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Late onset Alzheimer´s disease (AD) is a neurodegenerative disease with

gender differences in its onset and progression, being the prevalence

predominant in women and at an earlier age than in men. The

pathophysiology of the menopausal condition has been associated to this

dementia, playing major roles regarding both endocrine and glucose

metabolism changes, amongst other mechanisms. In the current review we

address the role of estrogen deficiency in the processes involved in the

development of AD, including amyloid precursor protein (APP) processing to

form senile plaques, Tau phosphorylation forming neurofibrillary tangles, Wnt

signaling and AD neuropathology, the role of glucose brain metabolism, Wnt

signaling and glucose transport in the brain, and our research contribution to

these topics.

KEYWORDS

wnt signaling, menopause, estrogen, glucose brain metabolism, alzheimer´s disease,
tau phosphorylation, APP - amyloid precursor protein
Introduction

The endocrine status that comes with menopause, with the cessation of ovarian

estrogens and progesterone synthesis and increase of gonadotropins (FSH and LH),

brings a loss of neuroprotector mechanisms that could explain cognitive decline (1) and

the risk of developing AD later in life more prevalent in women (2). Estradiol (E2), the

main estrogen acting during women´s reproductive years, is well known to exert
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neuroprotection through various mechanisms (3–5). Even more,

neuron derived E2 regulates synaptic plasticity and memory

(6, 7).

On the other hand, it is also well known that Wnt signaling

plays important roles in various systemic physiological

processes: cell differentiation, polarity and migration (8, 9). At

the central nervous system (CNS) as well, Wnt signaling has

been described in various cell types including radial glia,

oligodendrocytes, microglia, astrocytes, and neurons (10–12),

and regulates neural patterning, stem cells proliferation and

neurogenesis (9, 13, 14). Back in 2000, we proposed that Wnt

signaling might play a key role in AD neuroprotection (15). We

have since studied the function of this signaling pathway in the

CNS and its importance in AD, with the objective to explore

pharmacological strategies that could strike the burden of this

disease. In humans, 19 Wnt ligands and 10 Frizzled (Fz)

receptors are recognized (16). Wnt proteins are post-

translationally palmitoylated to be secreted and to be bound to

Fz receptor (17). Wnt ligands play a key role in the formation

and function of synapses through lifetime. Wnt7a, a canonical

ligand, stimulates dendritic spine morphogenesis inducing the

postsynaptic density-95 (PSD-95) protein expression (18).

Dysfunction of Wnt signaling has been described in aging

and menopause, both associated with hippocampal memory

impairments (9, 19). Our studies on hippocampal cultured

neurons, as well as in transgenic mice models of AD, indicated

that Wnt signaling protects against the amyloid b (ab) peptide
neurotoxicity. Wnt signaling is also involved in Tau

phosphorylation by its enzyme glycogen synthase kinase-3b
(GSK-3b) and, finally, the activation of Wnt signaling was

shown to be involved in learning and memory (20–22).

One of the mechanisms through which E2 protects from

brain tissue ischemia is by interfering the induction of dickkopf-

1 (Dkk1) (23), an antagonist of the Wnt signaling pathway (24).

Studies with hippocampal neurons in culture showed that Dkk1

is required for amyloid-mediated synaptic loss (25). Dkk1,

though crucially expressed during neurodevelopment, its

elevation in adult life has shown to be a principal mediator of

neurodegeneration (9, 19).

Another mechanism related to a decrease in brain function

of AD patients is the decrease in glucose consumption. Our

research group described that Wnt activators increase both brain

glucose consumption and cognitive performance in transgenic

AD mice (26).

A Wnt activator Andrographolide (ANDRO), a labdane

diterpene, was found to reduce Ab burden, astrogliosis,

interleukin-6 and oxidative stress (27), all these mechanisms

present in AD. Our studies are consistent with the idea that the

activation of Wnt signaling might delay the onset of AD (9).

