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Structural variation (SV) is an important type of genome variation and confers susceptibility to human cancer diseases. Systematic
analysis of SVs has become a crucial step for the exploration of mechanisms and precision diagnosis of cancers. The central point
is how to accurately detect SV breakpoints by using next-generation sequencing (NGS) data. Due to the cooccurrence of multiple
types of SVs in the human genome and the intrinsic complexity of SVs, the discrimination of SV breakpoint types is a challenging
task. In this paper, we propose a convolutional neural network- (CNN-) based approach, called svBreak, for the detection and
discrimination of common types of SV breakpoints. The principle of svBreak is that it extracts a set of SV-related features for
each genome site from the sequencing reads aligned to the reference genome and establishes a data matrix where each row
represents one site and each column represents one feature and then adopts a CNN model to analyze such data matrix for the
prediction of SV breakpoints. The performance of the proposed approach is tested via simulation studies and application to a
real sequencing sample. The experimental results demonstrate the merits of the proposed approach when compared with
existing methods. Thus, svBreak can be expected to be a supplementary approach in the field of SV analysis in human tumor
genomes.

1. Introduction

Structural variations (SVs) are very common in human
genome, and their sizes are ranging in a large interval from
several base pairs (bps) to ten thousand bps or even more.
Accurate detection of SVs could provide variation informa-
tion for the exploration of mechanisms and precision diag-
nosis of cancers [1–3]. Generally, SVs can be classified into
various categories according to their characteristics. In
Figure 1, we describe seven common categories of SVs by
observing the statuses of sequencing reads aligned to the
human reference genome. These SVs include insertion, dele-
tion, translocation, inversion, interspersed duplication,
inverted duplication, and tandem duplication [4]. Discrimi-

nation of these SV categories in the human genome would
be necessary and meaningful for a deep analysis of the land-
scape of genome mutations. Moreover, the inference of
clonal and subclonal structures has a significant influence
on cancer research [5, 6]. Along with the extremely high res-
olution (at base pair-level resolution) data provided by next-
generation sequencing (NGS) technologies, the detection of
precision breakpoints of these SVs has become feasible.

Currently, a number of computational and statistical
methods have been developed for the detection of SVs. By
using the information of short reads from NGS data, these
methods could be roughly categorized into five different cat-
egories: paired-end mapping (PEM), split-read (SR), read
depth (RD), de novo assembly (DA), and hybrid approaches
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[7, 8]. The basic idea of PEM-based methods is to determine
the size and location of SVs by comparing the mapping dis-
tance (distance between the paired reads) with insert size.
Classic PEM-based methods include Delly [9] and Break-
dancer [10]. These methods have the advantage of detecting
SVs of short lengths with high accuracy. However, the exact
locations (base pair level) of SVs are difficult to detect using
such methods. The basic idea of the SR-based methods is to
use the splitting points (between matched and unmatched
parts) of reads to determine SV breakpoints and to use the
mapping positions of the reads to deduce SV contents. Tra-
ditional SR-based methods include Pindel [11] and SVseq2
[12]. The most enticing advantage of these methods is that
they can precisely detect breakpoints of SVs. Although these
methods usually perform well in detecting short SVs, their
performances in detecting large SVs are limited. RD-based
methods use read count fluctuation information across the
genome to determine the contents and positions of SVs.
Classic RD-based methods include FREEC [13], CONDEL
[14], CNV_IFTV [15], WaveDec [16], and iCopyDAV
[17]. These methods have the ability to detect large sizes of
SVs but cannot precisely detect SV breakpoints. The main

idea of the DA-based methods is to generate large contigs
by assembling short reads and then mapping the contigs to
the reference genome for inferring SVs. Traditional DA-
based methods include IMSindel [18] and SOAPindel [19].
These methods can theoretically detect many types of SVs
with a large range of sizes, but the assembly of contigs can
be affected by multiple factors, such as sequencing depth,
mapping errors, and heavy computing resources. The
hybrid-based approach is a combination of two or more cat-
egories of the aforementioned methods described above.
Classic methods of such category include SoftSV [20] and
Scalpel [21]. The advantage of such an approach is that it
can integrate different types of mapped reads to improve
the sensitivity of SV detection. Nevertheless, the use of mul-
tiple types of information means that there will be more SV
candidates to be discriminated against. On the whole, the
existing methods have their advantages in the detection of
SVs from tumor samples, but few of them have been
designed to detect most of the common SVs simultaneously.

