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Abstract
Clustering data continues to be a highly active area of data analysis, and resemblance 
profiles are being incorporated into ecological methodologies as a hypothesis testing-
based approach to clustering multivariate data. However, these new clustering 
techniques have not been rigorously tested to determine the performance variability 
based on the algorithm’s assumptions or any underlying data structures. Here, we use 
simulation studies to estimate the statistical error rates for the hypothesis test for 
multivariate structure based on dissimilarity profiles (DISPROF). We concurrently 
tested a widely used algorithm that employs the unweighted pair group method with 
arithmetic mean (UPGMA) to estimate the proficiency of clustering with DISPROF as a 
decision criterion. We simulated unstructured multivariate data from different 
probability distributions with increasing numbers of objects and descriptors, and 
grouped data with increasing overlap, overdispersion for ecological data, and correlation 
among descriptors within groups. Using simulated data, we measured the resolution 
and correspondence of clustering solutions achieved by DISPROF with UPGMA against 
the reference grouping partitions used to simulate the structured test datasets. Our 
results highlight the dynamic interactions between dataset dimensionality, group 
overlap, and the properties of the descriptors within a group (i.e., overdispersion or 
correlation structure) that are relevant to resemblance profiles as a clustering criterion 
for multivariate data. These methods are particularly useful for multivariate ecological 
datasets that benefit from distance-based statistical analyses. We propose guidelines 
for using DISPROF as a clustering decision tool that will help future users avoid 
potential pitfalls during the application of methods and the interpretation of results.
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1  | INTRODUCTION

In data-rich scientific studies, it is often necessary to apply a clustering 
algorithm to detect groups of homogenous objects with respect to a 

set of descriptors (i.e., measured variables). Detection of groups is use-
ful in ecology, economics, genetics, and other disciplines that analyze 
large, multidimensional datasets. Clustering techniques for multivari-
ate datasets are diverse and can be drawn from methods derived from 
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one or more of the following approaches: sequential versus simultane-
ous, agglomerative versus divisive, monothetic versus polythetic, hier-
archical versus nonhierarchical, probabilistic versus nonprobabilistic, 
and constrained versus unconstrained (Legendre & Legendre, 2012). In 
many cases, these methods are sensitive to the sequence of the steps 
within the algorithm, to random decisions enforced by the algorithm, 
or to arbitrary assignment of stopping rules, numbers of clusters, or 
levels of resemblance that define homogeneity.

1.1 | Resemblance profiles and clustering criterion

Multivariate studies of complex datasets are often analyzed statisti-
cally using distance-based (db) methods. These db-methods begin 
with a series of pairwise comparisons between all objects to deter-
mine their relative resemblances with respect to a set of descriptors, 
and these resemblance values can be interpreted as either similarity or 
dissimilarity. The selection of a resemblance measure is discretionary 
and varies with the type of data being analyzed as well as the method 
of analysis (Batagelj & Bren, 1995; Clarke, Somerfield, & Chapman, 
2006; Faith, Minchin, & Belbin, 1987). Clarke, Somerfield, and Gorley 
(2008) developed the SIMPROF routine based on the concept of a 
“similarity profile,” which represents the matrix of pairwise similarity 
values between any set of objects.

SIMPROF was implemented as a clustering solution in v-6 of the 
PRIMER software package and was first used to describe community 
structure in marine nematodes (Liu, Zhang, & Huang, 2007) and lar-
val marine fishes (Muhling, Beckley, Koslow, & Pearce, 2008). Over 
the last decade, the number of peer-reviewed publications that incor-
porate SIMPROF in some portion of their methodologies has grown. 
A search of Web of Science© for the term “SIMPROF” (searched 20 
November 2016) returned 32 publications since 2007 and indicated 

the original Clarke et al. (2008) paper had 279 citations. Publications 
utilizing SIMPROF tend to come from marine ecology, with studies 
focusing on beta-diversity in reef corals (Huang et al., 2015), diatoms 
(Hernandez Almeida & Siqueiros Beltrones, 2012), fishes (Macedo-
Soares, Freire, & Muelbert, 2012; Selleslagh et al., 2009), fish gut 
contents (French, Clarke, Platell, & Potter, 2013), macrofauna (Rehm, 
Hooke, & Thatje, 2011), and sediment microbes (Gilbert et al., 2009). 
SIMPROF-based studies have also been conducted on dinoflagellates 
and ciguatera poisoning (Parsons, Settlemier, & Ballauer, 2011), food 
webs (Kelly & Scheibling, 2012), habitat classifications (Gonzalez-
Mirelis & Buhl-Mortensen, 2015; Valesini, Hourston, Wildsmith, 
Coen, & Potter, 2010), species/environment relationships (Travers, 
Potter, Clarke, & Newman, 2012), metagenomics (Khodakova, Smith, 
Burgoyne, Abarno, & Linacre, 2014), and otolith elemental micro-
chemistry (Moore & Simpfendorfer, 2014). While the preceding litera-
ture review reflects the recent use of the algorithm in ecological appli-
cations, it is likely that the method has uses in other disciplines as well.

Clarke et al. (2008) demonstrated the use of SIMPROF in conjunc-
tion with agglomerative hierarchical clustering via the unweighted 
pair group method with arithmetic mean (UPGMA; Figure 1), and they 
also described two theoretical corollaries to the functional dynamics 
of their algorithm. They proposed that (1) the test for multivariate 
structure would become more powerful as the number of descriptors 
increased and (2) that the resolution of any structure identified (i.e., 
number of groups, G) might be far finer (greater) than is meaningfully 
interpreted (Clarke et al., 2008). It is our understanding that these 
corollaries have yet to be tested empirically with numerical simula-
tions, and given recent inconsistencies in the performance of other 
permutation- and distance-based hypothesis tests (e.g., ANOSIM and 
MANTEL tests; Anderson & Walsh, 2013; Legendre & Fortin, 2010), 
we felt this action was warranted.

F IGURE  1 Theoretical diagram of 
the process flow for DISPROF clustering 
with UPGMA: (1) Data are pretreated and 
configured. (2) An appropriate resemblance 
metric is applied to the pretreated dataset. 
(3) The UPGMA site-connection linkage is 
assembled. (4) DISPROF is employed in an 
iterative process to identify the grouping 
structure in the data and create breaks in 
the associated linkage tree. (5) DISPROF 
settles on a final solution, and a two-
dimensional dendrogram visualization is 
created
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The present paper intends to improve our understanding of the 
proposed corollaries to the Clarke et al. (2008) approach, to help users 
of SIMPROF avoid potential pitfalls during analysis and interpretation, 
and to encourage use of the method outside of the ecological focus. 
We tested the SIMPROF method by estimating and describing the 
type I and type II error rates for the hypothesis test for multivariate 
structure while varying the datasets’ distribution type, dimensionality, 
data-cloud overlap between adjacent clusters, and data-cloud shape 
or overdispersion. We also elucidated the effects of dataset configu-
ration variability on the quality of the solution achieved by examining 
the level of correspondence between the algorithm’s clustering solu-
tions and the known grouping partitions for datasets with structure.

