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We characterize the universal far-from-equilibrium dynamics of the two-dimensional
quantum Heisenberg magnet isolated from its environment. For a broad range of initial
conditions, we find a long-lived universal prethermal regime characterized by self-similar
behavior of spin–spin correlations. We analytically derive the spatial–temporal scaling
exponents and find excellent agreement with numerics using phase space methods.
The scaling exponents are insensitive to the choice of initial conditions, which include
coherent and incoherent spin states with values of total magnetization and energy in a
wide range. Compared to previously studied self-similar dynamics in nonequilibrium
O(n) field theories and Bose gases, we find qualitatively distinct scaling behavior
originating from the presence of spin modes that remain gapless at long times and
are protected by the global SU(2) symmetry. Our predictions, which suggest a distinct
nonequilibrium universality class from Bose gases and O(n) theories, are readily testable
in ultracold atoms simulators of Heisenberg magnets.
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Extending the paradigm of universality to far-from-equilibrium regimes is a current
frontier in physics. A distinguishing feature of universal dynamics in complex systems
is the emergence of self-similar behavior. Close to equilibrium, diverse and seemingly
distinct models can be classified using symmetry and dimensionality into universality
classes sharing the same self-similar scaling (1). Far from equilibrium, however, the system
can break a symmetry concomitant with detailed balance (2, 3) and can therefore exhibit
self-similar dynamics beyond conventional equilibrium paradigms. Celebrated examples
include turbulence (4, 5), aging (6), phase-ordering kinetics (7–9), Kardar-Parisi-Zhang
(KPZ) scaling (10), reaction–diffusion models, and percolation (11).

Universality and self-similar relaxation typically arise in open systems with external
friction and noisy forces that drive the system to or across a critical point (1, 11–15).
Remarkably, recent theoretical works have shown that self-similar scaling can also occur
in isolated systems where the system acts as its own bath. Prominent examples of
dynamical scaling in isolated quantum many-body systems include prethermal critical
states (6, 16–27) and nonthermal fixed points in scalar and gauge theories (28–44).
Research into these phenomena is further fueled by a surge of experimental evidence for
universal dynamics in cold atoms (45–51) and dynamical phase transitions in trapped ions
(52) and cavity quantum electrodynamics (53).

Despite the ubiquity of spin models in condensed-matter and cold atom experiments,
a systematic classification of nonequilibrium universality in such systems is still lacking.
Indeed, nonequilibrium universality has mostly been explored analytically and numeri-
cally in models with U(n) and O(n) symmetries where self-similarity arises in the regime
of large bosonic occupations (33–35, 39, 54, 55) or for quantum quenches in the n →∞
limit (16, 18, 19, 22, 24). Recent experiments in cold atomic gases have started to
probe these nonequilibrium bosonic regimes (45–50) and have also paved the way to
explore other dynamical regimes in fully tunable spin systems (56–58), including tunable
symmetries and the spatial dimension. Relevant to this generation of experiments, here
we show that the two-dimensional isotropic Heisenberg model at finite energy exhibits
a nonthermal fixed point that is qualitatively distinct from previous instances of scaling,
and we characterize its universal properties analytically and numerically.

Central to our discussion is the role of dimensionality d = 2 and the presence of global
SU(2) symmetry. First, the absence of a finite-temperature symmetry-breaking phase
transition in d = 2 precludes scaling due to other well-studied phenomena like coarsening
or aging. Having two dimensions also bestows on magnetization fluctuations a quasi–
long-range character, which is an essential feature used to analytically compute the scaling
exponents. Second, the global SU(2) symmetry constrains the nature of excitations in the
system and their corresponding interactions. For instance, a recent work by one of us (59)
showed that, close to the fully polarized ferromagnetic ground state, the SU(2) symmetry
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constrains the interaction between magnons (the low-energy
bosonic-like quasiparticles) and gives rise to slow magnon
relaxation with anomalous scaling (59). Here we show that the
combination of symmetry and dimensionality alone, without
any further assumptions like proximity to the fully polarized
ground state or bosonic approximations, can lead to a universal
prethermal regime that is dominated by gapless spin modes and
is qualitatively distinct from previously studied U(n) and O(n)
theories in several important ways, as we discuss below.

