expression (see Fig 3). Notably, the majority 

(>80%) of transcripts from the 4 month immune regulation cluster were age-regulated, but 

fewer than 25% of transcripts in the 4 month bioenergetics cluster were differentially 

expressed during ageing (Fig 7a). This shows that distinct modules of co-ordinated gene 

transcription that define microglial heterogeneity in the young adult brain are differentially 

sensitive to ageing.

Principal components analysis showed that while the gross relative regional relationship 

identified at 4 months was generally preserved during ageing, there was an age-dependent 

progression suggesting an interaction between age and brain region (Fig 7b). First, cerebellar 
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microglia were relatively more distant from the remaining brain regions at 12 and 22 months 

compared to 4 months. Second, the intermediate hippocampal microglia profile at 4 months 

was preserved at 12 months but largely converged with cortical and striatal samples at 22 

months. We substantiated these observations non-subjectively using network analysis in 

Biolayout Express3D on the 13,741 transcripts regulated by age (FDR q < 0.05). Unbiased 

sample-to-sample correlation and clustering identified age-dependent unique cerebellar 

clusters and showed that hippocampal samples at 4 and 12 months clustered independently 

whereas at 22 months they formed a larger cluster together with striatal and cortical samples 

(Fig 7c). These data show a region-dependent influence on microglial ageing suggesting 

increased sensitivity of cerebellar microglia and a potential diminishing of the discrete 

hippocampal phenotype.

The kinetics of microglial ageing were also region-specific. Changes in gene expression 

profile occurred relatively consistently during “early” (4-12 months) and “late” (12-22 

months) ageing in both cerebellar and cortical microglia (Fig 7d). In contrast, changes were 

most pronounced during early ageing in the striatum and during late ageing in the 

hippocampus. The hippocampal pattern was particularly interesting because, in contrast to 

other regions where only ~10% of gene alterations comprised decreased expression from 12 

– 22 months, >30% declined in expression in hippocampal microglia (Fig 7e) supporting a 

diminishing distinction from other forebrain regions at the individual gene level. We also 

noted that twice the number of genes were differentially expressed (FDR q < 0.05, fold-

change ≥ 1.5) at 22 versus 4 months in cerebellar microglia compared to other regions 

further reinforcing their greater sensitivity to age-related change (Fig 7d).

Unsupervised hierarchical clustering and visualisation of age-region interacting genes (FDR 

q < 0.05) demonstrated a number of striking patterns (Fig 7f) likely underpinning the gross 

age-region relationships above. First, a large group of genes increased in expression during 

ageing in all regions, however, in the cerebellum this occurred earlier (i.e. by 12 months) 

and/or to a greater magnitude by 22 months. Second, there was a cluster of genes that 

increased during ageing only in the cerebellum. Third, expression of a group of genes 

initially detected at relatively greater levels in hippocampal and cerebellar microglia at 4 

months declined during ageing selectively in the hippocampus.

Collectively, these data show that the microglial transcriptome ages in a non-uniform 

manner across brain regions. Key observations are an accelerated and more amplified ageing 

trajectory in cerebellar microglia and a declining distinction of the hippocampal phenotype 

(relative to other forebrain regions).

Pathways underpinning region-specific microglial ageing profiles

We next sought to establish the biological processes responsible for the age-region 

microglial interactions above. A correlation network graph of the age-regulated transcripts 

was clustered to non-subjectively sub-divide the graph into modules of highly co-expressed 

genes (Fig 8a). We focussed on clusters where interactions between age and region were 

most evident. In general, expression of cluster 2 transcripts increased with age but the most 

striking features were the greater and/or earlier age-regulated increased expression in 

cerebellar microglia (Fig 8b). The majority of genes were involved in immunoregulatory 
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function and this was supported by GO analysis showing immune-related processes as the 

most over-represented in cluster 2 (Supplementary Table 11). Multiple families of molecules 

were represented including those involved in sensing of self and foreign ligands, immune 

cell adhesion and chemotaxis, cytokine signalling and anti-microbial effector responses. A 

large group of co-expressed genes involved in several aspects of the interferon pathway was 

particularly prominent. This included transcriptional regulatory factors (e.g. Irf7, Stat2, 
Oasl1) and interferon-regulated genes including those encoding effector proteins involved in 

anti-viral defence (e.g. Sp100, Csprs, Isg20, Ifit families, Bst2, Zbp1). Expression of the 

above genes was not only increased to a significantly greater extent (e.g. 5-fold) during 

ageing in the cerebellum but increased expression was also evident earlier (12 months) (Fig 

8c). Further genes involved in the interferon pathway predominantly increased in cerebellar 

microglia although not until 22 months (e.g. Stat1, Ifitm family, Gbp family) (Fig 8d). Genes 

more sensitive to greater and/or earlier age-related changes in cerebellar microglial included 

both those already more highly expressed in cerebellar microglia and those expressed at 

negligible levels in all regions at 4 months.

Given the above data and regional differences in expression of ITAM and ITIM signalling 

immunoreceptors in microglia of young adult mice we assessed if there were region-

dependent ageing responses of specific immunoreceptor families. There was a striking 

contrast in the ageing expression profile of amplifying and inhibitory immunoreceptors in all 

families examined (Fig 8e). Expression of inhibitory receptors from each family in general 

remained stable (e.g. Cd300a) or decreased in a largely region-independent manner (e.g. 

Cd200, Sirpa) during ageing. In contrast, expression of amplifying receptors increased with 

age and in a mostly region-dependent manner, affecting the cerebellar microglia selectively 

(e.g. Cd300ld, Trem1, Sirpb1a) or to a significantly greater extent (e.g. Cd200r4, Cd300lb) 

than other regions. The Cd300 family is presented as an example (Fig 8f) Thus, during 

ageing, alterations in immunoreceptor expression across multiple molecular families support 

a regionally-variable shift in balance towards immune amplification.