1.2 | Review of the SIMPROF approach

For a set of objects, a similarity profile is created by plotting the rank-
ordered similarity values versus each value’s rank (Figure 2a). This 
profile is ultimately checked against the mean rank-ordered similarity 
values for many randomized profiles (i.e., ≥1,000) created via permut-
ing the original descriptor measurements across objects. The π sta-
tistic is created by summing the absolute deviations of the observed 
profile from the mean of the set of permuted profiles. Intuitively, one 
can see that if an observed profile has many more high and/or low 
similarity values than would be expected under the null conditions, 
then multivariate structure would be deemed present (Figure 2b). The 
null hypothesis (Ho) of “no multivariate structure among objects, with 
respect to the descriptors” in the original dataset, is formally tested 
by examining the placement of the observed π statistic relative to the 
null distribution of all permuted π statistics. To model the null distribu-
tion of the π statistic, an additional set of permuted similarity profiles 
(i.e., ≥1,000 iterations) is created, and their associated π statistics are 
calculated with respect to the same mean profile used to calculate the 
original observed π statistic. The p-value for the observed π statistic is 
calculated as the proportion of π statistics that are at least as large as 
the observed statistic versus the total number of π statistics calculated 
via permutation (Clarke et al., 2008).

Resemblance profile consideration is inserted into UPGMA 
clustering as a clustering decision criterion in an iterative process 
(Figure 1). The data are required to be in [N × P] matrix format, where 
the N rows represent individual objects (sampling units) and the P col-
umns of the matrix represent the descriptors (measured variables). In 
many real-world, large datasets, there are often some objects where 
certain descriptor measurements are missing due to either technical 
failure or human error. When compiling these data, we must remove 
objects that do not contain an accurate measurement for all descrip-
tors of interest (zero-value measurements may be appropriate, but 
missing measurements are not). Once the data are assembled and 
checked for quality, user-defined pretreatments are applied (e.g., stan-
dardization and/or normalization) and an appropriate resemblance 
measure is employed. One advantage to the approach considered 
here is the use of distribution-free statistics, which releases the ana-
lyst from the often-unrealistic assumption of Gaussian data distri-
butions, and decreases the need for data transformations to satisfy 

those assumptions. Another advantage to using distribution-free 
significance tests is that they are often generalized to accept any of 
the potential pool of resemblance measures available to researchers 
(Legendre & Legendre, 2012).

After a square, symmetric distance-matrix is produced, an UPGMA 
clustering solution is constructed to reflect the magnitude of appar-
ent resemblance between the objects with respect to the descriptors. 
SIMPROF can be used as an iterative decision criterion to assess 
each node of the UPGMA dendrogram to determine whether the 
objects connected by any node are clusters of relative homogeneity, 
or whether there is additional multivariate structure present in those 
remaining objects (Clarke et al., 2008).

Recall that the Ho tested by SIMPROF is of “no multivariate struc-
ture among objects with respect to the descriptors.” When assess-
ing an UPGMA dendrogram, SIMPROF begins hypothesis testing at 
the node that has the smallest similarity value and that contains all 
objects. If Ho is rejected and structure is deemed present in the objects 
connected by the top-level node, the SIMPROF routine repeats inde-
pendently on the two sets of objects joined at that node. SIMPROF 
iteratively assesses the presence of structure for all newly identified 
subsets within the original top-level subsets until a stopping point is 

F IGURE  2 Two examples of Euclidean-dissimilarity profiles: 
Resemblance value sort order is increasing along the x-axis, and the 
sorted pairwise dissimilarity values are increasing along the y-axis. 
(a) A dissimilarity profile for a simulated unstructured dataset drawn 
from the exponential probability distribution with [N × P] = [50 × 50]. 
The observed profile is within the 99% confidence envelope based on 
999 permutations of the observed data. (b) A dissimilarity profile for a 
simulated structured dataset drawn from the normal distribution with 
two groups having equal variance, [N × P] = [50 × 50], and Ov = 0.01. 
The observed profile has many dissimilarity values that are above and 
below the expected mean permuted profile, and its associated 99% 
confidence envelope, thereby signifying the presence of structure in 
the dataset
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reached and all possible subsets have been identified. The stopping 
point for the algorithm is when either a nonsignificant p-value (i.e., 
p-value ≥ α) for all remaining subsets is obtained (failure to reject 
Ho), or when the number of objects that remain connected within 
untested subsets is no greater than two (Clarke et al., 2008). Due 
to the multiple-testing aspect of the algorithm, a p-value correction 
method can be employed when determining significance for tests 
between sets of objects (Clarke et al., 2008). The primary output of 
UPGMA clustering with SIMPROF is a grouping partition containing 
a cluster assignment for each object. Using this decision framework 
creates immediate advantages when interpreting the clustering den-
drogram in that (1) the researcher is no longer required to arbitrarily 
assign a single level of similarity that defines all clusters and (2) the 
clusters can be defined by varying levels of similarity. To obtain a two-
dimensional ordination of the identified groups in hyperdimensional 
space, a Euclidean embedding can be produced via principle coordi-
nates analysis (PCoA; Gower, 1966). This ordination is based on the 
same symmetric resemblance matrix used in the clustering process, 
and the group assignments can be overlain in place of the object labels 
to present a final clustering diagram.

2  | METHODS

2.1 | Rationale

The only modification we made to the original Clarke et al. (2008) algo-
rithm was to use dissimilarities (or distance) for the computation of 
the resemblance profile; this convention is consistent with the Fathom 
Toolbox for MATLAB (Jones, 2015), which was used for our testing and 
evaluations, and is advantageous because dissimilarity measures span 
a broad range of types (i.e., metric, nonmetric, or semi-metric) that 
can be applied to a diversity of potential research disciplines. These 
types of resemblance measures also allow ordination of the objects via 
multidimensional methods, which require db-resemblance measures, 
and are intuitively interpreted with two objects’ spatial “closeness” in 
ordination space as being more similar (i.e., less dissimilar). Because 
similarity profiles and dissimilarity profiles are analogous, we refer to 
“DISPROF” hereafter.

To test the effectiveness of DISPROF at detecting the presence of 
multivariate structure among objects, we used simulated datasets with 
both unstructured and structured sets of descriptors, under four dif-
ferent simulation scenarios (Table 1). We attempted to simulate data 
that would be applicable to a range of numerical studies including, but 
not limited to, the ecological type of data that SIMPROF was initially 
developed for (Table 2). The unstructured data were simulated with a 
single grouping structure present and were used for estimating type 
I error rates for DISPROF; the structured data were simulated with 
known groups among objects and were used to estimate type II error 
rates and the power of the hypothesis test. Structured data were also 
used to examine the effects of descriptor overdispersion in ecological 
count data, as well as the effects of increasing numbers of descriptors 
and the type of correlation structure among them. We retained the 
grouping partitions from the structured data simulations, and doing so 

allowed us to test the correspondence between the clustering solu-
tions achieved by the UPGMA with DISPROF algorithm and these 
baseline partitions. The criterion for rejecting Ho in this simulation 
study was set at α = .05, and we opted to use a progressive Bonferroni 
p-value correction (Legendre & Legendre, 2012) for instances where 
repeated hypothesis testing was conducted (i.e., simulated structured 
data testing).

All data simulations were coded in MATLAB using the Fathom 
Toolbox (Jones, 2015), the OCLUS routine (Steinley & Henson, 2005), 
and the Darkside Toolbox (Kilborn, 2015). To complete the algorithm 
testing described below, we used the University of South Florida 
Research Computing high-performance computing hardware running 
MATLAB v. 2016 and used an experimental MATLAB module from the 
Fathom Toolbox called “ClustX.”