With careful consideration of the issues described above,
we propose an alternative approach, called svBreak, for the
detection of SV breakpoints from NGS data. This approach
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Figure 1: Seven common categories of structural variations.
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is established based on a convolutional neural network
(CNN) [22]. The core principle of svBreak is that it extracts
a set of SV-related features for each genome site from the
sequencing reads aligned to the reference genome and cre-
ates a data matrix where each row represents one site and
each column represents one feature and then adopts a
CNN model to analyze such data matrix for the prediction
of SV breakpoints. The svBreak method can simultaneously
detect and discriminate breakpoints of the seven common
types of SVs.

2. Materials and Methods

2.1. Flowchart of svBreak. The overall workflow of the
svBreak method is illustrated in Figure 2. It starts with an
initial input of a reference genome and a sequencing sample
and then adopts a classic tool such as BWA [23] to perform
the alignment process. The reference genome can be chosen
from official references, such as human genome (HG19) or
the latest version, and the sequencing sample to be analyzed
can be obtained from synthetic or real NGS data. Based on
the alignment result, the reads with low mapping quality
are filtered and informative reads are extracted for discover-
ing breakpoint positions. Subsequently, svBreak carries out
four primary steps to predict SV breakpoints. The four pri-
mary steps include (1) extracting twelve distinctive features
related to SV breakpoints, (2) establishing a CNN model
based on the topology of the AlexNet model [24] for the
analysis of the extracted features, (3) training the neural net-
work by using labeled SV breakpoints from synthetic or real
NGS data, and (4) predicting the seven common types of SV
breakpoints based on the trained CNN model. In the follow-
ing text, we make a detailed description of the principle for
each of the steps.

2.2. Input and Preprocessing. Before describing the principles
of the steps above, we make a brief introduction to the pre-
processing of the input data. Currently, the main human ref-
erence genome databases include the NCBI database, UCSC
Genome Database, and Ensembl Genome Database. The
human reference genome of the UCSC Genome Database
mainly includes HG18, HG19, and HG38 versions. Since
HG19 can provide more gene annotation information and
this version of the human reference genome has been widely
used by most existing research institutes, we adopt the HG19
as the reference genome for the alignment of the NGS data.
The aligned data is then filtered by low-quality reads, and
the high-quality and informative reads including split reads
and discordant reads are extracted which generates a SAM
file for the input to the core module of svBreak.

2.3. Extracting Features Related to SV Breakpoints. Based on
the above split and discordant reads of the SAM file, we
extract twelve features related to SV breakpoints, which are
shown in Table 1. Each of the features can be assigned with
the values of 1, 0, or -1 according to the status on each
genome site. The value of 1 means that the status of the fea-
ture is positive, -1 means a negative status of the feature, and
0 means an uncertainty status. For example, for the first fea-

ture, the existence of reversely mapped reads (RMR) means
whether there exist some reads that are reversely mapped on
one site. If yes, the value of the feature RMR is 1, else, it is 0.
The uncertainty status of one feature means that the specific
feature cannot be determined by the currently aligned reads.
For example, we did not find any reversely mapped reads in
one site. This might be attributed to a lack of reads due to
limited sequencing coverage depth. In this case, the value
of the feature RMR in this site was set to 0. The value of each
feature is explained in Table 1. Moreover, the concepts of
MS and SM are explained below. For example, for a read
with a length of 100 bp, if its alignment result displays
“70M30S,” it means that the first segment of the result with
70 bp matched with the reference genome and the other part
of the result with 30 bp is soft mapped (i.e., not matched).
Such a type of alignment is called MS. If the alignment result
displays “30S70M,” then such alignment is called SM.

2.4. Establishing a Convolutional Neural Network. With the
aforementioned extracted feature, we construct a CNN
model for the prediction of SV breakpoints. Specifically,
for each type of SV breakpoint (e.g., insertion), we trained
a CNN model for the classification on each genome site.
Thus, for the seven common types of SV breakpoints, we
train a total of seven CNN models, each of which is a binary
classification model. Here, the CNN classification model
generates a score for each genome site. For example, for a
genome site t, the insertion-specific CNN model will gener-
ate a score st1. The larger the score is, the higher the probabil-
ity that the genome site belongs to an insertion breakpoint.
Meanwhile, the other six SV type-specific CNN models also
generate scores sti (i = 2, 3,⋯, 7) for genome site t. Finally,
determining which type of SV breakpoint the genome site
t belongs to depends on the largest score among the seven
scores. If st1 displays the largest score, then the genome site
t belongs to the insertion breakpoint. Nevertheless, if all
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Figure 2: The flowchart of svBreak.
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the seven scores display zeros, then the genome site t is not
an SV breakpoint.

