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Burkitt lymphoma (BL) is the first human cancer to be asso-

ciated with the Epstein–Barr virus (EBV), the first tumour to

exhibit a chromosomal translocation activating an oncogene

[MYC proto-oncogene, basic helix-loop-helix transcription

factor (MYC)], and the first lymphoma to be associated with

human immunodeficiency virus (HIV) infection. The World

Health Organization (WHO)1 classification describes three

clinical variants of BL: endemic (eBL), sporadic (sBL) and

immunodeficiency-related. These variants are similar in mor-

phology, immunophenotype and genetics. While sBL occurs

outside of Africa and is rarely associated with EBV infection,

eBL arises mainly in Africa and is associated with malaria

endemicity and EBV infection. Epidemiological studies have

shown that malaria and EBV combined do not fully explain

the distribution of eBL in high-risk regions.2 Malaria and

EBV are, in fact, ubiquitous within the lymphoma belt of

Africa, suggesting that other aetiological agents may be

involved.3 However, other epidemiological factors and/or

possible genetic predispositions still have an unclear role in

the genesis of eBL.

Yet, sBL may also occur in Africa, accounting for the rare

EBV-negative cases of BL reported from that continent. Den-

nis Wright, one of the first pathologists to work on BL, com-

menting on the publication of the 1999 volume of The

World Health Organization classification of neoplastic diseases

of the hematopoietic and lymphoid tissues, raised this question

in his letter foreseeing that EBV-positive BL is different from

EBV-negative BL in cellular biology and pathogenetic mecha-

nism.4 As no scientific proof was available at the time, he

was likely hesitant to assess this hypothesis. To date, there is

increasing evidence from different studies that EBV-positive

BL may have a separate pathogenetic mechanism from EBV-

negative BL; therefore, we have crossed this point, mainly

thanks to the work by Abate et al.,5 Grande et al.6 and also

due to more accumulating data.7–12

In the paper of Abate et al.,5 the eBL mutational landscape

was compared with published data on sBL. An almost

mutual exclusivity could be demonstrated between EBV pres-

ence and mutations in transcription factor 3 (TCF3)/in-

hibitor of DNA binding 3, HLH protein (ID3), both well-

known driver genes in sBL.13,14 A hierarchical clustering of

both eBL and sBL cases on TCF3 target genes, previously

reported in the article by Schmitz et al.,15 was performed to

explore this hypothesis and revealed that the samples could

be classified into EBV-positive and EBV-negative BL inde-

pendently on the specific clinical subtype with an accuracy

rate of 96%.

The fact that EBV-positive BL cases owned fewer driver

mutations was furthermore extensively confirmed in the

paper by Grande et al.6 Namely, an integrative analysis of

whole-genome and transcriptome data proved a striking gen-

ome-wide increase in aberrant somatic hypermutation in

EBV-positive tumours, thereby supporting a link between

EBV and activation-induced cytidine deaminase (AICDA)

activity. On the other hand, EBV-positive lymphomas had

significantly fewer driver mutations, especially among genes

with roles in apoptosis. These results suggested that tumour

EBV status defines a specific BL phenotype with molecular

properties and pathogenic mechanisms that do not account

for the geographic origin.

Therefore, from both papers comes forth a dual mecha-

nism of transformation in BL: mutations versus virus driven.

Thus, EBV positivity should be the defining feature of clini-

cal subtypes of BL and not the epidemiology.

In particular, most EBV-negative BLs (˜70%) have an

impaired TCF3/ID3 inhibitory heterodimerisation caused by

either gain-of-function mutations affecting the TCF3 gene or

mutations disrupting the TCF3-negative regulator ID3. This

pathological mechanism increases the expression of the B-cell

receptor (BCR) genes and activates a tonic form antigen-inde-

pendent BCR signalling. On the contrary, BCR analysis of
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EBV-positive BL revealed an intense antigenic pressure poten-

tially related to prolonged microenvironment interactions. The

chronic stimulation of BCR by specific pathogens could be

necessary to promote the clonal expansion of B cells express-

ing distinctive BCRs and the growth of the neoplastic clone.16

However, the combination of tonic and extrinsic BCR sig-

nalling activation cannot be excluded in a subset of BL.16

In this issue of the British Journal of Haematology, a large

age-overarching cohort of sBL (n = 162) was analysed by

immunohistochemistry, translocations of MYC, B-cell

leukaemia/lymphoma 2 (BCL2), BCL6, and by targeted

sequencing.17 The Authors illustrate an age-associated inter-

tumoral molecular heterogeneity in this disease. Mutations

affecting ID3, TCF3, and cyclin D3 (CCND3) were prevalent

in paediatric BL, and expression of sex determining region

Y-box transcription factor 11 (SOX11) decreased with patient

age at diagnosis. In contrast, EBV was mainly detected in

adult patients. Regardless of age, EBV-positive sBL showed

significantly less frequent mutations in ID3/TCF3/CCND3

but more recurrent G protein subunit alpha 13 (GNA13) and

forkhead box O1 (FOXO1) mutations when compared to

EBV-negative tumours.17 These findings suggest that an

EBV-positive subgroup of lymphomas increases with patient

age, demonstrating distinct pathogenic features reminiscent

of EBV-positive eBL, providing further evidence of the differ-

ences between EBV-positive and EBV-negative BL in cases

out of Africa.17

Malaria and EBV are ubiquitous pathogens within the

lymphoma belt of Africa. Plasmodium falciparum can repeat-

edly infect African children and may be responsible of

chronic antigenic stimulation and consequent proliferation of

latently EBV-infected B memory cells that may acquire MYC

translocation before or when they re-enter the germinal cen-

tre.18–23

Existing data provide information on how these two

pathogens interact to provoke the disease, supporting the

emerging concepts of polymicrobial disease pathogenesis.2,24–

26 Out of Africa, sBL is more common in adults and elderly

patients where other infectious agents may be involved,27

such as HIV and other pathogens, possibly related to

immune senescence. Certainly, the epidemiology for BL is

different among various geographic areas; more specifically

in Africa and developing countries BL frequently affects chil-

dren and is almost always EBV-related, while in western

countries it is more prevalent in adults and also widely

linked with EBV in the elderly.17,28 Consequently, based on

increasing evidence, the epidemiological differences in BL

reflect distinct pathogenesis of the disease,29 and this well-

known aspect could be valid even for other lymphoprolifera-

tive processes, like Hodgkin lymphoma, which have the same

visible epidemiological diversities.30–34

However, EBV can be responsible for more cases than

those we currently acknowledge. According to the ‘hit and

run’ theory, EBV plays an initial oncogenic role, but the viral

genome can be lost subsequently due to the neoplastic cell’s

acquisition of stable (epi)genetic changes. This mechanism

has been proposed based on anecdotal case reports and cell

lines. It has been recently re-proposed by a study that identi-

fied ‘traces’ of EBV infection in EBV-negative BL in primary

tumours and several lymphoma cell lines, where the clonal

relation to the neoplastic clone could be demonstrated by

higher-sensitivity methods (dual scope).35,36

To the present day, BL, the ‘Rosetta Stone’ of cancer, may

still hide information that needs to be revealed.
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