2.2 | Data simulation methods

In all simulations, varying size conditions for the resultant data matri-
ces were used, and this allowed us to investigate the effects of chang-
ing the numbers of objects (N) and dataset dimensionalities (P, num-
ber of descriptors) on DISPROF’s performance, and also the quality 
of the clustering solutions achieved by the algorithm. S = 1,000 data-
sets were simulated for each combination of [N × P] under additional 
simulation scenarios described in Table 1. The simulation scenarios 
allowed further investigation of DISPROF’s performance regarding 
variation in (1) the underlying probability distribution of the data; (2) 
the amount of overlap between groups’ data clouds; (3) the location 
and dispersion among groups of objects representing ecological abun-
dance data; and (4) correlation structures among descriptors within 
groups of objects.

2.2.1 | Unstructured data (Sim 1)

The first set of simulations were used to estimate type I error rates 
for the DISPROF routine for data drawn from eight different prob-
ability distributions (Table 1). Each probability distribution was used 
to simulate a specific data type, and the properties of the simulated 
data informed the choice of resemblance measure (Table 2). Each sta-
tistical distribution had S = 40,000 unstructured datasets across all 
combinations of [N × P]. A total of 320,000 independently generated 
unstructured datasets were used to complete the type I error rate 
estimations. Within each of the S = 1,000 equally sized datasets, the 
columns were individually parameterized at random from a set range 
of values specific to the underlying probability distribution (Table 1). 
The instances where random processes produced objects with all 
zero-value entries were allowed to persist in the data, and they were 
treated as a special case during the calculation of Bray–Curtis and 
Jaccard dissimilarity matrices. In this special case, any comparison 
of two objects with all zero-value entries would be assigned a dis-
similarity value of one (i.e., perfectly dissimilar), as they share no com-
mon variability (Anderson & Walsh, 2013; Warton & Hudson, 2004). 
This convention was upheld for all simulation scenarios where it was 
appropriate to do so (Sim 1e, 1f, 1h; Sim 3).
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Each probability distribution was tested in batches of S = 1,000 
according to their [N × P] configurations. The S independent datasets 
were each tested with the DISPROF routine one time to determine 
whether the null was rejected at α = .05. The resultant p-value for each 
DISPROF hypothesis test was collected, and the proportion of all S 
datasets where the associated p-value was significant was calculated 
for each [N × P] configuration.

2.2.2 | Structured data—overlapping groups (Sim 2)

The second set of simulations were designed to examine the effects 
of dataset configuration, as well as the average amount of overlap 
per dimension between the data clouds that represent grouped 
objects, on the DISPROF routine and its grouping solutions. We 
used an established data simulation routine described by Steinley 
and Henson (2005), called OCLUS, to produce a total of 450,000 

TABLE  1 Detail of the simulation scenarios used for the study listed as Sim 1–Sim 4

Probability distribution G Parameter 1 Parameter 2 N P

Sim 1. Unstructured data

a. Binomial 1 T = 1 0 ≤ q ≤ 1 {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

b. Chi-square 1 1 ≤ df ≤ N − 1 — {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

c. Exponential 1 0 ≤ μ ≤ 5 — {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

d. Log-normal 1 0 ≤ μ ≤ 50 0 ≤ σ2 ≤ 5 {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

e. Negative binomial 1 0 ≤ T ≤ 10 0 ≤ q ≤ 1 {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

f. Negative binomial/
Poissona

1 1 ≤ μ ≤ 100 0 ≤ θ ≤ 1 {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

g. Normal 1 −100 ≤ μ ≤ 100 0 ≤ σ ≤ 5 {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

h. Poisson 1 0 ≤ λ ≤ 1,000 — {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 150, 225, 300}

Sim 2. Structured data—overlapping groups

a. Normal (OCLUS) 2 σ
2

1
 = σ2

2
 = 1 Ov = {0.01, 0.02, … 0.49, 0.5} n1 = n2 = 25, N = 50 {2, 3, 5, 10, 25, 50, 150, 225, 300}

Sim 3. Structured data—Overdispersed descriptors

a. Negative binomial/
Poissona

2 μ1 = μ2 = 10 θ1 = 0, θ2 = {0, 0.1, 0.4, 0.9} n1 = n2 = 25, N = 50 {2, 3, 5, 10, 25, 50, 150, 225, 300}

b. Negative binomial/
Poissona

2 μ1 = 10, μ2 = 30 θ1 = 0, θ2 = {0, 0.1, 0.4, 0.9} n1 = n2 = 25, N = 50 {2, 3, 5, 10, 25, 50, 150, 225, 300}

Sim 4. Structured data—correlated descriptors

a. Normal 2 μ1 = 10, μ2 = 30 Σ1 = 0, Σ2 = {0, 0.6, 0.9} n1 = n2 = 25, N = 50 {2, 3, 5, 10, 25, 50, 150, 225, 300}

b. Normal 2 μ1 = 10, μ2 = 30 Σ1 = Σ2 = {0.6, 0.9} n1 = n2 = 25, N = 50 {2, 3, 5, 10, 25, 50, 150, 225, 300}

For each scenario, S = 1,000 datasets were simulated, and mean dissimilarity profiles (DISPROF) were obtained with 1,000 permutations and the 
p-values for the test were calculated with 999 permutations (α = .05). Variables are as follows: G, total number of groups; N , total number of 
objects; P, total number of descriptors; T, number of successful trials; df, degrees of freedom; μi, mean for all descriptors in group i; λ, Poisson rate 
parameter; σ2

i
, variance for all descriptors in group i; q, probability of success for a trial; θi, overdispersion parameter for all descriptors in group i; 

Σi, correlation among descriptors in group i; Ov, average overlap per axis between data clouds for G1 and G2.
aWhere θ = 0, then μ = σ2, and the negative binomial distribution reduces to the Poisson.

TABLE  2 Probability distributions used 
in Sim 1–Sim 4: The representative data 
type and the resemblance measure used to 
determine the pairwise distance between 
objects

Probability distribution Data type Resemblance

Binomial Binary, presence/absence Jaccard

Chi-square Rational, continuous Euclidean

Exponential Rational, continuous Euclidean

Log-normal Rational, continuous Euclidean

Negative binomial Integer, frequency with many 0’s Bray–Curtis

Negative binomial/Poisson Overdispersed ecological count data Bray–Curtis

Normal Rational, continuous Euclidean

Poisson Integer, frequency with many 0’s Bray–Curtis

No data were transformed prior to subjection to the resemblance measure.
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datasets with overlapping grouping structures. The OCLUS routine 
implementation in MATLAB allowed the configuration of the prob-
ability distribution type, the number of groups (G) and whether or 
not they overlap, the number of objects per group (ni), and the aver-
age amount of group overlap across all dimensions (Ov) between 
groups of objects in hyperdimensional space. Note that Ov for the 
entire dataset is evenly distributed across all dimensions, and two 
major assumptions of the OCLUS routine are (1) that all dimensions 
are independent; and (2) that all groups are independent (Steinley 
& Henson, 2005). For our purposes, when simulating all structured 
data with multiple groups (Sim 2–Sim 4), a simple simulation design 
was employed where two groups (G = 2) with n1 = n2 = 25 (N = 50) 
objects were simulated. In Sim 2, for each [N × P] configuration the 
average overlap between the two groups was increased progres-
sively from Ov = 0.01 to 0.50, in 0.01 increments. S = 1,000 datasets 
were simulated for each [N × P × Ov] configuration. Descriptor data 
were drawn from the multivariate normal distribution with equal 
variances (�2

1
 = �2

2
 = 1) for both groups (Anderson & Walsh, 2013; 

Steinley & Henson, 2005). Normally distributed data were used to 
examine the type II error because the concern that the underly-
ing probability distribution of the data would impart some sort of 
unknown structure was negligible as the data were simulated in a 
known grouping configuration. As cluster analysis falls into the cat-
egory of “exploratory” data analysis, it should be obvious that the 
amount of overlap between objects in a sampling data set, or any 
inherent grouping structure, is unknown at the time of testing. 
Therefore, it is important to understand the empirical effects group 
location and overlap on clustering solutions if we are to put any faith 
in the solutions provided by the algorithm.