In this review, we describe studies on the role of Wnt

signaling on the neuroprotective activity of E2, and on energy

metabolism and glucose transport in neurons, in search of a
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method that could delay or avoid the development of this

progressive dementia with no effective treatment available.
Menopause and development of AD

A particularly interesting aspect is the role of sex steroids on

neuroprotection (28). In fact, postmenopausal women are most

frequently affected by sporadic AD in a ratio 3:1, differently from

the incidence in the infrequent hereditary illness occurring in

younger patients in a ratio 1:1 (29). Estrogen deficiency

occurring in spontaneous or surgical menopause has been

associated to cognitive decline; in this context, several studies

have shown that early E2 replacement exerts neuroprotective

effects (7, 30).

Since AD is the most prevalent dementia and incurable

disease, understanding its molecular pathogenesis could lead to

the development of a specific therapeutic strategy, here we will

describe effects of E2 on Ab peptide production and

Tau phosphorylation.
E2 affects the production of Ab peptide
by blocking the amyloid precursor
protein processing

The APP is the precursor of a 40-42 amino acid peptide

called amyloid-b-peptide (Ab), that forms the central core of

senile plaques (31). APP is cleaved by distinctive enzymatic

activities, denominated secretases: a-secretase was the first

described and cuts the Ab peptide between the 15 and 17

amino acids and thus yields a large soluble amino-terminal

fragment of APP known as the soluble non-amyloidogenic

APP (sAPP), that does not form senile plaques. The second

enzyme, named b-secretase (BACE1), cuts the Ab peptide at its

N-terminal domain, generating a cell-associated amyloidogenic

carboxy-terminal fragment which is processed by a third

enzymatic complex enzyme called g-secretase, which produces

a soluble Ab by cutting the APP in the middle of the neuronal

membrane, generating an aggregating amyloidogenic Ab peptide
that forms the senile plaques (31).

One of the first indications that E2 was protective against AD

was obtained when E2 was found to stimulate the processing of

APP, at the level of the a-secretase enzyme, preventing the

generation of Ab, generating a soluble non-amyloidogenic

APP (32); therefore, E2 blocks the amyloid plaques formation

(32), a key neuropathological lesion in AD (31). In addition,

brain E2 deficiency accelerates amyloid plaque formation, as

shown in an AD animal model (33). Finally, E2 also decreases the

formation of amyloid fibrils as well as the formation of Ab
oligomers in vitro (34). Table 1 indicates some of the E2 effects

on Ab peptide production.
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Wnt signaling activity and Ab
peptide production

Recent studies in mouse AD models indicate that the

activation of the Wnt signaling pathway decreases the Ab
peptide levels, due to a low b-secretase (BACE1) availability,

since Wnt signaling activation repressed BACE1 transcription at

the nuclear level (40, 41). These results indicate that the

activation of Wnt signaling by acting in a different secretase

than E2, also decreases the amount of Ab peptide and diminishes

the amyloid plaques formation (9, 41). These studies also

indicated that reducing the b-cleavage of APP may protect

against the appearance of AD in the animal models.

Interestingly, molecular genetics studies in Iceland (42)

identified coding variants in the APP that were tested for an

association with AD, after studying whole-genome sequencing

of 1,795 subjects. Variant A673T, corresponding to a single

nucleotide alanine-to-threonine substitution adjacent to the b-
secretase (BACE1) site in APP, was markedly more common in

the elderly control than in the AD subjects; this is consistent with

an ≈ 40% reduction in the Ab, formation observed in vitro (42).
E2 affects Tau phosphorylation

Intraneuronal communication occurs through microtubules

and the associated Tau proteins that stabilize microtubule

structure and function. In AD, kinases phosphorylate Tau

proteins, detaching them from the microtubules; these

“speedways” lose structure and function, and synaptic vesicles

cannot be driven to the synaptic region, and twisted filaments

are aggregated in tangles – the neurofibrillary tangles. In fact,

Tau is phosphorylated by several kinases, including GSK-3b
(43). In general, GSK-3b can phosphorylate around 42 Tau sites,

of which at least 29 are found phosphorylated in human AD

brains (44).

