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Summary. This is the continuation of our studies on the prediction of

mutation engineered by randomness in proteins from influenza A virus. In

our previous studies, we have demonstrated that randomness plays a role

in engineering mutations because the measures of randomness in protein

are different before and after mutations. Thus we built a cause-mutation

relationship to count the mutation engineered by randomness, and con-

ducted several concept-initiated studies to predict the mutations in proteins

from influenza A virus, which demonstrated the possibility of prediction of

mutations along this line of thought. On the other hand, these concept-

initiated studies indicate the directions forwards the enhancement of

predictability, of which we need to use the neural network instead of

logistic regression that was used in those concept-initiated studies to en-

hance the predictability. In this proof-of-concept study, we attempt to ap-

ply the neural network to modeling the cause-mutation relationship to

predict the possible mutation positions, and then we use the amino acid

mutating probability to predict the would-be-mutated amino acids at pre-

dicted positions. The results confirm the possibility of use of internal

cause-mutation relationship with neural network model to predict the

mutation positions and use of amino acid mutating probability to predict

the would-be-mutated amino acids.
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Introduction

The unpredictable mutations in the proteins from influen-

za A virus not only threaten the world with possible pan-

demics=epidemics, but also raise the issue of how to

accurately, precisely and reliably predict the mutations.

Generally speaking, the simplest and best way for

prediction of mutations is to find the cause for the muta-

tion. Then, we could build either a qualitative or a quan-

titative cause-mutation relationship, by which we could

predict the mutations. Nevertheless, the current research

on prediction of mutations is going along this line of

thought.

However, many causes that historically led mutations

might never leave any clue due to the great changes in

environments. Therefore we would probably have a de-

tailed record of mutations, but a poor record of mutation

causes. Moreover, the current version of proteins from

influenza A virus might no longer be subject to the causes,

which led the mutations in the past, because of the evolu-

tion of influenza A virus. The third difficulty is that we

cannot determine the historical micro-environment, under

which the mutations occurred.

However, randomness should play a role in engineering

mutations not only because pure chance is now considered

to lie at the very heart of nature (Everitt, 1999) and the

occurrence of mutation is generally considered a random

event (Fitch et al., 1997), but more importantly because

our previous studies show that the randomness is different

before and after mutation (Wu and Yan, 2001b, d, e,

2002a, b, 2003a–h, 2004a–c, f, 2005a, c, e) when using

our methods to quantify the randomness within a protein.

Actually, randomness simply means that an amino acid

with a bigger mutation probability would more easily mu-

tate than an amino acid with a smaller mutation probability.

Hence, we can establish a cause-mutation relationship

because we have quantified randomness for a partial cause

and we have the occurrence or non-occurrence of muta-

tions by comparing parent and daughter proteins along a

branch of evolution tree determined by phylogenetics. In

addition, we can classify the occurrence or non-occur-

rence of mutations as unity and zero. This is very sugges-

tive because such a cause-mutation relationship can be

switched to the problem of classification, which can be

solved using either the logistic regression in statistics



(Draper and Smith, 1981; Hosmer and Lemeshow, 2000)

or the neural network model (Demuth and Beale, 2001).

Still, we need to solve the problem of prediction of

would-be-mutated amino acids, say, which type of amino

acid will an amino acid mutate to? This is because our

cause-mutation relationship at this moment deals with

binary events, that is, the occurrence or non-occurrence

of mutations. Here we face a more complicated problem,

because there are at least 20 types of amino acids needed

to take into account, which would be too difficult to use

the classification method and other methods.

All these imply that we need at least two steps for

accurate, precise and reliable prediction of mutations,

(i) the prediction of mutation positions and (ii) the pre-

diction of would-be-mutated amino acids at predicted

positions.

Along this two-step frame, we have recently applied the

logistic regression to predicting the mutation positions

(Wu and Yan, 2006e, f, 2007a–c) and then applied the

amino acid mutating probability (Wu and Yan, 2005g,

2006a, 2007a–d) to predicting the would-be-mutated ami-

no acids at predicted positions in proteins from influenza

A virus.

The results show our logic very convincing. This leads

us to consider using a more powerful classification meth-

od, neural network, to enhance the predictability regard-

ing the prediction of mutation positions to further confirm

our logic on the cause-mutation relationship before large-

scale and full detailed studies.