2.2.3 | Structured data—overdispersed descriptors 
(Sim 3)

The third simulation scenario also indirectly dealt with group loca-
tion, but the main focus of these simulations was on determining the 
effect on DISPROF from increasing the overdispersion of one group 
while holding the other group constant, and to do so for ecological 
frequency data (i.e., abundances or counts). We used the Fathom 
Toolbox for MATLAB to implement ecological-data simulation sce-
narios similar to those used by Anderson and Walsh (2013), and in 
Sim 3, we simulated ecological abundance data drawn from the over-
dispersed negative binomial and/or Poisson distribution (Tables 1 and 
2). These data were simulated where the σ2 >> mean (μ), and the σ2 
parameter is related to μ such that σ2 = μ+ θμ2, where θ is the over-
dispersion parameter. In cases where σ2 = μ, the data were drawn 
from the Poisson distribution, and the data were drawn from the 
negative binomial distribution otherwise. In Sim 3a, we simulated a 
total of 36,000 datasets with G = 2, μ1 = μ2 = 10 (collocated groups), 
and we induced heterogeneity between the groups by increasing the 
overdispersion for the descriptors in G2. In Sim 3b, we maintained the 
group heterogeneity from increasing θ2 when we simulated an addi-
tional 36,000 datasets with G = 2, but in this scenario, we set μ1 = 10 
and μ2 = 30 (separated groups). For all [N × P] configurations, four 

different combinations of θ1 and θ2 were used to simulate S = 1,000 
datasets for all [N × P × (θ1 and θ2)] configurations (Table 1). In Sim 
3, we simulated ecological count datasets with no overdispersion in 
G1 and increasing θ in G2, and where the groups were collocated in 
hyperdimensional space (Sim 3a) or where they existed in separate 
locations (Sim 3b). It should be noted, however, that this method does 
not account for data-cloud overlap, and is possible that two simu-
lated groups that do not share a mean value could still overlap if the θ 
parameter were extremely high. We tested values ranging from zero 
overdispersion, to low (θ = 0.1), to medium (θ = 0.4), to high (θ = 0.9).

2.2.4 | Structured data—increasing correlation 
(Sim 4)

The fourth set of simulations was used to examine the effects of 
correlated descriptors within a group of objects on DISPROF and its 
clustering outputs. We simulated data with different correlation struc-
tures (Σ) between descriptors in G1 and G2, and where Σ2 increased 
in G2 (Sim 4a), and also with Σ1 = Σ2, but still increasing Σ (Sim 4b, 
Table 1). In both cases, we simulated data drawn from the multivariate 
normal distribution with μ1 = 10, μ2 = 30 and �

2

1
 = �2

2
 = 1. The square, 

symmetric correlation-matrices Σ were built such that each descriptor 
would be correlated with all other descriptors in the dataset by the 
proportion listed in Σ. Sim 4 examines data with correlated descrip-
tors whose level of correlation varies from no correlation (Σ = 0), to 
medium (Σ = 0.6), to high correlation (Σ = 0.9).

2.3 | Power, resolution, and correspondence  
estimation

As all datasets in Sim 2–Sim 4 had G = 2, we estimated the pro-
portion of type II errors for each [N × P × Ov], [N × P × (θ1 and θ2)], 
and [N × P × (Σ1 and Σ2)] configuration by finding the number of 
instances, per S = 1,000, where the Ho was retained at α = .05 (i.e., no 
multivariate structure deemed present). Type II error estimates were 
converted to power, and values ≥0.80 were considered acceptable 
at our selected confidence level (Cohen, 2013). As our primary inter-
est was in exploring the efficacy of using DISPROF as a clustering 
criterion, we examined the first iteration of sequential testing of Ho 
(to record type II error rates), but we also allowed for all subsequent 
DISPROF iterations to run until the clustering implementation was 
completed. This unconstrained approach allowed the UPGMA clus-
tering with DISPROF algorithm to settle on complete clustering solu-
tions with the maximum number of groups that could be discovered 
of Gmax = N − 2.

The final result of each DISPROF clustering attempt was a par-
tition for the simulated objects that identified each object’s group 
membership. In all cases, G and the generated grouping partition were 
retained for further analysis. The number of groups identified was 
used to examine the effective resolution of the clustering solution, 
with larger values of G being indicative of fine resolution and smaller 
G values being coarse. The grouping partitions were used to com-
pare the computed results against the known reference partition for 
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each structured dataset simulated. The measure of correspondence 
between the clustering solutions’ partitions and their reference par-
titions was calculated using the Hubert–Arabie adjusted Rand index 
(ARIHA). This effort was undertaken due to the importance of a clus-
tering algorithm being able to find “correct” structure in the data. The 
absolute value of ARIHA ranges from 0 to 1, requires a probabilistic 
interpretation, and measures the likelihood of agreement between 
one randomly chosen pair of objects represented in both partitions, 
corrected for chance (Hubert & Arabie, 1985). Negative ARIHA val-
ues can be interpreted as a probability of agreement that is less than 
what would be expected by chance alone. We interpreted ARIHA val-
ues ≥0.80 as “good” correspondence with anything above 0.90 being 
“excellent.” Likewise, ARIHA values <0.80 were interpreted as “mod-
erate” correspondence, and values below 0.65 were interpreted as 
“poor” correspondence (Steinley, 2004).

3  | RESULTS

3.1 | Data simulation scenarios

3.1.1 | Unstructured data (Sim 1)

The mean estimated type I error rates for DISPROF were within the 
confidence interval that would be expected for the chosen level of 
α = .05 for all simulated unstructured data, regardless of the base 
probability distribution that the data were drawn from (Table 3). There 
was also no apparent effect of the number of objects or descriptors on 
the type I error rates for DISPROF (Figure 3).