More specifically, starting from an initial textured state with
a characteristic wavevector q, we show that the equal-time spin–
spin correlation functions exhibit self-similar scaling in a wide
intermediate-time window,

∑
a=x ,y,z

〈Ŝa
−k (t)Ŝ

a
k (t)〉= tαΦ(tβ |k |), [1]

for a broad range of initial conditions and arbitrary spin number S.
The spatial–temporal scaling exponents (α,β) are independent
of the details of the initial conditions, whereas the universal
function Φ is only sensitive to a combination of q and the global
magnetization of the initial state. In a loose sense, the initial length
scale of the spin texture ξ = 1/q defines a dynamical renormal-
ization group integration scale that governs the temporal scaling
of correlation functions (Fig. 1). Using this physical picture,
combined with analytical considerations based on symmetries and
the structure of the equations of motion, we derive analytically the
scaling exponents for a Gaussian and an interacting nonthermal
fixed point and find excellent agreement with numerics using
the truncated Wigner approximation (TWA) (60, 61). We also
observe numerically the dynamical cross-over from the Gaussian
to the interacting nonthermal fixed point. Remarkably, our results,
α= βd and β = 1/3, agree within numerical uncertainties with
the exponents found for magnon dynamics close to the ferromag-
netic state (59), therefore suggesting the existence of a single non-
thermal fixed point encompassing very broad energy and magneti-
zation sectors. This contrasts with bosonic theories where different
initial conditions can lead to different scaling regimes (30). The
present results, combined with those in a recent work by one of
us (62) that found the asymptotic behavior Φ(x )∼ x−νE (with
νE = 10/3) using wave turbulence theory, allow us to fully char-
acterize the universal spatial–temporal features of the nonthermal
fixed point in terms of the three universal numbers α, β, and νE .

A B

Fig. 1. Evolution of the spin–spin correlation function starting from an
initially uncorrelated spin spiral state along the x̂ direction for the two-
dimensional Heisenberg model. The stages of relaxation are I) instability trig-
gered by quantum fluctuations, II) depletion of the macroscopically occupied
state, and III) growth of magnetization fluctuations with a time-dependent cor-
relation length ξ (shown at two different times). A shows a single semiclassical
realization of spin Sx

i configurations in real space, and B shows the (quantum)
spin–spin correlation function in momentum space.

A key insight of the present work is that the intermediate-time
self-similar dynamics are governed by gapless spin excitations
whose gapless nature is protected by the global SU(2) symmetry.
We demonstrate this numerically by computing unequal-time
correlations (54, 55, 63–65), where we find that the effective gap,
or energy ωk required to excite a long-wavelength mode on top
of the prethermal state, remains zero at long times irrespective
of the initial conditions or model parameters, as long as SU(2)
is preserved. This circumstance is a hallmark of our model. In
contrast, the effective gap to excite quasiparticles in O(n) models
out of equilibrium is not protected and typically grows due
to the interplay between fluctuations and quartic interactions
(16, 18, 21, 24, 33, 54, 55). When SU(2) is reduced to U(1)
in our model, we find different scaling exponents, therefore
reinforcing the distinction between nonequilibrium universality
in the isotropic Heisenberg model and previous instances of
scaling in U(1) models.

In the spirit of the Halperin–Hohenberg classification (1),
the values of (α,β) that we find, combined with the presence
of an additional slow mode with quadratic dispersion, suggest
that the Heisenberg model belongs to a different nonequilibrium
universality class than Bose gases (33–36, 39, 54, 55), dissipative
O(n)models (66–70), and other nonintegrable high-dimensional
spin systems (59, 62, 71–78), as we discuss below. This is quite
surprising in light of the well-known similarities between the
Heisenberg model and O(3) scalar models at equilibrium. We
emphasize, however, that the scaling regime discussed in the
present work is intrinsically different from the predictions of
the Halperin–Hohenberg classification: While the latter describes
universal behavior close to thermodynamic equilibrium, here we
consider a dynamical regime where equilibrium properties, such
as the fluctuation–dissipation relation, are violated.

Microscopic Model

We consider the two-dimensional isotropic Heisenberg model on
a square L× L lattice with lattice constant � and total number of
sites N = L2:

Ĥ =−J
∑
〈i,j 〉

(
Ŝ x
i Ŝ

x
j + Ŝy

i Ŝ
y
j + Ŝ z

i Ŝ
z
j

)
, [2]

where 〈i , j 〉 denotes summation over nearest neighbors. Each site
has a spin S degree of freedom and periodic boundary conditions
are used in each spatial direction. This model has an SU(2) symme-
try with conserved global spin magnetization Sa ≡

∑
i〈Ŝa

i 〉 for
a ∈ {x , y , z}, where 〈·〉 denotes the quantum expectation value.