Genes significantly decreased in expression (FDR q < 0.05, fold-change ≥ 1.5) from 4-22 

months in hippocampal microglia showed enrichment of GO processes related to cell 

adhesion/migration/motility, membrane organisation/endocytosis, immune/inflammatory 

function, and vascular development (Supplementary Table 12) suggestive of marked changes 

in the interaction of hippocampal microglia with their environment. Mining of these genes in 

the Biolayout Express3D network graph revealed their presence in several clusters each with 

a profile sharing reduced age-related hippocampal expression. Cluster 14 was particularly 

interesting because it contained genes expressed at relatively greater levels in both 

hippocampal and cerebellar microglia at 4 months that selectively declined in the 

hippocampus (and in the striatum for a subset) during ageing (Fig 8g, h). Among the genes 

in this cluster, many (e.g. Cd36, Cd93, Pf4, Lyve1) are involved in cell adhesion and motility 

pathways through interactions with matrix components and other extracellular ligands (Fig 

8h). Consistent with the above functions, genes co-ordinating cross-regulation of 

endocytosis/phagocytosis and cytoskeletal reorganisation were present, notably Arhgef3, 
Dab2, Itsn1 and Vav3. Some of the above genes have overlapping roles in immune function 

through sensing and internalisation of microbial ligands and involvement in antigen 

processing and presentation (e.g. Cd36, Cd93, Pf4). Together with further genes in this 
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cluster such as the mannose receptor gene Mrc1 and the MHC-II genes H2-Aa and H2-Ab1 
(Fig 8h) it was evident that gene networks involved in certain aspects of ligand recognition, 

processing and presentation are relatively selectively suppressed during ageing in 

hippocampal microglia. More generally, the above data support a potential “disengagement” 

of aged hippocampal microglia with their environment compared to their young adult 

counterparts.

Regionally-variable depression of the “homeostatic” microglial signature during ageing

Microglial heterogeneity in the young adult brain was superimposed upon a core signature 

distinguishing microglia from systemic macrophages. Ageing resulted in a modest decline in 

expression across all forebrain regions of key signature genes and a significantly greater 

effect (e.g. 30% reduction in expression from 4 to 22 months old) in cerebellar microglia 

(e.g. Tmem119, P2ry12, P2ry13, Fcrls) (Supplementary Fig 6a). This supports data above 

that the greatest deviation from the “baseline” young adult homeostatic signature during 

ageing occurs in cerebellar microglia. Reduced expression of TGFβ receptor genes in aged 

microglia (Supplementary Fig 6b) may be important because expression of signature-

defining genes is regulated by TGFβ12. In contrast, signature macrophage genes (e.g. 

Serpinb2, Alox15, Fabp4) were expressed at negligible levels at all ages (Supplementary Fig 

6c) and genes commonly expressed on macrophages and microglia and upregulated on 

overtly activated microglia (e.g. Ptprc, Emr1) and Itgam were stably expressed during ageing 

in all regions (Supplementary Fig 6d). These data suggest that the age-related lessening of 

the young homeostatic microglial signature is regionally variable but is not accompanied by 

the gain of a macrophage-like signature.

Discussion

The data presented here provide compelling evidence of regional microglial phenotypic 

diversity in the healthy adult brain and the region-dependent impact of ageing on microglial 

phenotype. To our knowledge, this is the first demonstration that regional localisation of 

microglia influences their genome-wide expression profile across the adult lifespan, and 

notably we show that this extends beyond their immunophenotype. Key findings include that 

(1) transcriptional networks controlling microglial bioenergetic and immunoregulatory 

functions contribute prominently to heterogeneity in the young adult, (2) immunophenotypic 

variation suggests a more immune vigilant state of cerebellar microglia, (3) networks of 

gene co-expression underpinning heterogeneity in the young adult brain are differentially 

sensitive to ageing, (4) increasing distinction of cerebellar microglia and reduced distinction 

of hippocampal microglia (among forebrain regions) are key features of ageing, (5) 

microglial diversity is superimposed upon a core profile that distinguishes all microglia from 

macrophages, and (6) aged microglia display partial loss of the core young adult microglial 

identity in a regionally-variant manner but do not adopt a macrophage-like signature.

In the young adult brain (4 months old), the general relationship among the brain regions 

analysed showed that cerebellar microglia were most distinct, that cortical and striatal 

microglia were similar to each other, and that hippocampal microglia had an intermediate 

profile. This pattern suggests a microglial relatedness correlating with the relative 
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positioning of brain regions along the rostro-caudal neuroaxis. Recent studies have reported 

that microglial responses to injury, disease or inflammatory challenge also vary according to 

neuroaxis location36, 37. Microglial morphology and density vary according to the relative 

composition of white and grey matter with a lower density of microglia reported in white 

matter of the adult mouse brain13. The extent to which white-to-grey matter ratios could 

influence regional differences in microglial transcriptomes is unclear, although the finding 

that the white matter-rich striatum and largely grey matter-dominant cerebral cortex have 

highly similar expression profiles suggests this may not be a major determinant. Forebrain 

microglia but not cerebellar microglia are dependent on IL-34, a ligand of the colony 

stimulating factor-1 receptor, for their maintenance15, 16. Furthermore, the involvement of 

enhancers in controlling tissue and cell identity is increasingly recognised, including in 

microglia38, and a recent study indicated that expression of brain region-specific enhancer 

RNAs may play a particularly important role in cerebellum-specific gene expression18.

Heterogeneity in microglial phenotypic markers other than immunophenotype has received 

negligible attention previously. The present data provide novel information on the 

transcriptional programmes controlling metabolism in microglia and show that regional 

differences in expression of these networks is a core feature of microglial diversity in the 

healthy young adult brain. Co-ordinated differences in regional expression of genes involved 

in all phases of the energy production pathway (mitochondrial production, glycolysis, TCA 

cycle, electron transport chain, ATP synthesis) was evident, emphasising the integrated 

nature of regional bioenergetic variation in microglia. The cluster profile revealed that 

hippocampal and cerebellar microglia have relatively greater expression of these genes 

suggesting greater energetic demands on microglia in these areas. Although there is little 

understanding of microglial bioenergetics, the routine cellular behaviour of microglia (e.g. 

process scanning, phagocytic activity) is likely to be metabolically demanding and regional 

differences in these activities could therefore influence energy demands39. In addition, the 

lower density of microglia in some areas, notably in the cerebellum, requires each microglial 

cell to survey a larger volume of tissue and would be expected to increase energy demands 

on an individual cell basis.

Our data suggest that microglia in some regions of the young adult brain exist in a more 

immune-vigilant state but one that does not equate to a conventional activated or primed 

microlgial/macrophage phenotype. Local differences in the physical and neurochemical 

environment, such as cellular and matrix composition, blood-brain barrier permeability, 

neurotransmitter profiles and heterogeneity in other cell types, may all be important. 