In this context, it is interesting to mention that E2 prevents

neural Tau hyperphosphorylation; moreover, E2 increased Tau

dephosphorylation as measured by using a Tau-1 antibody

which identifies a site of Tau (proline) which is non-

phosphorylated. In addition, E2 prevented okadaic acid-

induced hyperphosphorylation of Tau in both proline- and
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non-proline sites, and this effect was blocked by an anti-E2
antibody (45). In this study, the Estradiol Receptor (ER)

appeared to be responsible of these effects probably via the

Akt metabolic pathway (35). Finally, in transgenic mice

expressing the wild-type human Tau, it was shown that E2
inhibited the Ab-mediated conformation of Tau called paired

helical filaments (PHF) through both antioxidant activity and

regulation of the miRNA-218 (28, 46). Table 1 indicates some

effects of E2 on Tau protein.

Wnt signaling activity and Tau
hyperphosphorylation

b-Catenin is a key protein of Wnt signaling which is

regulated by GSK-3b, studies in ovariectomized rats sacrificed

1h after E2 treatment, showed that b-catenin and GSK-3b are co-
immunoprecipitated with the (ERa) in the hippocampus. This

observation is consistent with the hypothesis that a multi-

complex is formed by ERa, b-catenin and GSK-3b, that

inhibited GSK-3b activity and thus regulating Tau

phosphorylation, avoiding its hyperphosphorylation through

Wnt and estradiol action (44, 47).

AD mutations in presenilin-1 also promote GSK-3b activity

and Tau phosphorylation (48). Overexpression of GSK-3b in the

adult mouse brain leads to a decrease in b-catenin and an

increase in Tau phosphorylation (45). Also, hippocampal

infusion of Dkk1, a Wnt antagonist of the Canonical Wnt

signaling triggers PHF1 Tau phosphorylation in rats (46).
Energy metabolism and
metabolic syndrome

The excess of energy from carbohydrates and fats in

inadequate diet habits, leads to progressive metabolic disorders

at any age. In the perimenopausal years, when E2 synthesis

becomes variable and fluctuating, and FSH increases, the risk of

the appearance of the metabolic syndrome increases significantly;

when E2 decline is established with menopause, the metabolic

syndrome is clearly higher than in premenopausal years (49). All

components of metabolic syndrome become more conspicuous

with menopause: higher blood glucose, lower HDL-cholesterol,

higher blood triglycerides, higher blood pressure, and increase in

visceral adiposity (larger waist circumference) (50).

In postmenopausal women, treatment with estrogens

improves all components of the metabolic syndrome, as well

as insulin resistance parameters (51). Estrogens have a

transcendent role on metabolism by modulating directly

whole-body energy management, controlling glucose

availability and facilitating insulin secretion, and modulating

energy partition by favoring lipids as the main substrate for

energy when they are more available than carbohydrates,

shifting from lipid storage to their oxidation as substrate. As

well, E2 maintains energy balance by influencing energy intake
TABLE 1 Summary of Neuroprotective actions of E2.

At the level of Tau protein

E2 prevents hyperphosphorylation of Tau protein (35)

E2 inhibits PHF-Tau conformation through miRNA 218 (36)

At the level of Ab protein

E2 protects against neurotoxicty by Ab (4, 37)

E2 stimulates the degradation of Ab peptide (32, 38)

E2 decreases the formation of Ab fibrils and Ab oligomers (34, 39)
The number in each line corresponds to the references.
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and energy expenditure, regulating body weight homeostasis.

The E2 roles on energy balance are mediated by the (ERa), which
is abundant in the hypothalamus. Estrogen deficiency in

menopause and the consequent loss of ERa activity, determine

a decrease in energy expenditure, increased food intake and

increased adiposity (52–54). In animal experiments, treatment

with E2 decreases obesity (55), decreases hepatic steatosis, and

limits fat deposition (54, 56).