As an initial condition, we consider an uncorrelated pure prod-
uct state where the spins form a spiral in real space parameterized
by a wavevector q and angle θ,

〈Ŝ±
i (0)〉= S sin θe±iq ·r i , 〈Ŝ z

i (0)〉= S cos θ, [3]

with Ŝ±
i = Ŝ x

i ± i Ŝy
i and r i the position of site i. Other classes

of initial conditions are considered in SI Appendix. Eq. 3 de-
fines a characteristic timescale 1/τ∗ = JS 2 sin2 θ[2− cos(qx �)−
cos(qy�)] associated to the energy density of the initial state.

Spatial–Temporal Scaling via Phase Space
Methods

We begin by computing the real-time dynamics using TWA (79).
This method incorporates quantum fluctuations present in the
initial state by considering classical spins S i = (S x

i ,S
y
i ,S

z
i ) with
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quantum noise at t = 0 and evolving them with the classical
Landau–Lifshitz equations of motion. Defining S⊥

i as the trans-
verse magnetization to 〈Ŝ i(0)〉 for the initial condition 3, we as-
sume initial Gaussian fluctuations ofS⊥

i given by 〈S⊥
i 〉cl = 0 and

〈S⊥
i · S⊥

i 〉cl = S , where 〈·〉cl denotes the average over classical
trajectories.

The subsequent dynamics follow three relaxation stages as
illustrated in Fig. 1: I) Quantum fluctuations trigger a dynamical
instability that leads to II) a depletion of the macroscopically
occupied state q and is followed by III) a scaling regime in
which magnetization fluctuations grow with a time-dependent
correlation length ξ(t)∼ tβ , which exhibits self-similar evolution
following Eq. 1.

Fig. 2A shows the evolution of the spin–spin correlation func-
tion

∑
a〈Ŝa

−k (t)Ŝ
a
k (t)〉 during the three stages of relaxation for

a full spiral (θ = π/2).* Here, Ŝa
k = 1√

N

∑
i e

ik ·r i Ŝa
i denotes

the discrete Fourier transform with wavevector k . The decay of
the initial macroscopically occupied mode q (solid line) occurs
on a timescale of approximately 4τ∗ (72) and leads to a quick
redistribution of fluctuations into other k modes (stages I and II
in Fig. 1; dotted lines in Fig. 2A). At later times (stage III in Fig. 1;
blue dashed lines in Fig. 2A) the system exhibits self-similarity as

A

B C

Fig. 2. (A) Evolution of the spin–spin correlation function
∑

a〈Ŝa
−k Ŝa

k 〉
after a quench from an initial spin spiral. Shown with solid and dot-
ted lines are the initial distribution and the process of depletion of
the initial q mode (stages I and II), respectively. We show with col-
ored dashed lines the spin–spin correlation in the self-similar regime
(stage III). Dotted lines are plotted for t/τ∗ = 3, 4, 5, and dashed lines
are plotted for the range 15 < t/τ∗ < 40, with lighter colors for increas-
ing t. (B) Collapsed datapoints during stage III (Eq. 1) with scaling ex-
ponents α = 2

3 and β = 1
3 . (C) Fourier transform of the unequal-time

spin–spin correlation function Cxx(k , ω) ≡
∫

dt eiωt〈 1
2{Ŝx

−k (t0 + t), Ŝx
k (t0)}〉

for t0 = 20τ∗. Different values of t0 do not affect the qualitative features of
the plot. Shown with dotted lines is a quadratic fit of the mode dispersion.
Simulation parameters: L = 800, qx = 0.2, θ = π/2, S = 5.

*In TWA, correlation functions of classical variables correspond to quantum expectation
values of symmetrized operators (79). In particular, we have 〈 1

2 {Ŝa
−k (t), Ŝa

k (t′)}〉 ≈
〈Sa

−k (t)Sa
k (t′)〉cl , where {Â, B̂} ≡ ÂB̂ + B̂Â. Note that for equal times, 〈 1

2 {Ŝa
−k (t),

Ŝa
k (t)}〉 = 〈Ŝa

−k (t), Ŝa
k (t)〉.

demonstrated in Fig. 2B by the excellent collapse of the rescaled
curves with

α= 0.63± 0.05, β = 0.34± 0.03, [4]

which also agree with our analytical estimates below (the proce-
dure for fitting the exponents is discussed in SI Appendix).