Consistent with this we found that a substantial proportion of genes encoding the microglial-

enriched cell surface sensing apparatus were differentially expressed. Previous studies have 

suggested white matter microglia exist in a relatively less quiescent basal state than their 

grey matter counterparts37, which could contribute to the more vigilant profile of microglia 

in the white matter-enriched cerebellum. Another explanation is that the environment of 

some brain regions has evolved to support a more immune vigilant phenotype as a result of 

genomic integration of endogenous retroviruses (ERVs) and other retrotransposons. ERVs 

comprise ~10% of the murine genome40 and although normally inactive, deficiencies in 

innate immunity can predispose to reactivation41. Cerebellum-specific expression of the 

murine leukaemia virus (MuLV)-ERV has been shown previously42 and in mixed brain 
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homogenates expression of the MuLV-ERV designated Mela (melanoma antigen) was 

restricted to the cerebellum (Supplementary Fig 7). The hippocampus is also more 

susceptible to retrotransposition in the human brain43. Thus, microglia, which we show have 

a more immune vigilant phenotype, including higher expression of anti-viral interferon 

networks, are found in areas where there may have been an evolutionary drive for 

development of greater immune vigilance.

Despite sharing similarities in their regional expression profile in the young adult brain, the 

major transcriptional networks (bioenergetics and immune) underlying regional 

heterogeneity at 4 months of age were affected differently by ageing. Genes within the 

immune networks were particularly sensitive whereas the majority within the bioenergetics 

cluster were unaffected by age. This indicates that regional differences are preserved during 

ageing for some functional pathways alongside marked divergence in others. Given the 

similar regional profiles of the immune and bioenergetics clusters at 4 months of age and the 

close relationship between immune function and metabolism, there may be some degree of 

immune-metabolic decoupling during ageing particularly in microglia from regions showing 

the greatest immunoregulatory deviation from the young adult (e.g. cerebellum). However, 

further work will be needed to determine if this divergence could allow for greater 

adaptation to the demands of ageing or could predispose to functional dysregulation.

The sensitivity of the immune network to ageing was largely responsible for the increasing 

distinction of the cerebellar phenotype in the aged brain. In contrast to ageing and direct 

immune stimulation ex vivo, however, we observed regionally comparable responses to 

acute systemic inflammatory challenge with bacterial lipopolysaccharide (data not shown) 

indicating that microglial heterogeneity encodes region-specific sensitivities in a stimulus/

stressor-dependent manner. A selective or significantly greater induction in expression of 

many immune amplifying genes occurred in cerebellar microglia compared to other brain 

regions during ageing whereas genes involved in restraining excessive immune activity were 

generally stable across all brain regions. This implies that the more immune alert state of 

cerebellar microglia compared to other regions evident in the young adult is further 

augmented in the aged brain. The functional consequences of this are important to consider 

but may be complex. More caudal regions of the CNS such as the cerebellum may be more 

vulnerable to age- or disease-related inflammatory degeneration if this heightened alertness 

is poorly controlled. In support, age-related increases in inflammatory marker expression 

were predominant in the cerebellum and associated with functional cerebellar deficits37. 

However, the extra-alert phenotype may confer protective functions through increased 

vigilance and efficiency in removing potentially harmful agents. In this regard, it is pertinent 

to note the lower susceptibility of the cerebellum to amyloid deposition during ageing44.

Selective age-related alterations in gene networks were also evident in hippocampal 

microglia, however in contrast to the cerebellum, these resulted in a declining distinction 

from other forebrain regions. Decreasing expression of genes involved in matrix interactions 

and sampling the extracellular environment were the most prominent cause, suggesting that 

a declining engagement with their environment during ageing particularly affects 

hippocampal microglia. Although previous studies were not performed on a region-specific 

basis our data are consistent with reports of decreased process motility45 and reduced 
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expression of cell surface sensing genes11 in aged microglia indicative of compromised 

environmental sampling capabilities. In contrast to the cerebellum, the hippocampus is 

vulnerable to age- and disease-related deposition of misfolded proteins which could in part 

relate to the age-driven divergence in environmental and immune alertness of microglia we 

describe in these brain regions. Dystrophic microglia in the aged human hippocampus have 

been described and postulated to represent a senescent state unable to carry out normal 

functions46; our data may provide a plausible transcriptomic basis for this hypothesis. More 

broadly, the loss of distinction in the overall hippocampal microglial phenotype at 22 

compared to 4 months of age among forebrain regions is consistent with the concept of age-

related loss of differentiation in neural function, cognitive performance and reorganisation of 

connectivity across brain regions47, 48. Notably, the weighting of regional connections of the 

hippocampus changes markedly during ageing48. Declining specialisation among neuronal 

populations has also been described in the aged brain49. It is therefore possible that age-

related changes in the regional diversity of local signals derived from other neural 

components, altered inter-regional communication, and intrinsic microglial modifications in 

sensing pathways could all contribute to the diminished regional identity of hippocampal 

microglial in the aged brain.

Recent studies have revealed the distinctive transcriptional identity of microglia that 

distinguishes them from non-CNS tissue macrophages11, 12, 19. The present data now show 

that, although microglia have multiple transcriptional identities dependent on brain region, a 

core signature differentiating them from macrophages is retained across regions. Hence 

inter-regional microglial heterogeneity is superimposed upon a distinctive core profile. 

Microglial regional heterogeneity may be analogous in some respects to macrophage 

diversity observed within other tissues such as the spleen50. Despite reductions in expression 

of signature microglial genes with age, particularly in the cerebellum, highly macrophage-

enriched genes (e.g. Fabp4, Alox15) were not expressed in any region at any age thus 

supporting that microglia also retain an overriding phenotypic individuality compared to 

macrophages in the aged brain.

In summary, regional microglial diversity described herein may be important for meeting the 

location-dependent demands of brain tissue under steady-state conditions. The impact of 

ageing on this diversity also suggests a basis for the regional variation in susceptibility to 

age-related neurodegenerative processes involving neuroinflammatory mechanisms. Further 

studies examining microglial diversity in the context of neurodegeneration are therefore 

warranted.

Methods

Accession codes

Microarray data are deposited in the NCBI GeoDatasets database with the accession number 

GSE62420.
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Mice

Experiments were performed using male C57Bl/6J mice (Charles River Laboratories, UK) 

and Csf1r-EGFP reporter mice bred in-house. Mice were housed in individually-ventilated 

cages (five mice per cage) maintained under specific pathogen-free conditions and a 

standard 12 h light/dark cycle with unrestricted access to food and water. All experiments 

using live animals were conducted under the authority of UK Home Office project and 

personal licences and adhered to regulations specified in the Animals (Scientific Procedures) 

Act (1986) and Directive 2010/63/EU and were approved by both The Roslin Institute’s and 

the University of Edinburgh’s Animal Welfare and Ethics Committees.