In this proof-of-concept study, we attempt to use the

neural network to predict the mutation positions and then

apply the amino acid mutating probability to predict the

would-be-mutated amino acids at predicted positions in

5HN1 hemagglutinin from influenza A virus, because the

hemagglutinin is the major surface antigen of influenza

virus, against which neutralizing antibodies are elicit-

ed during virus infection and vaccination (Wiley and

Skehel, 1987). The hemagglutinins include many sub-

types, of which the H5N1 hemagglutinin is the one cur-

rently threatening humans.

Materials and methods

The amino acid sequences and corresponding RNA sequences of 339

H5N1 hemagglutinins from influenza A virus from 1996 to 2005 are

obtained from the influenza virus resources (Influenza virus resources,

2006). As our approach is not familiar with most researchers yet, we will

describe the methods in more detail.

Prediction model

As the cause-mutation relationship couples three types of quantified ran-

domness developed by us with the occurrence and non-occurrence of

mutation, we would expect the model to have three inputs and one output.

After elaborations, we finally use the feedforward backpropagation neural

network as prediction model (MathWorks Inc., 2001), whose network

structure is 3-6-1 (Fig. 1), i.e. the first layer contains three neurons

corresponding to three inputs (or three elements of input in neural network

terminology), the second layer contains six neurons, and the last layer

contains one neuron corresponding to the target (output). The transfer

functions for three layers are tan-sigmoid, tan-sigmoid and log-sigmoid,

respectively. The training algorithm is the resilient backpropagation, which

is the fastest algorithm on pattern recognition (Demuth and Beale, 2001).

Fig. 1. The 3-6-1 feedforward backpropa-

gation neural network. Each circle presents

a neuron. IWf1g is the input weights,

LWf2, 1g is the layer weights to the second

layer from the first layer, and LWf3, 2g is

the layer weights to the third layer from the

second layer. bf1g, bf2g and bf3g are the

biases related to each neuron at the first,

second, and third layers
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Input I – amino acid pair predictability

This quantification is calculated according to permutation, and we have

used it to study various proteins (Wu, 1999, 2000a–g; Wu and Yan,

2000a–c, 2001a–c, 2002a–d, 2003a–h, 2004a–e, 2005a–d, f, 2006b,

d–f, 2007a–c). In general, this amino acid pair predictability is very

sensitive to the change in neighboring amino acids, and answers why a

type of amino acid is adjacent to a certain type of amino acid but not to the

others. Besides, the reason for using amino acid pair is that a good

signature pattern of a protein must be as short as possible, but the con-

served sequence is not longer than four or five residues (Prosite, 2002).

The simplest calculations are as follows. According to the permutation,

for example, there are 45 serines (S) and 48 leucines (L) in the 2004

chicken H5N1 hemagglutinin (accession number AY653200), the frequen-

cy of amino acid pair ‘‘SL’’ is 4 (45=568� 48=567� 567¼ 3.803), that is,

the ‘‘SL’’ would appear four times in this hemagglutinin, which is also the

reference for comparison. Actually we do find 4 ‘‘SL’’, so the amino acid

pair ‘‘SL’’ is predictable and the difference between its actual and pre-

dicted frequencies is 0. Again, there are 30 alanines (A) and 39 isoleucines

(I) in AY653200 hemagglutinin, and the frequency of random presence of

‘‘AI’’ is 2 (30=568� 39=567� 567¼ 2.060), i.e. there would be two ‘‘AI’’

in the hemagglutinin. But the ‘‘AI’’ appears seven times in reality, so the

difference between its actual and predicted frequencies is 5. After such

calculations, each amino acid pair has its difference between actual and

predicted frequencies. As a point mutation is relevant to a single amino

acid, which connects with two neighboring amino acids except for the

terminal one and constructs two amino acid pairs, we use the sum of

difference between actual and predicted frequencies in two neighboring

amino acid pairs to each amino acid.

Input II – amino acid distribution probability

This quantification is calculated according to the occupancy of subpopula-

tions and partitions (Feller, 1968), and we have used it to study various

proteins (Wu and Yan, 2000d, 2001d, e, 2002c–f, 2004f, 2005d, e, 2006c–

f, 2007a–c; Gao et al., 2006). In general, this quantification is mainly

subject to any change in the position of amino acid, and answers why the

majority of amino acids cluster in some regions rather than homogenously

distribute along the primary structure of a protein.