3.1.2 | Structured data—overlapping groups (Sim 2)

The mean power values for each P-dimension, calculated from the 50 
proportions of type II errors, estimated for each [N × P × Ov] configura-
tion (S = 1,000), showed an increase in the power of DISPROF to detect 
the presence of multivariate structure as the overall dimensionality of 
the dataset increased (Table 4). A closer look at each P-dimension’s 
power values (Figure 4) showed that, for P ≤ 10, as Ov decreased, the 
statistical power of DISPROF increased asymptotically from unaccep-
table levels toward 1. For all values of P ≥ 25, the power was estimated 
to equal 1 for all Ov. Furthermore, for any given Ov the power increased 
as P increased. The average number of groups ( ̄G) per S = 50,000 data-
sets from all [N × P] configurations across all 50 Ov levels was similar 
across all P, ranging from a minimum ̄G = 1.81 (P = 2) to a maximum 
̄G = 2.16 (P = 5; Table 4). Closer inspection of each [P × Ov] combina-
tion (S = 1,000) revealed that DISPROF clustering solutions where P ≤ 3 
displayed an increase in ̄G as Ov decreased. ̄G increased from a value 
of ̄G < 2 and asymptotically approached the mean of ̄G for all cluster-
ing solutions within a given [P × Ov] combination. For all P ≥ 5, ̄G val-
ues remained above 2 for all Ov and were much more tightly bound 
around their respective means (Figure 5a, Table 4). The mean corre-
spondence values (ARIHA) for each S = 50,000 datasets from all [N × P] 
configurations across all Ov increased as P increased (Table 4), and for 
any single Ov level, the ARIHA also increased with P (Figure 5b). A more 
detailed view of ARIHA within each P-dimension (Figure 5b) indicated 
for P ≤ 5 the mean ARIHA values persisted below 0.8 for the majority 
of Ov scenarios, but had a generally increasing trend. Eventually, the 
ARIHA had high correspondence values at low levels of Ov. All P ≥ 10 

TABLE  3 Descriptive statistics for DISPROF type I error based on Sim 1

Probability 
distribution N P Minimum Mean Mode Maximum σ SE

Sim 1. Type I error – S = 40,000

a. Binomial {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.008 0.046 0.055 0.068 0.013 .002

b. Chi-square {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.032 0.050 0.050 0.067 0.007 .001

c. Exponential {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.037 0.049 0.049 0.067 0.006 .001

d. Log-normal {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.033 0.050 0.047 0.070 0.008 .001

e. Negative binomial {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.034 0.049 0.050 0.064 0.006 .001

f. Negative binomial/
Poisson

{10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.028 0.048 0.045 0.063 0.008 .001

g. Normal {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.035 0.051 0.050 0.066 0.008 .001

h. Poisson {10, 25, 50, 150, 300} {2, 3, 10, 25, 50, 
150, 225, 300}

0.036 0.049 0.043 0.062 0.007 .001

Unstructured data: Type I error rate estimates and statistics were obtained from S = 40,000 datasets across all configurations of [N × P] for each 
probability distribution simulated. Error rate estimates for each configuration were based on S = 1,000 datasets, and all p-values were obtained 
via 999 permutations with significance assessed at α = .05. N, total number of objects; P, total number of descriptors; σ, standard deviation of the 
mean; SE, standard error of the mean.
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clustering solutions had ARIHA values that were considerably less vari-
able across all levels of Ov than those for P ≤ 5. These solutions’ cor-
respondence values were tightly bound around their respective mean 
ARIHA values (Table 4) and displayed good or excellent correspondence 
(Figure 5b).

3.1.3 | Structured data—overdispersed descriptors 
(Sim 3)

The performance of DISPROF across all 36 combinations of [N × P × (θ1 
and θ2)] (S = 1,000) was more consistent when μ1 = 10, μ2 = 30 (Sim 3b) 

than when μ1 = μ2 = 10 (Sim 3a) (Table S1). Sim 3a displayed increasing 
power to detect groups as the amount of overdispersion in G2 increased, 
even when the groups’ centroids overlapped and the only distinction 
between the groups was their respective θ structures. Sim 3b maintained 
power values of 1 for all configurations except three (P = {2, 3}, θ1 = 0, 
θ2 = 0.4; P = 3, θ1 = 0, θ2 = 0.9), whose power values were all above 0.85. 
The power of DISPROF within all [P × (θ1 and θ2)] configurations where 
θ2 > 0 increased with P until a threshold value of P was met, and for the 
remaining dimensions where P ≥ Pthreshold, the power was 1. The value of 
Pthreshold decreased as θ2 increased and the difference in spread of the 
two groups became more pronounced (Table S1).

F IGURE  3 Ratio of P:N versus the 
proportion of type I error: The type I error 
rates (α = .05) for the DISPROF hypothesis 
test for multivariate structure of S = 1,000 
simulated unstructured datasets from 
eight different probability distributions 
simulated in scenario Sim 1. Data points 
represent each of the 40 different [N × P] 
configurations; the dotted vertical line 
indicates the mean type I error rate for all 
40 configurations. All data were randomly 
parameterized and drawn from the (a) 
binomial, (b) chi-square, (c) exponential, 
(d) log-normal, (e) negative binomial, (f) 
negative binomial/Poisson, (g) normal, 
and (h) Poisson probability distributions. 
The σ and standard error for all probability 
distributions tested were ≤0.01 and .002, 
respectivelyProportion of type I error
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The mean number of groups identified in Sim 3b across all [P × (θ1 
and θ2)] configurations where θ2 < 0.9 was approximately 2 (the cor-
rect number), and there was no apparent effect of increasing P or θ2 
when the two groups were sufficiently separated in hyperdimensional 
space (Table 5). For simulations where θ2 = 0.9, 

̄G increased from 
~2.5 groups identified per 1,000 datasets at P = 2, to ~4 groups at 
P = {5, 10}, after which the value of ̄G tapered off to around 2 starting 
at P = 150 (Table 5). The mean correspondence values for scenarios 
where θ2 = {0, 0.1} remained excellent for all P; where θ2 ≥ 0.4, the 
ARIHA increased with P (Table 6). In Sim 3a, where μ1 = μ2, DISPROF 
clustering, on average, never settled on the solution of G = 2. When 
θ1 = θ2= 0, all P returned 

̄G = 1 (as the two groups were effectively 
identical), but for all other [P × (θ1 and θ2)] configurations where θ2 > 0, 
as P increased so did the value of ̄G (max ̄G = 28 groups, Table 5). The 
same pattern was observed in the ARIHA values for Sim 3a as was seen 
for ̄G; for all θ1 = θ2 = 0 scenarios, the ARIHA = 0, and for all other levels 

of θ2 the ARIHA values increased along with P (Table 6), reaching their 
maximum values around 1 when P ≥ 25.

3.1.4 | Structured data—correlated descriptors 
(Sim 4)

For all P, when both groups had no correlation structure, ̄G was con-
sistently ~2, and ARIHA values were excellent; where at least one group 
had no correlation structure, ̄G increased and the ARIHA decreased as P 
increased (Table 7). For all P where the correlation structure for either 
group was Σ ≥ 0.6 (medium to high), DISPROF produced clustering 
solutions where ̄G increased with P (Table 7). However, in those same 
scenarios, the ARIHA decreased as P increased, and it should be noted 
that none of the simulation scenarios in Sim 4a or 4b that included 
any amount of within-group descriptor correlation returned clustering 
solutions with an ARIHA ≥ 0.8 for any P ≥ 5.