Microglial purification and mixed brain cell/homogenate preparation

At 4, 12 and 22 months of age, mice were perfused transcardially with physiological saline 

and brains dissected into cerebellum, cortex, hippocampus and striatum. Tissue from eight 

mice was pooled for each regional replicate to obtain sufficient RNA for microarrays and the 

experiment was performed in quadruplicate for each region. Brain tissue was finely minced 

by scalpel blade in ice-cold Hanks Balanced Salt Solution HBSS (Sigma, UK), centrifuged 

(400 g, 5 min, 4°C) then resuspended and incubated for 1 h at 37°C using an enzyme 

cocktail containing 50U/ml collagenase, 8.5 U/ml dispase, 100 ug/ml Nα-Tosyl-L-lysine 

chloromethyl ketone hydrochloride and 5 U/ml DNaseI in 9.64 ml HBSS (Life 

Technologies, UK). Tissue was dissociated manually using a Dounce homogeniser and the 

enzymatic reaction terminated by addition of equal volume HBSS containing 10% fetal 

bovine serum. Homogenates were centrifuged (400 g, 5 min, 4°C) and pellets resuspended 

in 35% Percoll (GE Healthcare, Sweden), overlaid with HBSS then centrifuged (800 g, 45 

min, 4°C). The supernatant and myelin layers were discarded and the cell pellet enriched 

with microglia resuspended in separation buffer (0.5% bovine serum albumin, 2 mM EDTA 

in PBS). The cell suspension was incubated with anti-CD11b microbeads (Miltenyi Biotec, 

UK) for 15 min at 4°C then applied to a magnetic LS column (Miltenyi Biotec) and cells 

retained on the column (microglia) were flushed and resuspended in appropriate buffer for 

downstream applications (see below). Unretained cells were also collected during initial 

validation for comparison. Mixed brain cell suspensions were prepared for flow cytometry 

according to the above protocol except the procedure was terminated before proceeding to 

centrifugation on Percoll gradient. For preparation of regional brain tissue homogenates for 

RNA extraction, mice were perfused and brain tissue dissected as above, and tissue snap-

frozen and stored at −80°C. For validating that regional brain dissection did not result in 

cross-contamination of brain regions, the expression profile of established regionally 

enriched neuronal genes (Calb2, cerebellum-enriched; Rorb, cerebral cortex-enriched; 

Drd1a, striatum-enriched; Sstr4, hippocampus-enriched) was assessed in the present regional 

brain homogenates. This showed the expected enrichment of Calb2 in cerebellum, Rorb in 

cerebral cortex, Sstr4 in hippocampus, and Drd1 in striatum and was comparable to the 

regional pattern reported in the Allen Brain Atlas51 (http://mouse.brain-map.org/) 

(Supplementary Fig 1d). URLs for images shown in Supplementary Fig 1 are: Calb2, http://

mouse.brain-map.org/experiment/show/79556662 (image 78); Drd1a, http://mouse.brain-

map.org/experiment/show/352 (image 293); Rorb: http://mouse.brain-map.org/experiment/

show/79360296 (image 61); Sstr4: http://mouse.brain-map.org/experiment/show/73636037 

(image 234).
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Flow cytometry

For routine verification of purified samples, cells resuspended in FACS buffer (0.1% BSA in 

PBS) were incubated with 1μg/ml anti-CD16/CD32 (Biolegend, UK, cat # 101301) to block 

Fc receptors and stained with anti-mouse CD11b-PE (Biolegend, cat # 101207, clone: 

M1/70), CD45-Pacific Blue (Biolegend, cat # 103125, clone: 30-F11) and F4/80-APC 

(Biolegend, cat # 123115, clone: BM8). To assess overlap between microglial CD11b and 

EGFP expression in mixed brain cell suspensions from Csf1r-EGFP mice, samples were 

stained as above and microglia identified according to their characteristic 

CD11b+F4/80+CD45lo profile. To measure MHC-II expression on microglia from mixed 

brain cell suspensions, cells were stained with RPE-Alexa Fluor 750 anti-mouse CD11b 

(AbD Serotec UK, cat # MCA74P750T), APC anti-mouse CD45 (Biolegend, cat # 103111) 

and eFluor 450 anti-mouse MHC Class II (eBioscience, UK, cat # 48-5321-80). Flow 

cytometry was performed using a FACS Aria IIIu or LSR Fortessa (Becton Dickenson, UK) 

and data analysed using FlowJo software (FlowJo, OR, USA).

Microglial culture and immunocytochemistry

1 × 105 purified microglial cells were cultured for 7 d in an 8-well chambered coverslip μ-

slide (Ibidi, Germany) with DMEM/F12 (Life Technologies, UK) containing 10% FBS and 

1% penicillin/streptomycin before fixation with 4% paraformaldehyde. The staining 

procedure was performed at room temperature. Fixed cells were permeabilised with 0.1% 

Triton X-100 for 5 min, washed and quenched by adding 0.25% NH4Cl for 5 min. 

Permeabilised cells were washed and blocked in PBS/0.1% BSA/5% donkey serum (Jackson 

ImmunoResearch, PA,USA) for 1 h before adding the primary antibodies prepared in 2.5% 

donkey serum in PBS. We used the following primary antibodies for staining: rabbit anti-

IBA-1 (Wako Chemicals, Germany; 1:200) and biotinylated anti-mouse F4/80 (eBioscience, 

1:200). Cells were washed and secondary antibodies anti-rabbit Alexa Fluor 594 (Life 

Technologies 1:1000) and Streptavidin Alexa Fluor 488 (Life Technologies; 1:1000) were 

incubated for 1 h before counter staining with DAPI (1μM) for 5 min. Imaging was 

performed using a Zeiss LSM 710 inverted confocal microscope. Maximum projection 

images of Z-stacks at 400x magnification objectives are presented.

RNA extraction

Microglia purified from individual brain regions were immediately processed for RNA 

extraction using the RNeasy Plus Micro Kit (Qiagen, UK). Preliminary experiments showed 

this method produced the highest yield and quality of RNA. RNA was extracted according to 

the manufacturer’s instructions with the exception of the final step where RNA elution was 

repeated twice with 10 μl RNase-free water. RNA quantities were determined by Nanodrop 

1000 (Thermo Fisher Scientific, MA, USA) and RNA quality assessed using the Agilent 

Bioanalyzer (Agilent Technologies, CA, USA). RNA was also extracted from regional 

mixed brain cell homogenates using the RNeasy Midi Kit (Qiagen) following 

manufacturer’s instructions. All samples passed a quality control threshold (RIN ≥ 8) to 

proceed to microarray.
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Transcriptional profiling using gene expression microarrays

Microarray assays were performed by Edinburgh Genomics, University of Edinburgh 

(https://genomics.ed.ac.uk/). Total RNA was labelled using the IVT Express Kit 

(Affymetrix). First-strand cDNA was synthesised and converted to double-stranded DNA 

template for transcription and synthesis of aRNA incorporating a biotin-conjugated 

nucleotide. aRNA was purified and fragmented prior to hybridisation on Affymetrix arrays. 