The quantification is developed along such line of thought, for example,

there are two methionines (M) among 142 amino acids in human hemo-

globin a-chain (Wu and Yan, 2000d). With regard to their random distri-

bution, our intuition may suggest that there would be one M in the first half

of the chain and another M in the second half, which is true in real-life

case. In fact, there are only three possible distributions of Ms in human

hemoglobin a-chain, i.e. (i) both Ms are in the first half, (ii) one M is in

each half and (iii) both Ms are in the second half. If we do not distinguish

either first half or second half but are simply interested both Ms are in

both halves or in any half, we will have the probability of 1=2 for each

distribution.

If we are interested in the distribution probability of three amino acids

in a protein, we naturally imagine to group the protein into three parts, and

our intuition may suggest that each part contains an amino acid. If we do

not distinguish the first, second and third part, actually there are total three

types of distributions, i.e. (i) three amino acids are in each part, (ii) two

amino acids are in a part and an amino acid in another part, and (iii) three

amino acids are in a part. However, the distribution probabilities are

different for these three types of distributions, say, 0.2222 for (i), 0.6667

for (ii) and 0.1111 for (iii). Clearly the protein can only adopt one type of

distribution for these three amino acids, which is the actual distribution

probability, and we may guess that the distribution (ii) is more likely to

happen because of its biggest probability, which is the predicted distribu-

tion probability.

For four amino acids, we will have five distribution probabilities, i.e. (i)

each part contains an amino acid, (ii) a part contains two amino acids and

two parts contain an amino acid each, (iii) two parts contain two amino

acids each, (iv) a part contains an amino acid and a part contains three

amino acids, and (v) a part contains four amino acids. Their distribution

probabilities are 0.0938 for (i), 0.5625 for (ii), 0.1406 for (iii), 0.1875 for

(iv) and 0.0156 for (v). Further, we have seven distributions for five amino

acids, we have 11 distributions for six amino acids, we have 15 distribu-

tions for seven amino acids, and so on.

So we view the positions of each kind of amino acids in a protein as

a certain distribution, whose probability can be calculated according to the

equation of r!=(q0!� q1!� . . . � qn!)� r!=(r1!� r2!� . . . � rn!)� n�r

(Feller, 1968), where r is the number of amino acids, n is the number of

parts and is equal to r in our case, rn is the number of amino acids in the

n-th part, qn is the number of parts with the same number of amino acids,

and ! is the factorial function. In fact, this distribution probability can

be referred to the statistical mechanics, which classifies the distribution

of elementary particles in energy states according to three assumptions

of whether distinguishing each particle and energy state, i.e. Maxwell-

Boltzmann, Fermi-Dirac and Bose-Einstein assumptions (Feller, 1968). In

plain words, this distribution probability is the probability if we would

receive seven letters in a week but the letters distribute randomly.

With respect to hemagglutinins in this study, for instance, there are 20

glutamines (Q) in AY653200 hemagglutinin. Their predicted and actual

distribution probabilities are 0.0965 and 0.0128, so the ratio of predicted

versus actual distribution probabilities is 7.539, whose natural logarithm is

2.0201, which can be assigned to each Q in the sequence.

Input III – future composition of amino acids

This quantification is calculated according to the translation probability

between RNA codons and translated amino acids (Wu and Yan, 2005g,

2006a, 2007e), and we have used it to study various proteins (Wu and Yan,

2005g, 2006a, e, f, 2007a–e). In general, this quantification is mainly

subject to the future mutation trend, and answers what probability an

amino acid mutates to another type of amino acid.

This quantification is developed along such line of thought, for example,

we are interested in the amino acid threonine and its mutated amino acids

with their mutating probability. As the RNA codons have the unambiguous

relationship with their translated amino acids, we can extend this question

to RNA level, that is, a point mutation in RNA codon leads to the mutation

at amino acid level.