TABLE  4 Descriptive statistics for power, ̄G, and ARIHA for DISPROF based on Sim 2

P Ov Minimum Mean Mode Maximum σ SE

Sim 2. Power − σ2
1
 = σ2

2
 = 1, n1 = n2 = 25, S = 50,000

 P = 2 Ov = {0.01, 0.02, … 0.49, 0.5} 0.342 0.626 0.476 1.000 0.221 .004

 P = 3 Ov = {0.01, 0.02, … 0.49, 0.5} 0.491 0.713 0.629 1.000 0.164 .003

 P = 5 Ov = {0.01, 0.02, … 0.49, 0.5} 0.770 0.877 0.760 1.000 0.068 .001

 P = 10 Ov = {0.01, 0.02, … 0.49, 0.5} 0.990 0.997 0.999 1.000 0.002 <.001

 P ≥ 25 Ov = {0.01, 0.02, … 0.49, 0.5} 1.000 1.000 1.000 1.000 0.000 .000

Sim 2. ̄G − σ2
1
 = σ2

2
 = 1, n1 = n2 = 25, S = 50,000

 P = 2 Ov = {0.01, 0.02, … 0.49, 0.5} 1.46 1.81 1.66 2.14 0.23 <.01

 P = 3 Ov = {0.01, 0.02, … 0.49, 0.5} 1.70 1.95 2.16 2.19 0.16 <.01

 P = 5 Ov = {0.01, 0.02, … 0.49, 0.5} 2.07 2.16 2.13 2.22 0.03 <.01

 P = 10 Ov = {0.01, 0.02, … 0.49, 0.5} 2.08 2.15 2.15 2.21 0.02 <.01

 P = 25 Ov = {0.01, 0.02, … 0.49, 0.5} 2.05 2.06 2.06 2.09 0.01 <.01

 P = 50 Ov = {0.01, 0.02, … 0.49, 0.5} 2.03 2.06 2.06 2.09 0.01 <.01

 P = 150 Ov = {0.01, 0.02, … 0.49, 0.5} 2.03 2.06 2.06 2.09 0.01 <.01

 P = 225 Ov = {0.01, 0.02, … 0.49, 0.5} 2.04 2.07 2.06 2.09 0.01 <.01

 P = 300 Ov = {0.01, 0.02, … 0.49, 0.5} 2.04 2.06 2.07 2.09 0.01 <.01

Sim 2. ARIHA − σ2
1
 = σ2

2
 = 1, n1 = n2 = 25, S = 50,000

 P = 2 Ov = {0.01, 0.02, … 0.49, 0.5} 0.116 0.347 0.116 0.927 0.232 .005

 P = 3 Ov = {0.01, 0.02, … 0.49, 0.5} 0.198 0.407 0.198 0.897 0.190 .004

 P = 5 Ov = {0.01, 0.02, … 0.49, 0.5} 0.447 0.591 0.447 0.883 0.111 .002

 P = 10 Ov = {0.01, 0.02, … 0.49, 0.5} 0.846 0.875 0.846 0.934 0.019 <.001

 P = 25 Ov = {0.01, 0.02, … 0.49, 0.5} 0.984 0.988 0.984 0.991 0.001 <.001

 P = 50 Ov = {0.01, 0.02, … 0.49, 0.5} 0.995 0.997 0.995 0.998 0.001 <.001

 P = 150 Ov = {0.01, 0.02, … 0.49, 0.5} 0.995 0.997 0.995 0.998 0.001 <.001

 P = 225 Ov = {0.01, 0.02, … 0.49, 0.5} 0.996 0.997 0.996 0.998 0.001 <.001

 P = 300 Ov = {0.01, 0.02, … 0.49, 0.5} 0.995 0.997 0.995 0.998 0.001 <.001

Structured data—overlapping groups: Power estimates for each [N × P × Ov] configuration were based on S = 1,000 datasets with mean values based on 
50 [P × Ov] configurations at each P; all p-values were obtained via 999 permutations with significance assessed at α = .05. Mean number of groups ( ̄G) and 
average clustering solution correspondence (ARIHA) estimations and statistics were obtained from S = 50,000 datasets across all Ov for each configuration 
of [N × P]. N, total number of objects (ni = number of objects in group i); P, total number of descriptors;  Ov, average overlap per axis between data clouds 
for G1 and G2; σ2

i
, variance of group i; σ, standard deviation of the mean; SE, standard error of the mean.
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4  | DISCUSSION

The DISPROF algorithm is designed to test the Ho that there is “no 
multivariate structure among objects, with respect to a set of descrip-
tors” in a dataset. The utility of deploying the algorithm with a cluster-
ing technique such as UPGMA is in (1) the reduction of arbitrary deci-
sion criteria (i.e., dissimilarity thresholds for group identification); (2) 
the ability to assess multivariate structure at multiple levels of resem-
blance; (3) the inclusion of the frequentist approach to hypothesis test-
ing; and (4) the application of db multivariate statistical techniques. 
As such, it is important to determine where UPGMA clustering, with 
DISPROF implemented as a decision criterion, is affected by changes 
in data configuration, distribution, dispersion, and correlation. We 
were particularly interested in statistical error rates associated with 
DISPROF and the resolution and correspondence of the grouping 
solutions provided by DISPROF with UPGMA under a variety of 
potential data scenarios.

4.1 | Type I error and power of DISPROF

4.1.1 | Type I error

When assessing the DISPROF algorithm’s Ho, there appears to be 
no effect of distribution type or [N × P] configuration on type I error 
rates. The mean type I error rates for all [N × P] within each prob-
ability distribution type fell within acceptable ranges for the expected 
number of rejections (α = .05). As DISPROF correctly failed to reject 
Ho with acceptable levels of type I error, it is, therefore, reasonable to 
assume that there is a low likelihood that the underlying probability 
distribution will impart some sort of unknown grouping structure to 

the dataset (e.g., where some unwanted noise structure might ele-
vate false positives). This is notable given that these techniques were 
developed for ecological datasets such as those tested in Sim 1f, but 
they appear to be applicable to many common data types collected 
by different lines of scientific inquiry (Tables 1 and 2). However, the 
activity displayed by DISPROF in Sim 3a and Sim 4 leads us to believe 
that further investigation may be required for datasets with high lev-
els of overdispersion or correlation among descriptors. In these cases, 
misclassification appears to increase along with both θ and Σ, and is 
exacerbated by increases in P (Tables 6 and 7). These findings are also 
notable as overdispersion and correlation are two common qualities 
of ecological datasets.

4.1.2 | Power

The power of DISPROF to detect structure in data is generally poor 
with low-dimensional (P ≤ 5) multivariate normal data, and with low-
dimensional (P ≤ 10) ecological count data where μ1 = μ2, the latter 
being expected as this configuration can be interpreted as G = 1. As 
DISPROF performed decidedly better when μ1 = 10 and μ2 = 30, it 
follows that the hypothesis test relies heavily on the location param-
eter when assigning group membership, and when heterogeneity of 
groups is only defined by overdispersion the two are confounded by 
the algorithm. A similar response to collocated sets of heterogeneous 
objects was observed during empirical investigation of ANOSIM and 
the MANTEL test (Anderson & Walsh, 2013). The power of DISPROF 
improves dramatically once P ≥ 25, and increases with greater sepa-
ration between groups in hyperdimensional space. With group sepa-
ration in hyperspace, the power of DISPROF to evaluate Ho is unaf-
fected by increasing the overdispersion in ecological data, and the 
test for structure is able to correctly identify the presence of groups 
in virtually all simulated datasets where μ1 = 10 and μ2 = 30. The pres-
ence of correlation structure among the descriptors within any group 
also has no noticeable effect on the power of DISPROF to detect 
structure.