Biotin-labelled aRNA was hybridized to the whole mouse genome HT MG-430 PM array 

plate (Affymetrix, CA, USA) representing >39,000 transcripts, using the GeneTitan multi-

channel instrument (Affymetrix).

qPCR

50ng of total RNA remaining from the microarray samples was reverse transcribed using 

Superscript III Reverse Transcriptase according to the manufacturer’s instructions (Life 

Technologies). The qPCR was performed in a Stratagene Mx3005P instrument (Agilent 

Technologies) using Platinum SYBR Green qPCR SuperMix-UDG (Invitrogen) and primer 

pairs: B2m-f TGGCTCACACTGAATTCACCCCCA B2m-r 

TCTCGATCCCAGTAGACGGTCTTGG, Gapdh-f TGCATCCACTGGTGCTGCCAA, 

Gapdh-r ACTTGGCAGGTTTCTCCAGGCG, Camp-f AGGAACAGGGGGTGGTGA, 

Camp-r CACCTTTGCGGAGAAGTCCA, H2-d1-f TCCGAGATTGTAAAGCGTGAAGA, 

H2-d1-r GAACCCAAGCTCACAGGGAA. qPCR cycles were performed as followed: hot 

start denaturation cycle 95°C for 10 min, 40 cycles of amplification of 95°C for 15 sec, 60°C 

for 20sec and 72°C for 1 min.

Bacterial phagocytosis and replication assay

Purified cortical and cerebellar microglia (pooled from 8 mice, 4 months old) were infected 

with Escherichia coli (K-12 strain). Bacteria were grown in Luria-Bertani (LB) broth at 

37°C, 190 rpm for 16 hours. Subsequently bacteria were subcultured at 1:1000 ratio into 

fresh LB. Bacteria were grown to mid-exponential phase at 37°C, 190 rpm for 3 hours and 

growth was monitored at OD600. Bacteria were resuspended in DMEM/F12 (no FBS/

Penicillin/Streptomycin) at 1 × 107 bacteria/ml. 4 × 104 purified microglia were infected 

with 4 × 105 bacteria. 4 × 104 cells only and 4 × 105 bacteria only served as control. After 

incubation of microglia with bacteria for 2 hours to allow uptake, gentamicin was added to 

kill extracellular bacteria, enabling intracellular E. coli to be enumerated 1 and 4 hours later. 

Cells were then washed, lysed with 0.1% Triton X-100 and serial ten-fold dilutions plated on 

MacConkey agar. Bacterial colonies were counted after 17 h incubation at 37°C. Data are 

from triplicate microglial samples with each replicate pooled from eight mice. The microglia 

only control yielded no bacteria and extracellular E. coli treated with gentamicin under the 

same assay conditions was completed eliminated.

Computational analysis and bioinformatics

(i) Analysis of regional heterogeneity in the young adult (4 months old)—
Microarray datasets were normalised by the Robust Multiarray Averaging (RMA) method in 

Affymetrix Expression Console (Affymetrix, CA, USA) prior to analysis in BioLayout 

Express3D (http://www.biolayout.org/)20 or directly during import for analysis in Partek 
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Genomics Suite (Partek Inc., MO, USA. Analysis was perfomed using the 

ht_mg-430_pm.na33 annotation release (Affymetrix). 4 months datasets were first 

normalised and analysed independently from other ages. The gross inter-relationships 

among regional microglial transcriptomes were assessed by principal components analysis 

(PCA) on the log-transformed and Z-score transformed data matrix where every transcript 

had mean value zero and standard deviation one, using built-in functions of Matlab 

(MathWorks, MA, USA). Gross regional differences were also assessed in BioLayout 

Express3D by plotting a sample-to-sample correlation graph with the Pearson correlation 

threshold r = 0.96. Nodes represent individual samples (replicates) and edges between them 

show correlation of expression pattern with Pearson correlation coefficients above the 

selected threshold. The resulting network was clustered using the Markov clustering 

algorithm (MCL) (inflation 2.2) to non-subjectively sub-divide the graph into discrete 

clusters.

To assess if there were transcripts differentially expressed by region overall and between 

each individual region, normalised datasets were compared in Partek by ANOVA with false 

discovery rate (FDR) correction (q < 0.05). Data were visualised by heatmap with transcripts 

and samples organised by hierarchical clustering using average linkage with the Euclidean 

distance metric. Heatmap visualization and hierarchical clustering were performed on the 

log-transformed and Z-score transformed data matrix using built-in functions of Matlab. To 

assess gene co-expression relationships across brain regions, a pairwise transcript-to-

transcript matrix was calculated in BioLayout Express3D from the set of regionally 

differentially expressed transcripts using a Pearson correlation threshold r = 0.80. A network 

graph was generated where nodes represent individual probesets (transcripts/genes) and 

edges between them correlation of expression pattern with Pearson correlation coefficients 

above the selected threshold. The graph was clustered into discrete groups of transcripts 

sharing similar expression profiles using the MCL algorithm (inflation 2.2, minimum cluster 

size 10 nodes). The composition and functional representation of the three major clusters 

were explored in more detail.

Enrichment analysis for Gene Ontology (GO) terms was performed in DAVID52 (http://

david.abcc.ncifcrf.gov/) and visualised using the Enrichment Map plugin (http://

www.baderlab.org/Software/EnrichmentMap)53 for Cytoscape (http://

www.cytoscape.org/)54. In DAVID, gene lists were uploaded and the GOTERM_BP_FAT 

annotation category selected. Default settings were used for analysis with enrichment based 

on p < 0.05 with Benjamini correction. Enriched GO terms were uploaded to Enrichment 

Map and a network graph constructed. Nodes represent enriched GO terms and edges the 

degree of similarity between them using the overlap coefficient. Enrichment Map was also 

used to visualise the expression of all genes in the regionally differentially expressed dataset 

annotated with GO terms within the immune regulation cluster (Fig 2d). Results were 

visualised by heatmap with expression values normalised and transcripts organised by 

hierarchical clustering using default settings (Supplementary Fig 5). Visualisation of GO 

enrichment was also performed using the GOrilla tool55 (http://cbl-gorilla.cs.technion.ac.il/) 

with default settings applied. Pathway analysis on individual clusters from the BioLayout 

Express3D transcript-to-transcript network graph was performed in DAVID using the KEGG 

tool and Ingenuity Pathway Analysis (Qiagen).