The SU(2) symmetry of the Heisenberg model precludes the
opening of an effective gap during the dynamics. To find the
relevant excitations, we evaluate in Fig. 2C the unequal-time
spin–spin correlation functions in frequency space, Cxx (k ,ω)≡∫
dt eiωt〈 12{Ŝ x

−k (t0 + t), Ŝ x
k (t0)}〉, for intermediate times t0.*

This shows that the self-similar dynamics are governed by gapless
excitations at all timescales t0, even when the initial state is far
from the fully polarized ground state. The dispersion of this
mode is consistent with ω ∼ k2 (white dotted line in Fig. 2C )
for wavevectors k�� 0.08 below which finite-size effects become
sizable.

Derivation of the Scaling Exponents (α,β)

We now analytically estimate the scaling exponents assuming for
simplicity that the system has no net magnetization (nonzero
magnetization does not affect the argument in any essential way).
In this case, spin–spin fluctuations eventually become isotropic
both in real and in spin space. We find this to occur after a
short transient timescale ≈ 5τ∗ (Fig. 1 and SI Appendix) and,
therefore, the three components of the spin–spin correlation
function exhibit the same scaling. In addition, we find that the
mean-field components 〈Ŝa

k (t)〉 vanish on average at the onset of
stage III. As a result, we use the full and connected component of
〈Ŝa

−k (t)Ŝ
a
k (t)〉 indistinguishably.

The first relation between α and β is obtained from the local
constraint of spin operators Ŝ i · Ŝ i = S (S + 1). In momentum
space, this relation is written as

1

N

∑
k ,a

Ŝa
−k Ŝ

a
k = S (S + 1). [5]

Eq. 5 is an exact relation that is independent of the state of
the system. If the spin–spin correlation function satisfies Eq. 1,
then Eq. 5 implies that tα−dβ

∫
ddx
(2π)d

Φ(|x |) is a constant or,
equivalently, that α and β are related through

α= dβ. [6]

Interestingly, we note that the relation 6 also appears in other
scaling regimes of different microscopic nature. For instance,
Eq. 6 appears in coarsening dynamics when one assumes that
correlations are governed by a single length scale given by the
typical size of the ordered regions (equation 7 in ref. 7). It also
appears in the universal dynamics of a Bose gas (33), where Eq. 6 is
equivalent to boson number conservation in the self-similar range.
Here, instead, Eq. 6 is a consequence of the constraint on spin
length.

The second relation between α and β is obtained from
dynamics. The time dependence of the spin–spin correlation
function 〈Ŝa

−k Ŝ
a
k 〉 can be straightforwardly obtained from

the microscopic equations of motion of the spin operators,
∂t Ŝ

a
i =

∑
j ,b,c εabc Ŝ

b
i Ŝ

c
j , which yields

∂t〈Ŝa
−k Ŝ

a
k 〉= 2

∑
p,b,c

(γ0 − γp)Re
[
εabc〈Ŝa

−k Ŝ
b
k−p Ŝ

c
p〉
]
, [7]
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where γp =
∑

� e
ip·� (� are unit cell vectors) (details in

SI Appendix). The central assumption in our derivation is that
a single length scale ξ governs the scaling of two- and three-
point correlation functions. The validity of such a stringent
assumption can be justified from the long-range character of
spin modes and the absence of other characteristic length scales
in d = 2 (e.g., a nonzero effective gap or localized defects). This
translates to modes being macroscopically and democratically
occupied within a region k � 1/ξ, contrary to a conventional
condensate with long-range order where a single mode k = 0
is macroscopically occupied. Such quasi–long-range character
in a low-dimensional system is often referred to as a quasi-
condensate (80). In addition, the rate of change of ξ is assumed
to be much slower than the microscopic timescale τ∗ defined
above, such that fast microscopic fluctuations can be integrated
out. As a result, dimensional analysis of Eq. 1 suggests that
Re