Threonine is related to RNA codons ACU, ACC, ACA and ACG, the

mutation at the first position of ACU can lead ACU to mutate to CCU,

GCU and UCU, which correspond to threonine to mutate to proline,

alanine, and serine at amino acid level. Similarly, the mutation at second

position of ACU can lead threonine to mutate to isoleucine, asparagine,

and serine, the mutation at the third position of ACU can lead threonine to

mutate to threonine, threonine, and threonine. Taken four RNA codons

together, threonine would mutate in such a way, say, 4 alaninesþ 2

argininesþ 2 asparaginesþ 3 isoleucinesþ 2 lysinesþmethionineþ 4

prolinesþ 6 serinesþ 12 threonines. Thus we have the threonine mutating

probability to these amino acids, say, 4=36þ 2=36þ 2=36þ 3=36þ
2=36þ 1=36þ 4=36þ 6=36þ 12=36. For all 20 types of amino acids,

we have the amino acid mutating probability in Table 1.

For the calculation of future composition of amino acids, we have the

following steps: (i) we would expect that ‘‘A’’ has the 12=36 chance of

mutating to ‘‘A’’ (line 2 in Table 1), ‘‘R’’ and ‘‘N’’ have no chance of

mutating to ‘‘A’’ (lines 3 and 4 in Table 1), ‘‘D’’ has 2=18 chance (line 5 in

Table 1), ‘‘C’’ has no chance (line 6 in Table 1), ‘‘E’’ has 2=18 chance, and

so on. (ii) Meanwhile, we know that there are 30 ‘‘A’’, 24 ‘‘R’’, 47 ‘‘N’’,

26 ‘‘D’’, 15 ‘‘C’’, 40 ‘‘E’’, and so on in AY653200 hemagglutinin. (iii) So

we can estimate how many ‘‘A’’ can be mutated using 30� 12=36þ
24� 0þ 47� 0þ 26� 2=18þ 15� 0þ 40� 2=18þ , and so on. In total,

this is the future composition of amino acid ‘‘A’’. (iv) After calculating all

20 kinds of amino acids, ‘‘A’’ contributes 5.9077% of future composition

in the hemagglutinin. (v) On the other hand, ‘‘A’’ contributes 5.2817%
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(30=568) of current composition in AY653200 hemagglutinin. (vi) Thus,

we have the ratio of future versus current compositions, for example, the

ratio of ‘‘A’’ is 1.1185 (5.9077%=5.2817%), which can be assigned to each

‘‘A’’ in AY653200 hemagglutinin.

Target – occurrence or non-occurrence of mutation

The phylogenetics analyzes the evolutionary process of hemagglutinins in

question. Along same branch of the evolutionary tree, we can compare the

parent and daughter hemagglutinins, the difference between them in-

dicates the occurrence of mutation, which we mark as unity, whereas no

difference between them indicates the non-occurrence of mutation, which

we mark as zero.

Method for prediction of would-be-mutated amino acids

at predicted positions

Currently, we have no explicit idea to build a cause-mutation relationship

between an original amino acid and its mutated amino acids. However, we

can make the estimation according to the amino acid mutating probability

based on the translation probability between RNA codons and translated

amino acids (Wu and Yan, 2005g, 2006a, 2007e) in Table 1. For instance,

if we predict that the possible mutation position is 196, which houses

amino acid ‘‘H’’, from Table 1 we know that ‘‘H’’ has the largest chance of

mutating to ‘‘Q’’, and the equal chance of mutating to other seven amino

acids. In this manner, we make the prediction.

Statistics

The MatLab software (MathWorks Inc., 2001) is used for the model

development and prediction. The outlier (3SD) is detected according to

Healy (1979). The calculations of prediction sensitivity, specificity and

total correct rate are according to the published method (Systat Software

Inc., 2004).

Results

Perhaps, we could stratify the model development into

following steps, establishing the model, finding model

parameters and determining if the model can explain or

capture the data.

With respect to neural network, the model parameters

are the weights and biases, which need to be determined

Table 1. Amino-acid mutating probability

Amino acid Mutated amino acid with its translation probability

A 12=36Aþ 2=36Dþ 2=36Eþ 4=36Gþ 4=36Pþ 4=36Sþ 4=36Tþ 4=36V

R 18=54Rþ 2=54Cþ 2=54Qþ 6=54Gþ 2=54Hþ 1=54Iþ 4=54Lþ 2=54Kþ 1=54Mþ 4=54Pþ 6=54Sþ
2=54Tþ 2=54Wþ 2=54STOP