Grabert et al. Page 18

Nat Neurosci. Author manuscript; available in PMC 2016 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
http://www.baderlab.org/Software/EnrichmentMap
http://www.baderlab.org/Software/EnrichmentMap
http://www.cytoscape.org/
http://www.cytoscape.org/
http://cbl-gorilla.cs.technion.ac.il/


To compare immunophenotypes in the present dataset with microglial activation profiles 

described previously, we mined published microarray datasets from microglia stimulated 

with either lipopolysaccharide (LPS) or interleukin-4 (IL-4)25. Raw expression data (.cel 

files) were downloaded from NCBI GEO DataSets (http://www.ncbi.nlm.nih.gov/

gds/;GSE49329), imported to Partek and normalised with the microglia data. Non-

overlapping genes significantly upregulated by LPS or IL-4 (>5-fold, FDR q < 0.05) were 

determined and these genes overlaid on the set of regional differentially expressed genes 

from the present study. The expression profile of overlapping transcripts for each stimulus 

was visualised by heat map using the log-transformed and Z-score transformed data matrix 

using built-in functions of Matlab.

To analyse a specific subset of microglial-enriched genes encoding cell surface proteins we 

assessed overlap between the 100 genes recently described as the microglial sensome and 

the set of regionally differentially expressed genes from the present study. The expression 

profile of overlapping transcripts was visualised by heat map using the log-transformed and 

Z-score transformed data matrix using built-in functions of Matlab.

To assess the extent of microglial regional heterogeneity in the context of general tissue 

macrophage diversity, we mined published peritoneal and bone marrow macrophage 

microarray datasets from the GNF MouseAtlas V3 (GEO DataSets GSE10246) which were 

generated on the same platform (MOE430 2.0) as the present arrays. All datasets were 

imported together and normalised in Partek as above. The gross relationships among 

microglia and macrophages were explored by PCA. Genes most highly expressed in 

microglia compared to macrophages (>10-fold, q < 0.05) were determined for each brain 

region and overlapping and unique genes among regions identified.

For the identification of transcriptional regulators which may act as contributing factors to 

the microglial regional diversity we used Clover27 to detect statistical over-representation of 

known TFB motifs in the promoter regions of co-expressed genes. Refseq IDs for each 

transcript on the Affymetrix ht_mg-430_pm.na33 array that was present in the immune 

regulatory and energy metabolism cluster were obtained from the NetAffx database (https://

www.affymetrix.com/analysis/netaffx/index.affx). Promoter sequences 300bp upstream and 

100bp downstream of the TSS were extracted from the mouse genome sequence (version 

mm9). Transcription factor binding site motifs were identified using the JASPAR CORE 

motif set26 (http://jaspar.cgb.ki.se) and Clover (p < 0.05, score threshold = 6) was used to 

detect over-represented motifs in promoters for each expression cluster compared with a 

background set27.

(ii) Effect of ageing and analysis of interactions between ageing and brain 
region—Analysis was performed on datasets from all ages normalised together and 

performed as above. Gross inter-relationships among regional microglial transcriptomes at 

different ages (4, 12, 22 months of age) were assessed by PCA as above and in BioLayout 

Express3D. For BioLayout Express3D, a sample-to-sample correlation network graph 

(Pearson correlation threshold r = 0.98) was generated from the transcripts differentially 

expressed according to age (FDR q < 0.05) and clustered using the MCL algorithm (inflation 

2.2) to non-subjectively sub-divide the graph into discrete clusters. Nodes represent 
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individual samples (replicates) and edges between them show correlation of expression 

pattern with Pearson correlation coefficients above the selected threshold. To determine 

effects of ageing and interactions between ageing and brain region on individual transcript 

expression, normalised datasets were analysed in Partek Genomics Suite using two-way 

ANOVA with FDR correction (q < 0.05) and appropriate post-hoc tests as indicated. 

Hierarchical clustering and visualisation of the top 150 transcripts with significant 

interaction between age and region on expression levels was performed in Partek.

Transcript-to-transcript co-expression relationships were assessed using BioLayout 

Express3D. A pairwise transcript-to-transcript matrix was calculated from the set of 

transcripts differentially expressed according to age using a Pearson correlation threshold r = 

0.85. A network graph was generated where nodes represent individual probesets 

(transcripts/genes) and edges between them correlation of expression pattern with Pearson 

correlation coefficients above the selected threshold. The graph was clustered non-

subjectively into discrete groups of transcripts sharing similar expression profiles using the 

MCL algorithm (inflation 2.2, minimum cluster size 10 nodes). The composition and 

functional representation of selected clusters were explored in more detail using approaches 

as above (e.g. GO and KEGG enrichment analysis).

Relative expression profiles of genes from selected immunoreceptor families were visualised 

by heat map using the log-transformed and Z-score transformed data matrix using built-in 

functions of Matlab. Genes were classified as activating or inhibitory according to known 

functional effects or prediction from presence of receptor ITAM-associating/ITIM domains.

Experimental design and statistical analysis

Experimental design, analysis and reporting followed the ARRIVE guidelines (https://

www.nc3rs.org.uk/arrive-guidelines) where possible. Mice were randomised to treatment 

group (age) at cage level using using a computer-based random number generator (https://

www.randomizer.org/). Microarray data are from n = 4 biological replicates with each 

replicate consisting of tissue pooled from 8 mice. No formal a priori statistical methods were 

used to pre-determine sample sizes due to insufficient previous data to enable this. However, 

sample sizes were chosen based on estimates of anticipated variability through previous 

general experience of microarray analysis and accounting for pooling of tissues reducing 

inter-replicate variance. To avoid potential confounding cage effects during pooling of 

tissue, each separate pool contained tissue derived from mice housed in all cages for each 

age group selected in a randomised manner using a computer-based random number 

generator (https://www.randomizer.org/). Data collection and analysis were performed with 

the assessor unaware of allocation to treatment group. Statistical tests for computational 

analysis are described above. Flow cytometry and qPCR data were analysed using one-way 