[
εabc〈Ŝa

−k Ŝ
b
k−p Ŝ

c
p〉
]
∼ ξ3α/2βΨ(kξ,pξ), with ξ ∼ tβ and

Ψ a scaling function. Using this scaling form in the right-
hand side of Eq. 7 in the long-wavelength limit [i.e., taking
γ0 − γq ≈ (q�)2] yields ξ3α/2β−d−2Ψ′(kξ), with Ψ′(x ) =∫

ddy
(2π)d

y2Ψ(x ,y). In addition, the left-hand side of Eq. 7 scales
as ξα/β−1/β . Equating the scaling form on both sides of Eq. 7
results in

2(d + 2)β = α+ 2. [8]

Combining Eqs. 8 and 6 in d = 2 yields α= 2
3 and β = 1

3 ,
consistent with the numerical results in Eq. 4 and with the scaling
found numerically within kinetic theory close to the ferromag-
netic ground state with θ ≈ 0 (59) (we note that kinetic theory
failed to analytically yield the correct exponents from scaling
arguments alone). We emphasize again that Eq. 8 is valid only
in d = 2 as it relies on spin modes having a long-range character
(in d = 3, for example, the initial spin texture will collapse into lo-
calized skyrmions giving rise to qualitatively different prethermal
dynamics).

The Universal Scaling Function

So far, we considered the dynamics of a single dimensionless
parameter ξ/� that governs the self-similar scaling. In addition,
we empirically find that the scaling function Φ in Eq. 1 is sensitive
to the magnetization sector of the state through the dimensionless
ratio

Θ=
tan θ

q�
, [9]

as shown in Fig. 3. If θ = π/2, then Θ→∞ and the scaling
function becomes independent of q. For other values of θ and q,
we find an excellent collapse of the data points.

We note that the dimensionless parameter Θ essentially quan-
tifies the ratio between magnetization fluctuations and the global
magnetization, as we discuss next. The average magnetization is
given by S z/N = S cos θ. The average amplitude of magnetiza-
tion fluctuations at the onset of stage III is obtained from the
identity (5) after removing the disconnected component associ-
ated to the global magnetization, which scales as S 2 cos2 θ, and
assuming that fluctuations are equally distributed in a phase space
region of size |k |� q . For large S, this results in

∑
a〈Sa

−kS
a
k 〉c ∼

(S sin θq�)2, where “c” stands for connected. The ratio between
these two quantities gives the empirical Eq. 9.

Dynamical Crossovers

The self-similar scaling regime described above cannot be cap-
tured by an effective Gaussian description. This can be readily
checked using a self-consistent Holstein–Primakoff approxima-
tion in the low spin-wave density expansion (73, 81), which
would instead yield α= 1 and β = 1/2 for the d = 2 Heisenberg
model (SI Appendix). Interestingly, these Gaussian exponents can
be observed at early times before crossing over into the nonthermal
fixed point. An instance of this dynamical cross-over, which is
reminiscent of the phenomenon of prescaling (82, 83), is reported
in SI Appendix. Therefore, two dynamical cross-overs occur in the
Heisenberg model: The first one accompanies dynamics from a
Gaussian to a non-Gaussian fixed point, while the second one
dictates the approach to the thermal state, which is the fate of
dynamics for generic high-dimensional nonintegrable systems.

Discussion

The self-similar exponents and scaling functions obtained here are
distinct from those found in previous works on nonequilibrium
dynamics in classical and quantum O(n) field theories and U(n)
bosonic models (33–36, 54, 55). Compared to these previous
works, the central difference of our results is that the dynamics of
the Heisenberg model are dominated by gapless spin excitations
at all times. This is in sharp contrast to typical nonthermal
fixed points in bosonic theories, where an effective gap has been
observed to be dynamically generated by fluctuations (33, 54,
55). This effective gap has been shown to lead to a modified
(nonrelativistic) effective theory at low momenta, which is char-
acterized by different scaling exponents from those of the gapless
theory. Our results also differ from scaling dynamics of O(n)
theories quenched to (or across) a critical point (16, 18, 21, 24),

A B C D

Fig. 3. Self-similar scaling of the spin–spin correlation functions shown for initial conditions with the same value of Θ = tan θ/(q
). In B–D, different symbols
denote initial conditions with the different values of (q, θ) shown in A. When collapsing the datapoints, we allow for a finite time shift t0 to account for the
initial-condition–dependent dephasing time. Shown with dash-dotted lines is the universal power-law scaling ∼k−10/3 associated to spin turbulence (62).
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where a dynamically generated gap only vanishes asymptotically
in time: In these works, self-similarity occurs only if parameters
and initial conditions are fine-tuned to guarantee a vanishing
late-time effective gap. Compared to these bosonic theories, the
interaction vertex of the Heisenberg model is “soft” after a spin
wave expansion (73, 81); i.e., it contains spatial gradients that are
absent in O(n) models (SI Appendix). This already sets a difference
at the level of canonical power counting and suggests that the two
models cannot belong to the same universality class (SI Appendix).