The power of DISPROF is excellent in most cases and, as Clarke 
et al. (2008) predicted, its ability to detect structure becomes more 
powerful as the dimensionality of the predictors increases, and so we 
have found their corollary (1) to be supported. A potential explanation 
for the increase in power observed along with the increases in P may 
be related to the idea of a group’s identity, or the unique combination 
of numerical values that quantitatively represent a set of objects (i.e., 
their “fingerprint”). The more descriptors used to quantify an object, 
the less likely the unique fingerprint that describes that group of 
similar objects could be re-created by chance. Therefore, during the 
randomization process of the DISPROF test, and with a large enough 
P, breaking the structure in the original data is relatively easy to do 
in order to create the null distribution for the test statistic. This is 
essentially the overfitting problem in reverse (Babyak, 2004; Hawkins, 
2004). This overfitting is appropriate because it essentially creates 
highly unique observed resemblance profiles to test against for struc-
ture, and because no extrapolation or interpolation is based on the 
overfitted identity. Any unique group identity exposed in the dataset 

F IGURE  4 Power of the DISPROF test versus the proportion 
of group overlap: Statistical power of DISPROF versus Ov for all P 
tested under Sim 2. Each line plot represents the 50 power values 
for S = 1,000 datasets at each Ov level for a given P. The horizontal 
dashed line at power = 0.8 is the lower limit of acceptable power 
values
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will be similarly overfitted because all objects are represented in the 
same space of descriptors.

4.2 | Resolution and correspondence of DISPROF

If either of the theoretical corollaries presented by Clarke et al. (2008) 
were to be considered cautionary, it would be corollary (2), which 

regards the resolution of DISPROF solutions being finer than ecolo-
gists (or any professional) utilizing the method could interpret mean-
ingfully. We further contend that the correspondence between these 
grouping partitions and any known grouping structure in the simu-
lated datasets is informative and is indicative of the DISPROF cluster-
ing method’s ability to settle on “meaningful” solutions. Therefore, any 
discussion of the issues surrounding the resolution of the grouping 

F IGURE  5 The relationship for ̄G and ARIHA with Ov for DISPROF clustering: (a) The mean number of groups identified ( ̄G) versus the average 
data cloud overlap (Ov) for all P tested under Sim 2. Each line plot represents the 50 ̄G values for S = 1,000 datasets at each Ov level for a given 
P. The optimal grouping solution (G = 2) is represented by the horizontal dashed line. (b) The mean correspondence of the grouping solution 
(ARIHA) versus the average data cloud overlap (Ov) for all P tested under Sim 2. Each line plot is configured as in panel (a), the horizontal black 
dashed line represents lower bound for excellent correspondence (ARIHA = 0.9), and the red dashed line represents lower bound for good 
correspondence (ARIHA = 0.8). Boxplots to the right represent the distribution of standard errors for each estimate of the ̄G and ARIHA for all Ov 
within a noted dimensionality for P. The horizontal red line in each boxplot represents the median standard error value in the distribution, with 
the upper and lower edges of the box being the 25th and 75th percentiles. Whiskers extend to encompass the most extreme data points, and 
outliers are plotted individually as crosses
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solutions is incomplete without also discussing their correspondence 
with reality (i.e., “correctness”).

4.2.1 | Effect of group locations

The structured data were simulated as either two groups whose 
location in hyperspace was defined by the progressively decreasing 
amount of average overlap between the groups’ data clouds (Sim 2), 
or as two stationary groups whose location was predefined to be the 
same (Sim 3a) or different (Sim 3b, Sim 4). In all cases, we have demon-
strated that when the two groups have higher overlap in hyperspace, 
the DISPROF algorithm has a tendency to underestimate the num-
ber of groups, and often settles on solutions where only a single large 
group exists. When clustering multivariate normal data, as in Sim 2, 
the effects of the amount of overlap are overridden by increases in the 
dimensionality of the dataset (Figure 5a) and potentially are due to the 
increase in complexity of the fingerprint for the groups that coincides 
with the extra dimensions. The result of this override is that even at 
levels of data overlap that reach as much as 50%, DISPROF cluster-
ing is able to detect the correct number of groups in data that have 
P ≥ 5. However, the correspondence values for those correct numbers 
of groups do not reach acceptable levels (ARIHA ≥ 0.80) until P ≥ 10 
(Figure 5b). Therefore, when clustering multivariate normal data with 
equal variances, the most reliable resolution and correspondence lev-
els will be achieved with P ≥ 10.

The simulated ecological count data showed a profound effect of 
group location on the resolution and correspondence of the clustering 
solutions provided by DISPROF. Particularly in cases where the two sets 
of objects had the same central tendency but different overdispersion 
structures, and regardless of the number of descriptors in the dataset, 
DISPROF either underestimated the number of groups (e.g., Gmode = 1), 
or very greatly overestimated it (e.g., Gmode = 26). This directly con-
trasts with the performance of DISPROF with ecological count data 
whose groups are separated in hyperspace. In these cases, once 
again regardless of the number of descriptors, DISPROF performed 
optimally and identified the correct number of groups, on average, in 
ecological data, even with high levels of overdispersion. This finding is 
consistent with those for the multivariate normal data, in that low Ov 
improved DISPROF’s performance as a clustering criterion. High group 
overlap may negatively affect DISPROF in the same manner as having 
low numbers of descriptors (P), where the high-overlap situation allows 
for group fingerprints that are not unique enough when compared to 
one another. In this case, the randomization process is unable to break 
the structure in the datasets and the differences between the mean 
resemblance profile (representing Ho) and the observed profile are neg-
ligible (i.e., no structure present); thus, the routine returns a solution 
that identifies the entire data cloud as one group.

4.2.2 | Effects of overdispersion among descriptors 
within groups

The ecological count data used here were simulated so that we 
could examine the effects of increasing the overdispersion (θ) of G2 
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while holding θ1 = 0. The purpose of this exercise was to increase 
the relatability of the results to ecological data, as many species 
composition and abundance datasets are highly overdispersed. Our 
results indicate that when the groups do not overlap in hyperspace, 
the effects of the overdispersion of the second group are negligi-
ble when considering the resolution of the clustering solutions, but 
the correspondence of those solutions with reality is unacceptable 
when P ≤ 10 for data with high overdispersion (θ2 = 0.9). When the 
groups are defined by different levels of overdispersion and share 
a location, the effects of increasing overdispersion become more 
pronounced and are seemingly amplified by increasing the dimen-
sionality of the dataset being tested. In these cases, the resolution 
of the solutions is as described previously, but the correspondence 
levels for the resultant partitions are all inadequate. The point of 
interest, however, is that the ARIHA values tended to be around 0.5 
for clustering scenarios where the overdispersion among descrip-
tors is medium or high (i.e., θ2 = {0.4, 0.9}) and P ≥ 25 (and for 
θ2 = 0.1, the Pthreshold = 150). This indicates that one group is being 
identified fairly well and the other is being completely misrepre-
sented by the grouping algorithm. We suspect that the increase in 
θ2 causes the numerical fingerprint of the objects within the group 
to be too dissimilar when only compared to one another, and the 
result is a series of singleton groups, as the clustering algorithm 
iteratively works through the UPGMA connection of the overd-
ispersed nodes. It seems as though the effects of overdispersion 
among ecological count data are secondary to the effects of group 
location in hyperspace, but supersede those of dataset dimensional-
ity (dimension < overdispersion < location).