Estrogens, as well, decrease lipogenesis and inhibit

adipogenesis through ERa activation (57). The role of E2 on

lipid metabolism is coordinated with effects on carbohydrate

metabolism, also through ERa, by lowering insulin resistance

and fat storage (58, 59). The insulin-sensitizing actions of E2
work through improving insulin-mediated glucose uptake,

insulin signaling, and glucose transport in adipose. muscular

and brain tissue. E2 also controls the metabolic sensor in the

hypothalamus, protecting the brain from hypoglycemia (60).

Otherwise, E2 potentiates the oxidative capacity of mitochondria

and E2 deprivation induces mitochondrial dysfunction and

insulin resistance, mechanisms involved in the development of

alterations in cognitive function (61). Thus, the metabolic

changes associated to menopause can play a key role in

triggering AD, in addition to the direct mechanisms favoring

the Ab peptide production of amyloid plaques and the

neurofibrillary tangles described above.

The role of glucose metabolism in the brain and its

regulation by Wnt signaling is discussed now.
Glucose metabolism in the brain

The adult brain represents only 2% of the total body mass

but is responsible for the utilization of almost 25% of total ATP

produced by the body (62–64). Glucose is the principal energy

source of the brain (65, 66). The uptake of glucose occurs via

glucose transporters (GLUTs): these are 14 isoforms, and several

GLUTs are expressed in the brain. At cellular levels the specific

isoform expressed depends on the brain region, i.e., in the cortex,

astrocytes express exclusively GLUT1 while neurons express

mainly GLUT3 (67–69). In the hippocampus the expression of

mRNA of GLUT4 mainly occurs in neurons; this is an

interesting observation because GLUT4 is regulated by insulin

and AMP-activated protein kinase (AMPK) pathways (70, 71).

In different AD models, a significant decrease in the expression

of GLUT4 has been described, suggesting a role for this

transporter in AD pathogenesis (72).

After glucose uptake by the cells, this molecule can be used

by several pathways including glycolysis, the Krebs cycle and

oxidative phosphorylation, the pentose phosphate pathway

(PPP) and glycogen synthesis (73–75). The use of glucose by

glycolysis, together with the Krebs cycle are the major source of

ATP to neurons (76–78). The PPP is required to obtain reducing
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equivalents in the form of nicotinamide adenine dinucleotide

phosphate (NADP(H+)), which in turn is required for neuronal

defense against oxidative stress since it is necessary for the

recycling of antioxidant molecules, such as glutathione and

ascorbate (74, 79). The glucose utilization by brain cells plays

a central role in the physiology of the brain and a decrease in this

metabol i sm has been re la ted with a lmost a l l the

neurodegenerative diseases, including AD (62).
Glucose metabolism in AD

A decrease in glucose utilization has been described in

several brain regions of AD patients, mainly in brain zones

related functions such as memory/learning, including the

hippocampus and cortex (62, 72, 80). At the molecular level,

the lower glucose utilization in AD patients has been associated

with alterations, including decreased expression of GLUT1, -3

and -4 in the cortex and hippocampus, insulin resistance in the

brain, mitochondrial dysfunction, deregulation of the Krebs

cycle, and oxidative phosphorylation, which are triggered by

the loss of key enzymes (81–83). On the other hand, stimulating

glucose metabolism in AD patients through the administration

of insulin or GLP-1, significantly improves the cognitive

function, supporting the close relationship between the

deregulation of cerebral glucose metabolism and the cognitive

failures described in AD (84, 85). In the context of menopause,

hot flashes could be a neurovascular compensatory response to

brain hypometabolism, to increase blood flow and glucose in the

brain, as has been shown in perimenopausal women (86).
Wnt signaling and glucose metabolism

Wnt ligands have been related with the regulation of glucose

metabolism. Animal models and human studies have suggested

that some components of Wnt signaling increase the risk for the

development of diabetes and age-related dementia (9, 87).