N 2=18Nþ 2=18Dþ 2=18Hþ 2=18Iþ 4=18Kþ 2=18Sþ 2=18Tþ 2=18Y

D 2=18Aþ 2=18Nþ 2=18Dþ 4=18Eþ 2=18Gþ 2=18Hþ 2=18Yþ 2=18V

C 2=18Rþ 2=18Cþ 2=18Gþ 2=18Fþ 4=18Sþ 2=18Wþ 2=18Yþ 2=18STOP

E 2=18Aþ 4=18Dþ 2=18Eþ 2=18Qþ 2=18Gþ 2=18Kþ 2=18Vþ 2=18STOP

Q 2=18Rþ 2=18Eþ 2=18Qþ 4=18Hþ 2=18Lþ 2=18Kþ 2=18Pþ 2=18STOP

G 4=36Aþ 6=36Rþ 2=36Dþ 2=36Cþ 2=36Eþ 12=36Gþ 2=36Sþ 1=36Wþ 4=36Vþ 1=36STOP

H 2=18Rþ 2=18Nþ 2=18Dþ 4=18Qþ 2=18Hþ 2=18Lþ 2=18Pþ 2=18Y

I 1=27Rþ 2=27Nþ 6=27Iþ 4=27Lþ 1=27Kþ 3=27Mþ 2=27Fþ 2=27Sþ 3=27Tþ 3=27V

L 4=54Rþ 2=54Qþ 2=54Hþ 4=54Iþ 18=54Lþ 2=54Mþ 6=54Fþ 4=54Pþ 2=54Sþ 1=54Wþ 6=54Vþ 3=54STOP

K 2=18Rþ 4=18Nþ 2=18Eþ 2=18Qþ 1=18Iþ 2=18Kþ 1=18Mþ 2=18Tþ 2=18STOP

M 1=9Rþ 3=9Iþ 2=9Lþ 1=9Kþ 1=9Tþ 1=9V

F 2=18Cþ 2=18Iþ 6=18Lþ 2=18Fþ 2=18Sþ 2=18Yþ 2=18V

P 4=36Aþ 4=36Rþ 2=36Qþ 2=36Hþ 4=36Lþ 12=36Pþ 4=36Sþ 4=36T

S 4=54Aþ 6=54Rþ 2=54Nþ 4=54Cþ 2=54Gþ 2=54Iþ 2=54Lþ 2=54Fþ 4=54Pþ 14=54Sþ 6=54Tþ 1=54Wþ
2=54Yþ 3=54STOP

T 4=36Aþ 2=36Rþ 2=36Nþ 3=36Iþ 2=36Kþ 1=36Mþ 4=36Pþ 6=36Sþ 12=36T

W 2=9Rþ 2=9Cþ 1=9Gþ 1=9Lþ 1=9Sþ 2=9STOP

Y 2=18Nþ 2=18Dþ 2=18Cþ 2=18Hþ 2=18Fþ 2=18Sþ 2=18Yþ 4=18STOP

V 4=36Aþ 2=36Dþ 2=36Eþ 4=36Gþ 3=36Iþ 6=36Lþ 1=36Mþ 2=36Fþ 12=36V

STOP 2=27Rþ 1=27Cþ 2=27Eþ 2=27Qþ 1=27Gþ 3=27Lþ 2=27Kþ 3=27Sþ 2=27Wþ 4=27Yþ 4=27STOP

A Alanine; R arginine; N asparagine; D aspartic acid; C cysteine; E glutamic acid; Q glutamine; G glycine; H histidine; I isoleucine;

L leucine; K lysine; M methionine; F phenylalanine; P proline; S serine; T threonine; W tryptophan; Y tyrosine; V valine

Table 2. Inputs and target of AY653200 hemagglutinin sequence

Position Amino

acid

Input Target

I II III

1 M 6 0.4700 0.7361 0

. . . . . . . . . . . . . . . . . .

153 Y 2 0.7622 0.7454 0

154 Q 4 2.0206 0.8917 1

155 G 1 5.1098 0.8947 0

156 K 1 1.4116 0.7061 1

157 S 5 1.5562 1.0111 0

. . . . . . . . . . . . . . . . . .
568 I 2 0.6821 0.8526 0
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using historical data. This process is similar to use a

pharmacokinetic model to fit the drug concentration-time

curve.

After a huge amount of calculations, we have three

inputs and one target in each amino acid for all parent

hemagglutinins. Table 2 shows such a fraction of a hem-

agglutinin, where each amino acid is associated with three

inputs and one target determined by comparing two 2004

chicken hemagglutinins (AY653200 and DQ080022).