4.2.3 | Effects of correlation structure among 
descriptors within groups

Our simulation studies that incorporated different correlation struc-
tures among descriptors within groups were also undertaken in an 
effort to relate our investigations to studies incorporating ecologi-
cal datasets, which often contain descriptors that are correlated with 
one another to some degree. We used multivariate normal data in 
our simulations to ensure that the observed effects of different cor-
relation scenarios were not confounded by some other distributional 
assumptions. It appears as though medium to high levels of correla-
tion (Σ = {0.6, 0.9}) among descriptors within a group will strongly 
impact the number of groups identified, and it tends to increase ̄G 
as Σ increases. Drawing inferences from these clustering results may 
be dubious, however, because for virtually all clustering solutions 
that had medium or high correlation among descriptors, regardless 
of dimension, the mean correspondence was well below acceptable 
limits.

Correlation structure among groups affects the shape of the data 
cloud in hyperspace. It is interesting to note that DISPROF seems 
to have an improved ability to detect more “correct” structure in 
data where the shapes (i.e., correlation structures) of the groups are 
the same (Σ1 = Σ2), as opposed to one group having no correlation 
structure (i.e., spherical data cloud) and the second group having 

medium-to-large correlations among descriptors (i.e., data cloud 
distortion). As our simulations only explore medium-to-high correla-
tion among all descriptors, it would be of interest to examine low, 
negative, and mixed correlation structures to describe DISPROF’s 
performance variability under a full range of correlation conditions. 
The control scenarios, where Σ1 = Σ2 = 0, were among the only sce-
narios that returned reasonable ̄G or ARIHA results; however, these 
scenarios effectively recreate a simplified version of those data sim-
ulated under Sim 2. The overall ARIHA results suggest that increasing 
the correlation between descriptors in one group and not the other 
tends to produce increasingly unreliable grouping partitions, and 
these results are in line with those from Sim 2, where low P results 
in low ARIHA. One explanation for this might be that as the level of 
correlation between descriptors increases the effective size of P 
decreases, and when considering the pairwise dissimilarity between 
objects, because the variability across all correlated descriptors in 
a group is essentially the same, datasets with high P and Σ tend to 
have similar DISPROF clustering dynamics as datasets with low P 
and no correlation structure.

5  | CONCLUSIONS

5.1 | DISPROF as a clustering decision criterion

Strengths of using resemblance profiles as a hypothesis test for 
multivariate structure are that the type I error rates (1) are within 
the range of acceptability for α = .05, (2) tend to be binomially dis-
tributed around 5%, and (3) are resistant to the effects of both the 
underlying probability density function and (4) the [N × P] configura-
tion of the data. Additional strengths include the facts that, when 
μ1 ≠ μ2, the power of DISPROF (5) is within the acceptable range for 
P ≥ 10 and is unaffected (6) by up to 50% average group overlap, (7) 
by increasing overdispersion among ecological count data, and (8) by 
increasing correlation structures among descriptors. Finally, (9) the 
first theoretical corollary proposed by Clarke et al. (2008), that the 
power of the test for multivariate structure increases as P increases, 
was confirmed.

From a traditional statistical error perspective, it appears that 
using resemblance profiles is a very effective method for identify-
ing multivariate structure; it rarely identifies structure that is not 
present and it almost always identifies structure that is present. The 
weaknesses of using this hypothesis test are mostly related to the 
second Clarke et al. (2008) corollary, where the resolution of any 
grouping structure identified may be too fine to interpret meaning-
fully. The realized power of the resemblance profile hypothesis test 
comes when it is implemented as a clustering criterion, and success 
is based upon the partition returned by the algorithm. The resolu-
tion of the partition and the solution’s correspondence with inter-
pretable multivariate structure in the dataset are ultimately what 
the researchers will use to explain their theories. The second Clarke 
et al. (2008) corollary appears to be valid, but it manifests differ-
ently depending on the type, configuration, and hyperdimensional 
structure of the dataset being considered. However, if we constrain 
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our analysis to relatively high-dimensional, low-correlation datasets 
where the group locations are separated, then the resolution-versus-
interpretability concern wanes greatly. The power to detect structure 
is very high, even with P as low as 10 descriptors, and so it follows 
that any additional resolution imparted on the solution (which may 
account for any reduction in correspondence) is likely the result of 
an actual numerical signal in the dataset, and can be manifest from 
random (or unmeasured) processes, or error. An alternative explana-
tion may be related to the construction of the null distribution for the 
test statistic π, where group properties such as location and hyper-
dimensional shape may preclude the permutation procedure from 
accurately depicting the null scenario.

5.2 | Recommendations for using DISPROF 
(SIMPROF)

The results presented for type I error, power, resolution, and cor-
respondence suggest that using resemblance profiles as a test for 
multivariate structure, and as a clustering decision criterion, has 
strengths and weaknesses. The results also highlight pitfalls that can 
be avoided if particular care is taken prior to implementation of these 
clustering techniques. The complex interactions between the data 
type/configuration and the hyperdimensional structure and overlap 
between groups strongly affect the results achieved when clustering 
with DISPROF. The method is nonetheless an improvement over tra-
ditional UPGMA clustering, most notably due to the removal of the 
arbitrary and static assignments of resemblance thresholds that define 
groups of objects. Because the realized power of using resemblance 
profiles as clustering decision criteria cannot be maximized without 
making tradeoffs between resolution and correspondence with inter-
pretable structure, we make the following recommendations.

1.	 Exploratory analysis, such as principle coordinates analysis (PCoA), 
should be performed to determine, at a minimum, if any hy-
pothesized grouping structures might have high amounts of 
overlap (i.e., Ov > 50%) in hyperdimensional space, and DISPROF 
should be avoided in high-overlap situations. Data clouds that 
appear to overlap greatly could produce unreliable results and 
should not be clustered using these methods.

2.	 Medium-to-high correlation (i.e., ≥0.6) among all descriptors should 
be avoided, and efforts should be made to either reduce or remove 
the correlated descriptors in a dataset. In an effort to create more 
parsimonious models, priority should be given to descriptors that 
are indicative of independent processes, whenever possible. In the 
case of ecological abundance data, where many species are often 
both of interest and are highly correlated, it may be of benefit to 
use a dimension reduction technique (e.g., PCoA) that produces 
new orthogonal descriptors, with no correlation structures, prior to 
clustering with DISPROF.

3.	 The data dimensionality should be restricted to P ≥ 25 descriptors 
in order to achieve solutions with ideal resolution and “excellent” 
correspondence (ARIHA ≥ 0.90) to meaningfully interpretable 
structure.

4.	 A less conservative guideline would be to restrict the number of 
descriptors to P ≥ 10. This new limit retains power, increases the 
potential for higher resolution solutions, and reduces correspond-
ence from “excellent” to “good” (0.80 ≤ ARIHA < 0.90).

Since its initial development and addition to PRIMER-E (Clarke & 
Gorley, 2015), the use of resemblance profiles has been gaining traction 
as a clustering criterion, mostly in the ecological literature. Our results 
provide recommendations for ecologists to use when applying these 
methods, and demonstrate the methods’ transferability to other numer-
ical analyses, data types, and disciplines. With a better understanding of 
the dynamic performance of resemblance profiles as clustering criteria 
and the potential variability in the results they produce, researchers can 
more confidently deploy SIMPROF and interpret the results with respect 
to beta-diversity, species/environment relationships, or any other com-
plex multivariate model and/or associated hypotheses. While there ap-
pear to be clear advantages imparted by the use of resemblance profiles 
as clustering criteria, there are still many questions that deserve addi-
tional attention that were beyond the scope of this evaluation.
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