The increase in Ca+2 levels by the Wnt signaling pathway

significantly affects glucose metabolism in neurons and

astrocytes; thus, Wnt/Ca2+ signaling may represent a newly

identified mode for the regulation of glucose metabolism in

neurons (88–90). Previously, we showed that acute treatment

with Wnt5a stimulates glucose uptake in neurons, in a time-

dependent manner, this was correlated with an increase in both

hexokinase activity and the glycolytic rate. Furthermore, we

observed an increase in the activity of glucose-6-phosphate

dehydrogenase and PPP. The effects of Wnt5a were dependent

on the generation of nitric oxide (NO) downstream of Wnt5a

signaling (62, 91). These results support that the activation of

non-Canonical Wnt signaling pathway regulates cellular glucose

metabolism in neurons in a NO-dependent manner (74, 92).
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When we treated the neurons with a canonical Wnt ligand,

like Wnt3a, we observed an increase in glucose uptake in

neurons without changing the expression or localization of

GLUT3, the main GLUT transporter in these cells .

Furthermore, we described that the acute treatment with

Wnt3a stimulates the activation of Akt, the activity of

hexokinase and the glycolytic rate. These effects of Wnt3a

were dependent on activation of the Akt pathway and was

independent of both the transcription of Wnt target genes and

synaptic effects (93).

In addition to Wnt ligands, other molecules such as

ANDRO, obtained from Andrographis paniculata, activates the

Wnt signaling pathway by inhibiting GSK-3b and it was shown

to protect neurons (94, 95). ANDRO also increases the uptake of
Frontiers in Endocrinology 05
glucose in vivo and in vitro promoting in both conditions a

recovery of the brain glucose metabolism and cognitive

performance (9, 26, 96). Furthermore, we also demonstrated in

a transgenic mice model of AD that the administration of

ANDRO in pre-symptomatic stages can delay the appearance

of several markers of AD, promoting a general rescue of the

brain metabolic parameters (9, 62, 97).

These studies support that Wnt signaling promote glucose

metabolism in neurons, stimulating the ATP production in these

cells to satisfy the energy demands of neurons (62, 91, 93).

Globally, estrogens play a role on neurodegeneration

interrelated with Wnt signaling and glucose brain metabolism

as described in Figure 1, a scheme comparing the estrogenic

adult female with the postmenopauseal estrogen-deprived brain.
FIGURE 1

How factors are interrelated and their role in AD (Estrogen, Wnt signaling, glucose metabolism and neurodegeneration). Scheme integrating the
actions of Wnt signaling, Estrogen levels, Ab peptide synthesis and brain glucose uptake in the Adult Female as opposed to the Menopause
status: In the Adult Female, estrogen (E2) inhibits the synthesis of Dkk1 (a physiological antagonist of Wnt canonical signaling) (23), thus
promoting the activation of Wnt canonical signaling and leading to a decrease of Ab peptide synthesis, an increase in synaptic protection and
development of dendritic spines; in parallel, also leading to increased brain glucose uptake. In Menopause, the decrease of E2 induces an
increase of Dkk1 and the consequent decrease in Wnt signaling activity, that lead to an increase and aggregation of Ab peptide and neuronal
damage, as the loss of dendritic spines by the accumulation of plaques; in parallel, the decrease in Wnt signaling activity, decreases brain
glucose metabolism.
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A strength of this review is the involvement of our group in a

lifetime research on this topic, beginning in the early 1998 (3, 4)

and ongoing research (9).
Conclusion

Our aim to integrate the actions of different factors: Wnt

signal ing, E2 levels , synthesis of Ab peptide, Tau

phosphorylation and brain glucose uptake have been detailed

in this contribution, and are intimately entwined for

neuroprotection in the female reproductive years. These

mechanims are lost with menopause leading to a cascade of

events towards neurodegeneration in the postmenopausal years.

Further research is required for a better understanding of the

cellular and physio-pathological mechanisms related to the

endocrine and metabolic changes that occur with menopause,

globally and in the brain. This could lead to discover triggering

factors that initiate late onset neurodegeneration and that facilitate

its development. Thence, science could be nearer to intervene and

strike on this disease burden in an aging population worldwide.
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