This format is used for input into computer for training

the neural network.

After trying different neural network models with dif-

ferent numbers of layers, neurons, transfer functions,

training algorithms, the 3-6-1 feedforward backpropaga-

tion neural network appears to be a suitable model with-

out compromising predictability (Fig. 1), the tan-sigmoid,

tan-sigmoid and log-sigmoid as suitable transfer functions

and the resilient backpropagation as suitable training

algorithm. In principle, the cause-mutation relationship

exists between three inputs and target, and we hope the

neural network can model this implicit relationship.

When using a pharmacokinetic model to fit the drug

concentration-time curve, the initial model parameters

can be determined through various methods. However,

we have to use the random initialization function to initi-

ate the neural network weights and biases because no

historical data on the initial weights and biases are avail-

able for our neural network. The question raised here is

whether the neural network can converge during its train-

ing with a limited number of epochs. Figure 2 shows the

convergence of mean squared error performance function

with 100 different initial weights and biases generated by

random initialization function in using DQ334760 hem-

agglutinin. As seen, the neural network converges during

its training within 250 epochs although the initial weights

and biases were randomly generated by the initialization

function. Hence, we can use the random initialization

function to train the neural network to find the suitable

weights and biases.

In order to determine whether the neural network model

can capture the cause-mutation relationship, we compare

the predicted with the actual mutation positions by classi-

fying the predicted mutation positions as the positives,

false positives, negatives and false negatives. Then we

calculate the prediction sensitivity, specificity and total

correct rate (Fig. 3). As seen, the prediction specificity

and total correct rate are quite high while the prediction

sensitivity is low.

Until this point, we are step by step approaching to

the possibility of using neural network to predict the mu-

tation positions. With this possibility in mind, we used the

trained weights and biases to predict the mutation posi-

tions, and then predict the would-be-mutated amino acids.

Figure 4 shows this two-step prediction in DQ497705

hemagglutinin, A=duck=Vietnam=283=2005 (H5N1). The

solid line in the lower panel is the predicted mutation

probability by the neural network, and the dash-dotted

line is the cut-off mutation probability of 0.5, that is,

the amino acid whose mutation probability is larger than

Fig. 2. Convergence of mean squared error performance function with

100 different initial weights and biases generated by random initializa-

tion function in using DQ334760 hemagglutinin

Fig. 3. Prediction sensitivity, specificity and total correct rate for the

self-validation. The data are presented as mean � SD (n¼ 110). The

sensitivity is equal to the predicted positives=the actual mutations (%),

the specificity is equal to the predicted negatives=the actual non-muta-

tions (%), and the total correct rate is equal to (predicted positivesþ
predicted negatives)=length of hemagglutinin (%)
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0.5 risks mutation. For this hemagglutinin, there are four

positions whose mutation probability is larger than 0.5. At

these four positions, the would-be-mutated amino acids

are predicted using the amino acid mutating probability

in Table 1, which is the upper panel of Fig. 4.

Discussion

The preparedness for possible pandemics of influenza is

currently conducted along various approaches, of which

the modeling is playing its role in this battle against influ-

enza A virus. A prominent approach in developing inhi-

bitors is conducted at several levels. At receptor protein

level, the modeling helps to determine the ‘‘binding

pocket’’ of the receptor protein with its ligands (Chou

et al., 1997, 1999, 2000, 2003, 2006; Chou, 2004a–e,

2005a, b, 2006; Li et al., 2007; Wang et al., 2007a, c). At

‘‘cleavage-site’’ level, the modeling is trying to find the

target residue for mutagenesis (Poorman et al., 1991;

Chou, 1993a–c, 1996; Elhammer et al., 1993; Thompson

et al., 1995). Upon two levels above, it is generally possi-

ble to find the target residues, the next level study is

directed to the mutagenesis and the designing of effective

inhibitors (Althaus et al., 1993a–c; Chou et al., 1994; Du

et al., 2005a, b, 2007a; Gan et al., 2006; Gao et al., 2007;

Wei et al., 2007). The fourth level of modeling is the de-

termination of 3D structure of binding interaction in pro-

teins of interests (Wei et al., 2006a, b; Wang et al., 2007b).