ANOVA with Bonferroni correction. Data from the bacterial uptake and replication assay 

were analysed by two-way ANOVA with Bonferroni correction. Data were checked for 

compliance with statistical assumptions for each test, including normal distribution and 

equal variances across groups. Tests were two-tailed throughout. Statistical significance was 

considered at p < 0.05 (or equivalent corrected for multiple comparisons). Data show mean 

± SD unless otherwise stated.
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Figure 1. 
Validation of multi-region microglial purification. (a) Microglia were purified from discrete 

brain regions and the profile of expression for indicated surface markers examined by flow 

cytometry. A consistent CD11b+F4/80+CD45lo profile was observed for all regions (Con 

denotes isotype control staining of whole brain microglia). Data are representative of four 

independent cell preparations, each from tissue pooled from eight mice. (b) Microarray 

expression profiles for selected genes in purified microglia and mixed brain cell 

homogenates from each brain region. Data show mean ± SD, n = 4 independent samples, 

each from tissue pooled from eight mice (c) The fold change (log2) in microarray expression 

level for purified microglia versus mixed cell brain homogenates for indicated genes. (d) 

Microarray expression profiles in purified microglia from discrete brain regions for 

established marker genes of neurons, astrocytes and oligodendrocytes, (e) T cells (Cd3e), B 

cells (Cd19), granulocytes (Ly6g), and (f) non-CNS macrophages with comparison to Itgam. 

Data show mean ± SD, n = 4 independent samples, each from tissue pooled from eight mice. 

(g) Immunofluorescence images of purified microglia cultured for 7d and immunostained 

for indicated markers. Images are representative of two independent cultures. Scale bar, 

50μm. Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum.
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Figure 2. 
The adult mouse microglial transcriptome is regionally heterogeneous. (a) Principal 

components analysis on microarray expression profiles for purified microglia from discrete 

brain regions. (b) Sample-to-sample correlation of microarray datasets was performed in 

BioLayout Express3D and a network graph generated (Pearson correlation threshold r ≥ 

0.96). Nodes represent individual samples and edges the degree of correlation between them. 

(c) Heat map showing the expression pattern of probesets differentially expressed by brain 

region (p < 0.05 with FDR correction). The scaled expression value (row Z-score) is 
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displayed in a blue-red colour scheme with red indicating high expression and blue low 

expression. (d) Differentially expressed probesets were analysed for enrichment of Gene 

Ontology (GO) Biological Processes in DAVID. Enriched GO terms were imported to 

Enrichment Map and a network graph generated. Nodes represent individual GO terms 

(gene sets) and edges the relatedness between them. Two major clusters defined by 

immunoregulatory and metabolic function were identified. Str, striatum; Hpp, hippocampus; 

Ctx, cerebral cortex; Cbm, cerebellum.
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Figure 3. 
Three major patterns of gene co-expression underpin regional microglial transcriptional 

heterogeneity. (a) A transcript-to-transcript correlation network graph of transcripts 

significantly differentially expressed by brain region was generated in BioLayout Express3D 

(Pearson correlation threshold r ≥ 0.80). Nodes represent transcripts (probesets) and edges 

the degree of correlation in expression pattern between them. The network graph was 

clustered using a Markov clustering algorithm and transcripts assigned a colour according to 

cluster membership. Three major clusters were identified. (b) Mean expression profile of all 
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transcripts within clusters 1, 2 and 3. (c) Heat maps showing the expression profile of all 

transcripts contained within clusters 1, 2 and 3. Each probeset is represented in a blue-red 

row Z-score scale with red indicating high expression and blue low expression. Str, striatum; 

Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum.
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Figure 4. 
Regional transcriptional heterogeneity in microglial immunophenotype and bioenergetics. 

(a) Cluster 3 transcripts were analysed for enrichment of Gene Ontology (GO) Biological 

Processes in DAVID (p < 0.05 with Benjamini correction) and a network graph of enriched 

GO terms generated in Enrichment Map. Nodes represent individual GO terms (gene sets) 

and edges the relatedness between them. (b) Examples of individual genes in cluster 3 

manually annotated to functional categories of immunoregulatory function. (c) mRNA 

expression of selected genes in purified microglia measured by quantitative PCR. Data show 
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mean ± SD, n = 4 independent samples, each from tissue pooled from eight mice. *p < 0.05, 

**p < 0.01, ***p < 0.001, one-way ANOVA with Bonferroni correction. (d, e) Expression of 

MHC-II protein was measured by flow cytometry on freshly isolated adult microglia 

identified by CD11b+CD45lo profile in mixed brain cell suspensions from discrete brain 

regions. Data show (d) proportion of CD11b+CD45lo microglia positive for MHC-II and (e) 

mean fluorescence intensity of MHC-II expression on CD11b+CD45lo cells. Data show 

mean ± SD, n = 3 independent cell preparations. ***p < 0.001, one-way ANOVA with 

Bonferroni correction. (f) Cluster 2 transcripts were analysed for enrichment of GO 

Biological Processes (p < 0.05 with Benjamini correction) and a network graph of enriched 

GO terms generated in Enrichment Map. (g, h) Examples of individual genes in cluster 2 

manually annotated to functional categories of bioenergetic function. Data show mean ± SD, 

n = 4 independent samples, each from tissue pooled from eight mice. *p < 0.05, **p < 0.01, 

***p < 0.001, one-way ANOVA with Bonferroni correction. Str, striatum; Hpp, 

hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. Specific p values for all statistical 

comparisons are presented in Supplementary Table 13.
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Figure 5. 
Regional microglial heterogeneity in immunophenotype suggests differences in immune 

vigilance. (a) Microarray expression levels in purified microglia of selected families of 

immunoreceptors containing activating and inhibitory members. Data show mean ± SD, n = 

4 independent samples, each from tissue pooled from eight mice. *p < 0.05, **p < 0.01, 

***p < 0.001, one-way ANOVA with Bonferroni correction. (b,c) Heat maps showing 

microarray expression patterns of immunoreceptor genes arranged according to (b) family 

and (c) activating (A) or inhibitory (I) status. Column Z-score intensities represent the mean 

of four independent samples per region with red referring to a high probeset expression and 

blue low expression (d) Genes uniquely induced (>5-fold, p < 0.05 with FDR correction) by 

LPS or IL-4 in microglia were determined from publicly available microarray expression 

datasets25. (e,f) Heat maps showing microarray expression patterns for the subsets of unique 