For a clear understanding of the CNN model, we depict
the topology of the CNNmodel in Figure 3. The CNNmodel
is a multilayer perceptron with a deep learning model. The
input data to the CNN model is a two-dimensional data
matrix, M10000×12, where each row represents one genome
site and each column represents one feature. Such input data
matrix means that the prediction of SV breakpoints is car-
ried out batch by batch, each of which contains 10000 sites
in the genome. Before training the CNN model, the data
matrix in the input layer is preprocessed via the following
two steps: (1) batch normalization [19], centralizing the
values on each column to zero, which aim to pull the center
of the sample back to the origin of the coordinate system and
(2) scaling the values from different columns to the same
range, which can help to make a balanced trade-off between
different feature values.

The CNN model in Figure 3 is further described below.
The convolutional layer uses the convolution kernel for fea-
ture extraction and feature mapping, which is the most
important layer in the CNN model. At this layer, two key
operations are carried out: (1) localizing correlation and slid-
ing window and (2) using convolution to check local data
calculation. Here, the size of the convolution kernel is set
to 5 × 5. We use the Gaussian initial and set the step size
to be 1. The excitation layer will perform a weighted nonlin-
ear mapping on the output matrix. Since the excitation layer
has a single function and needs to work with the convolu-
tional layer to control parameters, the excitation layer is

often hidden in the convolutional layer in the structure dia-
gram. The purpose of this layer is to iteratively train the neu-
ral network and adjust the parameters according to the
results of the negative feedback of the neural network. The
excitation layer needs to use activation functions to adjust
parameters. We choose the ReLU function [20] as the activa-
tion function rather than the Sigmoid function, which may
cause the gradient to disappear. The pooling layer is to con-
duct downsampling, sparse processing of feature maps, and
reducing the amount of data computation. We set the size
of the pooling layer to 2 × 2. In the output layer, we adopt
a full connection, which can reduce the loss of feature infor-
mation. In a fully connected layer, many-to-many connec-
tions between neurons are formed, that is, neurons in each
layer are connected to all neurons in other layers, and these
connections are all right edges. The number of layers of a
convolutional neural network is generally defined as the
sum of levels with parameters. The neural network estab-
lished in the algorithm of this paper contains five layers of
convolutional layers and three layers of fully connected
layers.

2.5. Training the CNN Model. As far as the training of the
CNN model is concerned, we use a total of 50,000 groups
of samples, each of which contains all the seven types of
SV breakpoints. Each genome site of the samples is labeled
as some type of SV breakpoints or normal status (i.e., non-
breakpoint genome site). In the experiment, in order to
reduce overfitting, we carry out cyclic cross-validation at a
ratio of 8 : 2, i.e., eighty percent of the samples were used

Table 1: Description of the extracted twelve features.

Features Description

Reversely mapped read (RMR)
If such read exists on one genome site, the value of this feature

on the site is 1; otherwise, it is 0

Reversely mapped read showing SM (RMSM)
If such read exists on one genome site, the value of this feature

on the site is 1; otherwise, it is -1

Reversely mapped read showing MS (RMMS)
If such read exists on one genome site, the value of this feature

on the site is 1; otherwise, it is -1

Mapped read showing SM (MSM)
If such read exists on one genome site, the value of this feature

on the site is 1; otherwise, it is 0

Mapped read showing MS (MMS)
If such read exists on one genome site, the value of this feature

on the site is 1; otherwise, it is 0

The mapped distance between the paired-end
reads smaller than insert size (MDS)

If such paired-end reads exist on one genome site, the value of
this feature on the site is 1; otherwise, it is -1

The mapped distance between the paired-end
reads equal to insert size (MDE)

If such paired-end reads exist g on one genome site, the value of
this feature on the site is 1; otherwise, it is -1

The mapped distance between the paired-end
reads larger than insert size (MDL)

If such paired-end reads exist on one genome site, the value
of this feature on the site is 1; otherwise, it is -1

Previous breakpoint site with mapped reads
showing SM (PSM)

If such read exists on one genome site, the value of this feature
on the site is 1; otherwise, it is 0