In this approach, an important concept is the ‘‘binding

pocket’’, which is the cornerstone for modeling. According

to Chou et al. (1999), the binding pocket was defined by

those residues that have at least one heavy atom (i.e. an

atom other than hydrogen) with a distance �5 Å from a

heavy atom of the ligand. Such a definition has been widely

and successfully used for investigating various protein-li-

gand interactions (see, e.g. Chou et al., 2000; Chou, 2004a–

d, 2005a, b; Sirois et al., 2004; Du et al., 2005a, b, 2007b;

Wei et al., 2005, 2006a, b, 2007; Zhang et al., 2006; Gao

et al., 2007; Li et al., 2007; Wang et al., 2007a, c).

However, it is highly likely that the random power

plays a continuous role because randomness suggests

the maximal probability of occurrence, by which a protein

would be constructed with the least time- and energy-

consuming, which could meet the speed of rapidly chang-

ing environments, although nature can deliberately spend

more time and energy to construct an absolutely necessary

structure. Hence, our quantifications at least describe the

random power engineering mutations.

With respect to the prediction of mutation positions, we

have the following issues that need to be addressed in

future.

(1) How can we measure whether the model captures a

cause-mutation relationship? Generally we use the

correlation coefficient in linear regression between

measured and predicted data to make the judgment,

which is suited when measured and predicted data are

paired. However, this is not the case for actual and

predicted mutation positions, because, for example,

the actual mutation position is 499 in AF102674 hem-

agglutinin, while the predicted mutation position is

Fig. 4. Prediction of mutations in DQ497705

hemagglutinin. For neural network,

IWf1, 1g¼ [0.2155 1.0388 2.7988; �0.0719

0.6052 0.9833; �0.1510 0.6066 �2.4175],

LWf2, 1g¼ [�1.1000 1.6000 1.2000;

3.2000 1058.0000 1.3000; �0.9000 1.0000

0.3000; �1.0000 �1.7000 5.1000; �1.8000

�0.5000 948.0000; 3.8000 31.3000 1.4000],

LWf3, 2g0 ¼ [�1.2252 �2.4157 1.8549

2.3875 �1.6867 1.7738], bf1g¼ [�5.9882

�2.8807 0.1485], bf2g¼ [2.8083 �1.4939

�22.3105 �0.8560 �1.3713 1.8262],

bf3g¼ [�0.9614]
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500. To the best of our knowledge, we cannot pair

them, which lead to the asymmetry between actual

and predicted positions and the difficulty to use the

correlation coefficient of linear regression to evaluate

the prediction performance.

(2) Although the low sensitivity in Fig. 3 suggests several

possibilities such as the mutations related to few mu-

tations, external causes, sampling strategy, etc., the

essential problem is that we have no method to mea-

sure the performance that the actual position is 499

whereas the predicted position is 500. This distance

might be tolerable for proteins as long as hemag-

glutinin, but might not be so for proteins as short as

human hemoglobin a-chain.

(3) Another issue related to the measurement of perfor-

mance is that the number of predicted is not equal to

the number of actual mutation positions. For example,

there are three mutations in AF102674 hemaggluti-

nin, while the model captures two mutation positions.

At this stage, we have yet to develop the method to

measure them.

Traditionally, we divide the dataset into training, test

and validation in neural network modeling, however we

consider such division too early because we have yet to

have the method to measure the performance regarding

actual and predicted positions.

However, our approach is promising because it is based

on the kinetics, which drives mutations, while the current

methods, which search the similar patterns, sequences,

signature, etc., in various databases, are more or less based

on phenomenon law. The phenomenon observation is very

important, by which we can build a dynamic model as the

Kelper’s laws describe the dynamics of planetary motion.

On the other hand, the kinetic deduction is also very im-

portant, by which we can build a kinetic model as the

Newton’s laws describe the kinetics of planetary motion.

Moreover, the dynamic model based on phenomenon ob-

servation is more suitable to deal with the repeated events,

but is less powerful when dealing with the evolutionary

process, which in general cannot be reversed. By contrast,

the kinetic model can deal with both repeated events and

evolutionary process if we can properly define the driving

force behind them. Hence, our approach not only has the

advantage of quantifying proteins but also has the advan-

tage of kinetic modeling.

Also the predicted number of mutation positions is rea-

sonable in Fig. 4, because four mutations are similar to the

prediction we made using the fast Fourier transform to

timing the mutation (Wu and Yan, 2005f).
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