To further demonstrate the importance of the SU(2) symmetry,
we show in SI Appendix that, by adding anisotropic exchange
Ĥ = δJz

∑
〈i,j 〉 Ŝ

z
i Ŝ

z
j to Eq. 2, the dynamical exponents flow

to a different nonthermal fixed point. In particular, for the easy-
plane case (δJz > 0) wherein the global symmetry is instead U(1),
we obtain the same scaling exponents α= 1, β = 1/2 as those
observed in bosonic O(n) and U(n) theories (33–35, 39).

Conclusions

Our results on self-similar relaxation in the Heisenberg model
extend to spin systems the paradigm of scaling in the proximity of
nonthermal fixed points, which were so far thoroughly studied
only for interacting bosonic and gauge theories (28–44). Cold
atoms experiments have so far explored far-from-equilibrium
transport and relaxation of one-dimensional quantum Heisenberg
models (56, 57). We believe that our results provide strong
motivation to extend quantum simulators of spin models to
higher dimensionality, where integrability is less prominent in
constraining quantum dynamics. Another natural next step to-
ward implementations would consist in considering long-range
spin interactions ∝ 1/rζ , with the perspective to investigate the
dependence of dynamical scaling exponents with ζ (see ref. 84 for
an equilibrium counterpart).

Our work opens up at least two interesting research avenues to
explore. On the one hand, we have found scaling exponents that
are remarkably robust to initial conditions belonging to different
energy and magnetization sectors. It would be interesting to inves-
tigate whether this applies to other spin models with, e.g., SU(n)
symmetric interactions, which can also be studied in cold atom
experiments (85). On the other hand, our work has highlighted
the essential role played by the symmetry-protected gaplessness of
spin excitations. This poses the question of whether the scaling
exponents observed in this work can also be reproduced in O(n)
models under conditions that might have been overlooked so far
or whether the Heisenberg spin model far from equilibrium is
fundamentally different from O(n) models. The latter would clash
with equilibrium common wisdom and reinforce the intuition
that nonequilibrium scaling is governed by intrinsically different
mechanisms than equilibrium universality.

Data Availability. Data and codes used in this study have been deposited
in GitHub (https://github.com/jrodrigueznieva/PNAS prethermal-heisenberg-
model) (86). All other data are included in this article and/or supporting
information.
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55. K. Boguslavski, A. Piñeiro Orioli, Unraveling the nature of universal dynamics in O(N) theories. Phys.
Rev. D 101, 091902 (2020).

56. S. Hild et al., Far-from-equilibrium spin transport in Heisenberg quantum magnets. Phys. Rev. Lett.
113, 147205 (2014).

57. P. N. Jepsen et al., Spin transport in a tunable Heisenberg model realized with ultracold atoms. Nature
588, 403–407 (2020).

58. P. N. Jepsen et al., Transverse spin dynamics in the anisotropic Heisenberg model realized with
ultracold atoms. Phys. Rev. X 11, 041054 (2021).

59. S. Bhattacharyya, J. F. Rodriguez-Nieva, E. Demler, Universal prethermal dynamics in Heisenberg
ferromagnets. Phys. Rev. Lett. 125, 230601 (2020).

60. S. M. Davidson, A. Polkovnikov, SU(3) semiclassical representation of quantum dynamics of
interacting spins. Phys. Rev. Lett. 114, 045701 (2015).

61. J. Schachenmayer, A. Pikovski, A. M. Rey, Many-body quantum spin dynamics with Monte Carlo
trajectories on a discrete phase space. Phys. Rev. X 5, 011022 (2015).

62. J. F. Rodriguez-Nieva, Turbulent relaxation after a quench in the Heisenberg model. Phys. Rev. B 104,
L060302 (2021).

63. K. Boguslavski, A. Kurkela, T. Lappi, J. Peuron, Spectral function for overoccupied gluodynamics from
real-time lattice simulations. Phys. Rev. D 98, 014006 (2018).
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