Previous breakpoint site with mapped reads
showing MS (PMS)

If such read exists on one genome site, the value of this feature
on the site is 1; otherwise, it is 0

Next breakpoint site with mapped reads
showing SM (NSM)

If such read exists on one genome site, the value of this feature
on the site is 1; otherwise, it is 0

Next breakpoint site with mapped reads
showing MS (NMS)

If such read exists on one genome site, the value of this feature
on the site is 1; otherwise, it is 0
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for training, and twenty percent of the samples were used for
testing. Theoretically, the training samples could be obtained
from either synthetic or real sequencing individuals. How-
ever, in real sequencing individuals, the SV breakpoints are
usually difficult to obtain. Thus, in our experiments, we
choose to make a simulation of SV breakpoints for the train-
ing of the CNN model.

Since there are seven common types of structural varia-
tion, this paper trained seven classifiers of convolutional
neural network models. When training a certain convolu-
tional neural network model, the SV breakpoints corre-
sponding to the model are regarded as positive samples,
while the remaining SV breakpoints and noise sites are
regarded as negative samples. Each classifier model will give
a score value. The larger the score, the higher the probability
that the breakpoint belongs to the structural variation repre-
sented by the classifier, and we get a total of seven such
scores. Finally, we choose the highest score among the seven
scores obtained, and the breakpoint is divided into the SV
type corresponding to the highest score classifier.

3. Results

The svBreak software is implemented in both Python and
Java languages under the Linux system. The source code
and manual of the svBreak software package are publicly
available at https://github.com/BDanalysis/svBreak. It is very
important to adopt a reasonable way to assess the perfor-
mance of svBreak. Simulation studies are considered a feasi-
ble approach for this task [25, 26] since simulation can
provide ground truth SVs for the quantification of sensitivity
and precision of the method. Here, we perform simulation
studies for the svBreak method and make a comparison with
two currently popular methods Tardis [27] and TIDDIT
[28] with respect to their precision and sensitivity. Further-
more, we apply the svBreak method to real sequencing data
to validate its usefulness.

3.1. Simulation Studies. We use one of the classic and popu-
lar simulation software SInC [29] to generate SVs and
sequencing reads. To generate a variety of simulation data,
we set the coverage depth to 10x, 20x, 30x, and 40x, respec-
tively. In each configuration of coverage depth, we generate

fifty replications for testing the svBreak method and the
two compared methods. The comparative results are pre-
sented in Figure 4. Here, the sensitivity is calculated as the
ratio of the number of correctly predicted SV breakpoints
to the total number of simulated SV breakpoints, and the
precision is calculated as the ratio of the number of correctly
predicted SV breakpoints to the total number of predictions.
The F1-score (colored curves) is the harmonic mean of sen-
sitivity and precision. Here, the presented sensitivity and
precision are the averaged values over the fifty replications
in each simulation configuration. The comparative results
indicate that the performances (sensitivity, precision, and F
1-score) of the three methods are improving when the cov-
erage depth is increasing. For instance, the F1-score of the
Tardis method is below 0.9 when the coverage depth is 10x
while the value is over 0.9 when the coverage depth is 40x.
Among the three methods, svBreak has achieved a relatively
higher F1-score than the other two methods under each
configuration of the coverage depths. In terms of sensitivity,
TIDDIT performs best when the coverage depths are 10x
and 20x while svBreak performs best when the coverage
depths are 30x and 40x. In terms of precision, svBreak and
Tardis are superior in all four configurations of coverage
depths. On the whole, svBreak has obtained the best trade-
off between sensitivity and precision in these simulation
experiments.

Moreover, considering that the seven common types of
SV breakpoints may have different effects, it is meaningful
to explore the performance of the svBreak method in detect-
ing each type of the SV breakpoints. For this, we calculate
the sensitivity for the detection of each type of the SV break-
points in the experiments. The result is shown in Figure 5. It
can be observed that, in each configuration of the coverage
depths, the breakpoints of deletion, inversion, inverted
duplication, and tandem duplication are detected at larger
sensitivities than the other three types of SV breakpoints,
while the breakpoint of interspersed duplication is detected
at the lowest sensitivity. The sensitivity of the detection of
interspersed duplication, insertion, and translocation is rela-
tively low, but as the sequencing depth increases, the detec-
tion of these types of mutations has a significant
improvement. When the sequencing depth had been
increased from 10x to 40x, the sensitivity of detecting the
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breakpoint of interspersed duplication, insertion, and trans-
location have increased by 10.6%, 12.9%, and 12.6%, respec-
tively, which is larger than the other four mutation types.
The physical structure of these three variant types is rela-
tively complex. Under the condition of low sequencing
depth, the detection effect is poor, but with the increase of