(e) LPS- or (f) IL-4-inducible genes that were differentially expressed (p < 0.05 with FDR 

correction) according to brain region. Row Z-score intensities represent the mean of four 

independent samples per region with red referring to a high probeset expression and blue 

low expression. (g) Microarray expression levels of archetypal marker genes of M1 (Nos2) 

and M2 (Arg1) activation with Itgam as comparison. Data show mean ± SD, n = 4 

independent samples, each from tissue pooled from eight mice. (h) Region-dependent 
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variation of cortical and cerebellar microglia in response to the stimulation with E.coli, Str, 

striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. (h) Purified microglia 

were incubated with Escherichia coli strain K-12 and net replication of bacteria within 

microglia computed from counts of bacterial colonies derived from microglial cell lysates at 

indicated timepoints. Data are representative of two independent cell preparations and show 

mean ± SEM, n = 3 replicate samples from one cell preparation. p < 0.05, two-way ANOVA 

with Bonferroni correction. Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, 

cerebellum. Specific p values for all statistical comparisons are presented in Supplementary 

Table 13.
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Figure 6. 
Regional microglial heterogeneity is comparable to inter-tissue macrophage diversity. (a) 

Principal components analysis of the present regional microglial expression datasets and 

systemic macrophage datasets shows the extent of regional microglial heterogeneity relative 

to macrophage tissue diversity. (b) The number of highly-enriched genes (>10-fold, p < 0.05 

with FDR correction) in microglia compared to peritoneal macrophages was similar for 

microglia from each brain region. (c) Venn diagram showing regional overlap of the genes 

highly enriched in microglia versus peritoneal macrophages. (d) The fold-change (microglia 

versus peritoneal macrophages) in expression of selected genes recently identified as 

signature genes distinguishing microglia from systemic macrophages was comparable across 

brain regions. Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum.
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Figure 7. 
Region-specific microglial ageing. (a) Transcripts within the 4 months old 

immunoregulatory and bioenergetics clusters (see Fig 3) were assessed for age-regulated 

differential expression and the proportion of age-stable and age-altered transcripts 

determined. (b) Principal components analysis plot of microarray expression profiles for 

purified microglia from discrete brain regions at 4, 12 and 22 months of age. (c) Sample-to-

sample correlation network graph of microarray datasets was performed in BioLayout 

Express3D and clustered using a Markov clustering algorithm. Nodes represent individual 

samples and edges the degree of correlation between their expression patterns. Colours 

denote discrete clusters. (d) Comparison of the number of differentially expressed transcripts 

(p < 0.05 with FDR correction, fold change ≥ 1.5) between different ages for each brain 

region. (e) Comparison of the number of up-regulated and down-regulated transcripts (p < 

0.05 with FDR correction, fold change ≥ 1.5) at 22 vs 12 months in each brain region. (f) 

Hierarchical clustering and heat map of top transcripts with significant age-region 

interaction (p < 0.05, two-way ANOVA with FDR correction). The scaled expression value 

(row Z-score) is displayed in a blue-red colour scheme with red indicating higher expression 

and lower expression in blue. Str, striatum; Hpp, hippocampus; Ctx, cerebral cortex; Cbm, 

cerebellum.
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Figure 8. 
Biological pathways underlying region-specific microglial ageing. (a) Transcript-to-

transcript correlation network graph of transcripts differentially expressed according to age 

(p < 0.05 with FDR correction) and clustered using a Markov clustering algorithm. Nodes 

represent individual transcripts and edges the degree of correlation in expression pattern 

between them. Colours denote discrete clusters. Circled region includes clusters with greater 

expression in cerebellum and/or increasing with age; square region includes clusters with 

greater expression in forebrain regions and/or declining expression with age. (b) Cluster 
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position and mean expression profile of transcripts from cluster 2 indicating greater and/or 

earlier age-related changes. (c, d) Interferon pathway genes showing (c) earlier and/or (d) 

greater/selective increases in expression in cerebellar microglia compared to forebrain 

regions during ageing. Data show mean ± SD, n = 4 independent samples, each pooled from 

tissue from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs 4 month; #p < 0.05, ##p < 

0.01, ###p < 0.001 vs 12 month, two-way ANOVA with Bonferroni correction. (e) Heat maps 

showing microarray expression patterns of selected immunoreceptor family genes during 

ageing arranged according to activating (A) or inhibitory (I) classification. Row Z-score 

intensities represent the mean of four independent samples per region and age with red 

indicating higher expression and lower expression in blue. (f) Expression patterns of Cd300 
family genes show interaction between brain region and age for activating but not inhibitory 

members. Data show mean ± SD, n = 4 independent samples, each pooled from tissue from 

eight mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs 4 month; #p < 0.05, ##p < 0.01, ###p < 

0.001 vs 12 month, two-way ANOVA with Bonferroni correction. (g, h) Cluster position and 

mean expression profile of transcripts from cluster 14 indicating selective decline in 

expression during ageing in hippocampal microglia. (h) Expression profiles of selected 

genes from cluster 14. Data show mean ± SD, n = 4 independent samples, each pooled from 

tissue from eight mice. *p < 0.05, **p < 0.01, ***p < 0.001 vs 4 month; #p < 0.05, ##p < 

0.01, ###p < 0.001 vs 12 month, two-way ANOVA with Bonferroni correction. Str, striatum; 

Hpp, hippocampus; Ctx, cerebral cortex; Cbm, cerebellum. Specific p values for all 

statistical comparisons are presented in Supplementary Table 13.

Grabert et al. Page 36

Nat Neurosci. Author manuscript; available in PMC 2016 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Isolation of adult microglia from discrete brain regions
	The microglial transcriptome is regionally heterogeneous
	Three major patterns of region-dependent microglial gene co-expression
	Microglial immunophenotyppic and bioenergetic heterogeneity
	Microglial steady-state heterogeneity in immune alertness
	Transcriptional regulators of region-dependent co-expression networks
	Brain region disproportionately affects cell surface gene expression
	Inter-regional microglial heterogeneity mirrors macrophage tissue diversity
	Ageing of microglia occurs in a region-dependent manner
	Pathways underpinning region-specific microglial ageing profiles
	Regionally-variable depression of the “homeostatic” microglial signature during ageing

	Discussion
	Methods
	Accession codes
	Mice
	Microglial purification and mixed brain cell/homogenate preparation
	Flow cytometry
	Microglial culture and immunocytochemistry
	RNA extraction
	Transcriptional profiling using gene expression microarrays
	qPCR
	Bacterial phagocytosis and replication assay
	Computational analysis and bioinformatics
	(i) Analysis of regional heterogeneity in the young adult (4 months old)
	(ii) Effect of ageing and analysis of interactions between ageing and brain region

	Experimental design and statistical analysis

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