sequencing depth, the improvement of the detection effect
is more obvious. The increase in sensitivity of the detection
of insertion and translocation mutations exceeds the average
increase in sensitivity by more than 2%. This means that
these two structural variations may be greatly affected by
the sequencing depth. Note that more statistical testing on
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the simulation dataset is shown in the supplementary mate-
rial (available here) where the impact of coverage on sensi-
tivity is observed.

The reason for the high accuracy of the svBreak algorithm
in this paper is that its feature values are mainly obtained from
the comparison information of split reads and the insertion
distance of paired-end sequencing reads. The use of compari-
son information to judge means that a screening has already
been carried out before the classification process. Therefore,
part of the wrong breakpoint information is filtered out.More-
over, this paper takes the “existence of reverse alignment” as a
feature, so it becomes easier to distinguish between inverted
mutations and inverted repeat mutations that exist in reverse
aligned reads. The sensitivity of deletionmutations is relatively
high because split reads are very sensitive to deletions. This
article also extracts features related to split reads, so it is more
sensitive to deletion mutations.

3.2. Real Data Application. To validate the usefulness of the
svBreak method, we apply it to analyze a real sequencing sam-
ple with ID No. EGAD00001000144_LC. This sample was
obtained from the European Genome-phenome Archive and
sequenced from a lung cancer patient. For comparison, we
carry out the Tardis and TIDDIT methods on this sample.
The comparative result is depicted in Figure 6. From this fig-
ure, we can notice that TIDDIT gets the largest number of calls
while Tardis gets the smallest number of calls. Generally, it will
be not reasonable to judge the performance of the methods
only according to the number of calls. Since we usually do
not know the ground truth SV breakpoints in real samples, it
is difficult to calculate the sensitivity or precision of the
methods. Instead, we use our previously proposed overlapping
density score (ODS) [14] to quantify the methods. ODS can be
used to analyze the consistency of the results among multiple
methods. The higher the ODS value of a method, the better its
performance. The formula for calculating ODS values can be
referred to [14]. After calculation, the obtained values of
ODS for the svBreak, Tardis, and TIDDIT methods are
190.9, 183.5, and 99.4, respectively. This means that svBreak
can achieve a greater consistent result than the other two
methods. Thus, we may conclude that svBreak is a useful
method in the analysis of SVs in the human genome.

4. Conclusion

In this paper, we propose an alternative method called
svBreak for the prediction of SV breakpoints in the human
genome. The application of deep learning models has made
notable breakthroughs in bioinformatics modeling [30, 31].
This paper combines convolutional neural networks with
bioinformatics and uses convolutional neural networks to
classify SV breakpoints. The central characteristic of our
proposed method is that it extracts twelve SV-related fea-
tures for each genome site from the sequencing reads aligned
to the reference genome and adopts a CNN model for SV
breakpoint prediction. In order to further improve the per-
formance of the convolutional neural network, this paper
adds a large number of labels to the training set. With this
part of the prior knowledge, the neural network will be more

sensitive to this kind of data. Another reason for choosing
convolutional neural networks is that convolutional neural
networks have fewer learnable parameters than standard
fully connected neural networks in structure, so convolu-
tional neural networks are easier to train and less subject
to overfitting. svBreak is able to detect and discriminate
seven common SV breakpoints and is tested using simula-
tion and real sequencing data. The experimental results
demonstrate that svBreak is a valid and useful method. Thus,
svBreak can be expected to be a supplementary approach in
the field of SV analysis in human genomes.

In the future work, we intend to extend the current ver-
sion of svBreak from the following three perspectives. In the
first place, the detection of SV breakpoints can be influenced
by the contamination of normal genomes in tumor genomes
to be analyzed; thus, estimating tumor purity and recovering
tumor genome signals will facilitate the detection of SV
breakpoints. In the second place, the detection of SV break-
points should be combined with the detection of single
nucleotide variations [32] for the improvement of genomic
mutations. In the last place, the concept of semisupervised
learning could be introduced into the training of svBreak,
to improve the generalization performance of svBreak.
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